Deep Neural Networks Convolutional Networks III

Bhiksha Raj

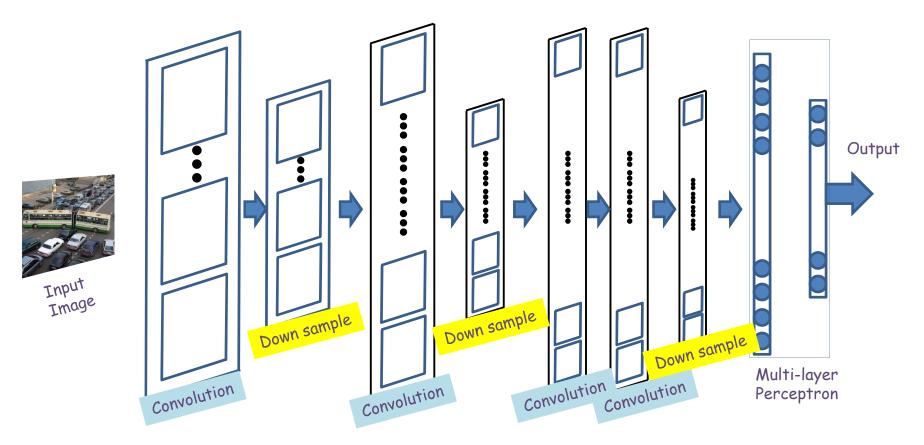
Outline

- Quick recap
- Back propagation through a CNN
- Modifications: Scaling, rotation and deformation invariance
- Segmentation and localization
- Some success stories
- Some advanced architectures
 - Resnet
 - Densenet
 - Transformers and self similarity

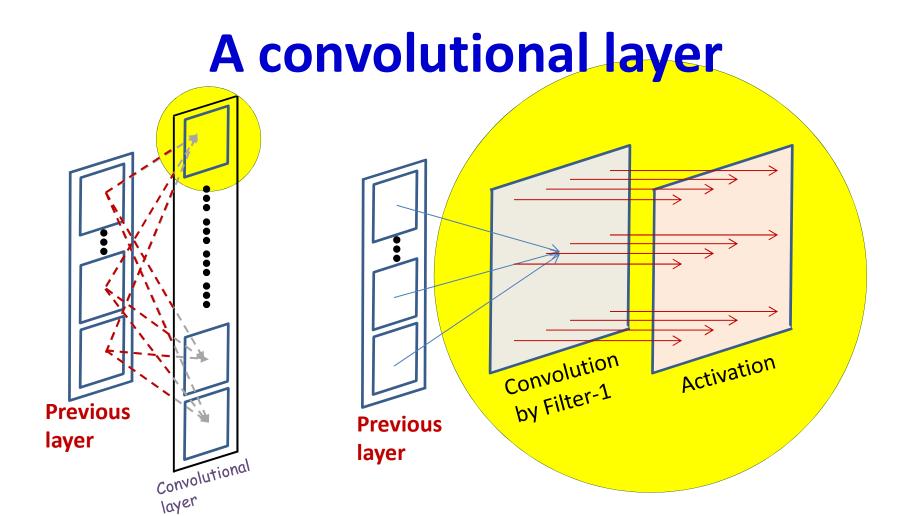
Story so far

- Pattern classification tasks such as "does this picture contain a cat", or "does this recording include HELLO" are best performed by scanning for the target pattern
- Scanning an input with a network and combining the outcomes is equivalent to scanning with individual neurons hierarchically
 - First level neurons scan the input
 - Higher-level neurons scan the "maps" formed by lower-level neurons
 - A final "decision" unit or layer makes the final decision
 - Deformations in the input can be handled by "pooling"
- For 2-D (or higher-dimensional) scans, the structure is called a convnet
- For 1-D scan along time, it is called a Time-delay neural network

The general architecture of a convolutional neural network

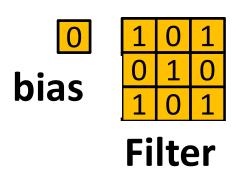


- A convolutional neural network comprises of "convolutional" and optional "downsampling" layers
- Followed by an MLP with one or more layers



- Each activation map in the convolutional layer has two components
 - A linear map, obtained by convolution over maps in the previous layer
 - Each linear map has, associated with it, a *learnable filter*
 - An activation that operates on the output of the convolution

What is a convolution



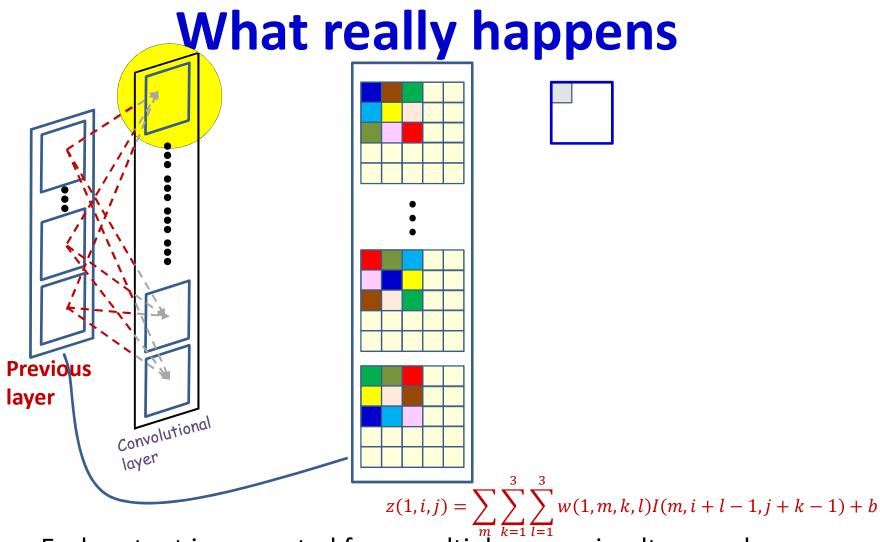
1,	1,0	1,	0	0
0,0	1,	1,0	1	0
0,,1	0,0	1,	1	1
0	0	1	1	0
0	1	1	0	0

4

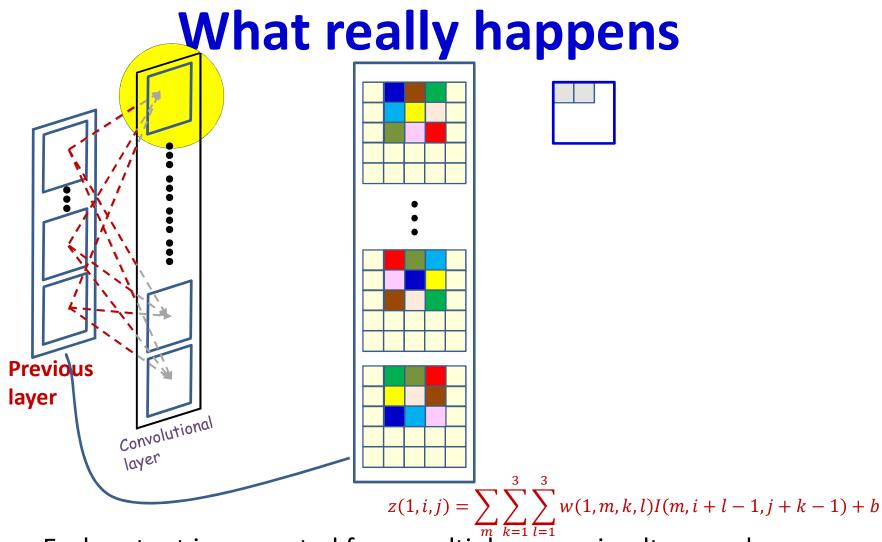
Input Map

Convolved Feature

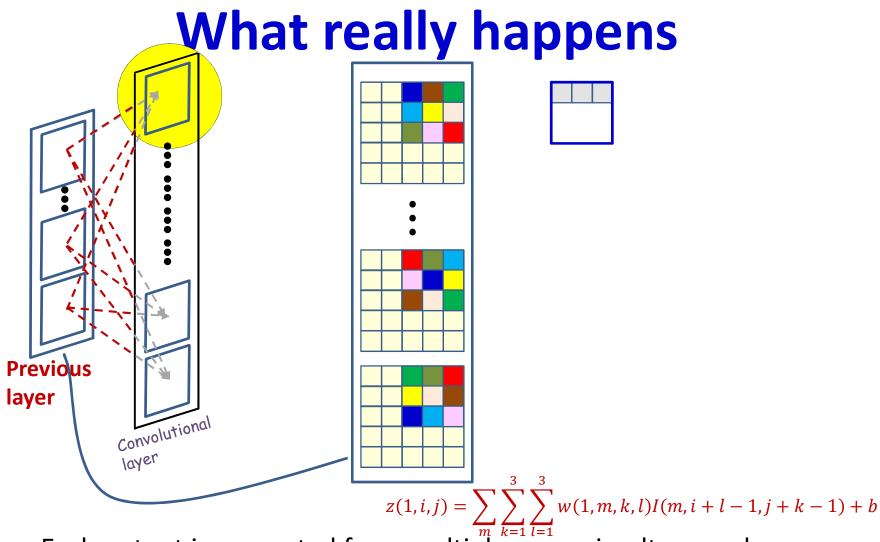
- Scanning an image with a "filter"
 - At each location, the "filter and the underlying map values are multiplied component wise, and the products are added along with the bias



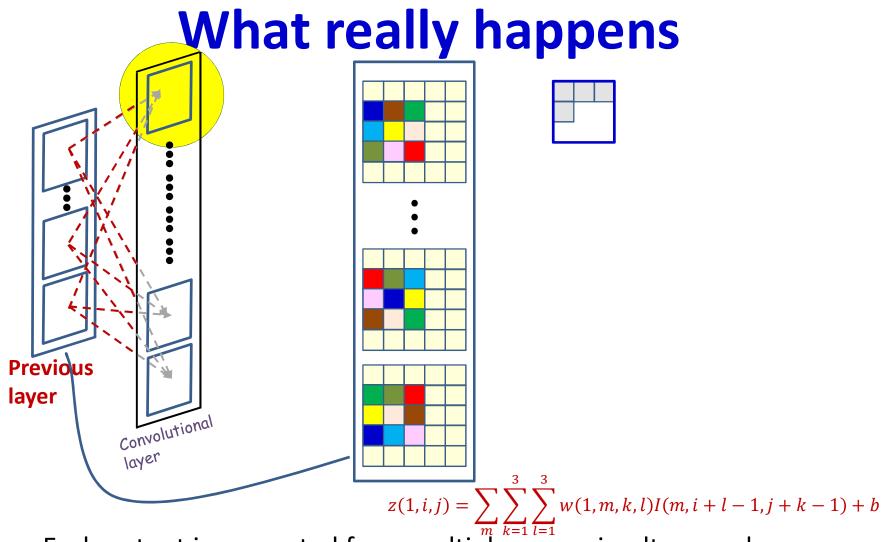
- Each output is computed from multiple maps simultaneously
- There are as many weights (for each output map) as size of the filter x no. of maps in previous layer



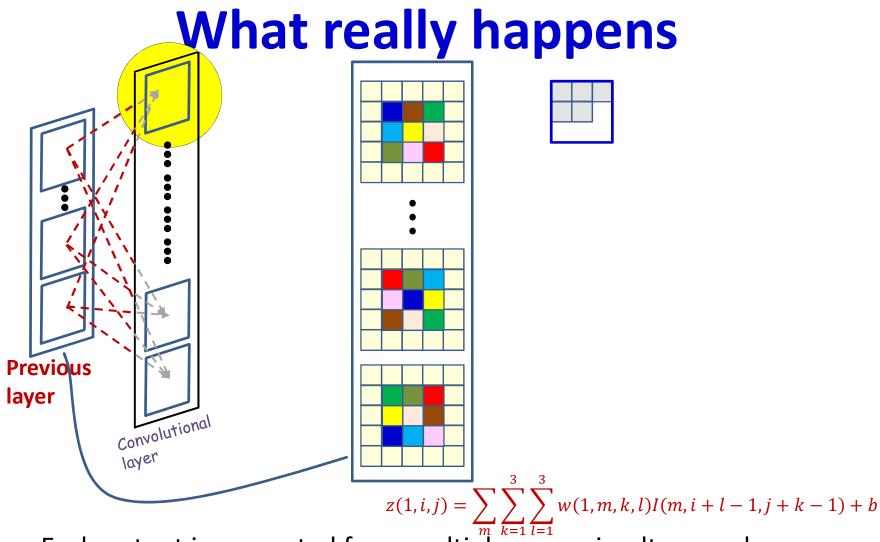
- Each output is computed from multiple maps simultaneously
- There are as many weights (for each output map) as size of the filter x no. of maps in previous layer



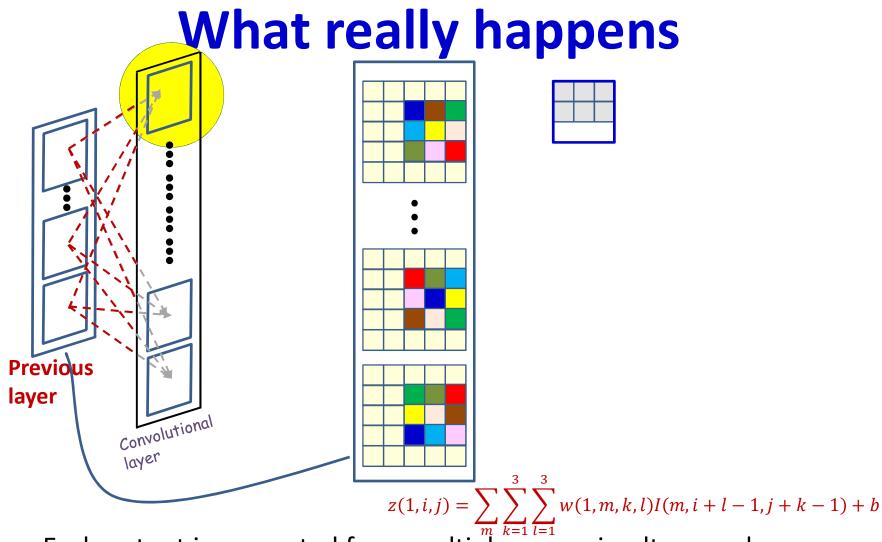
- Each output is computed from multiple maps simultaneously
- There are as many weights (for each output map) as size of the filter x no. of maps in previous layer



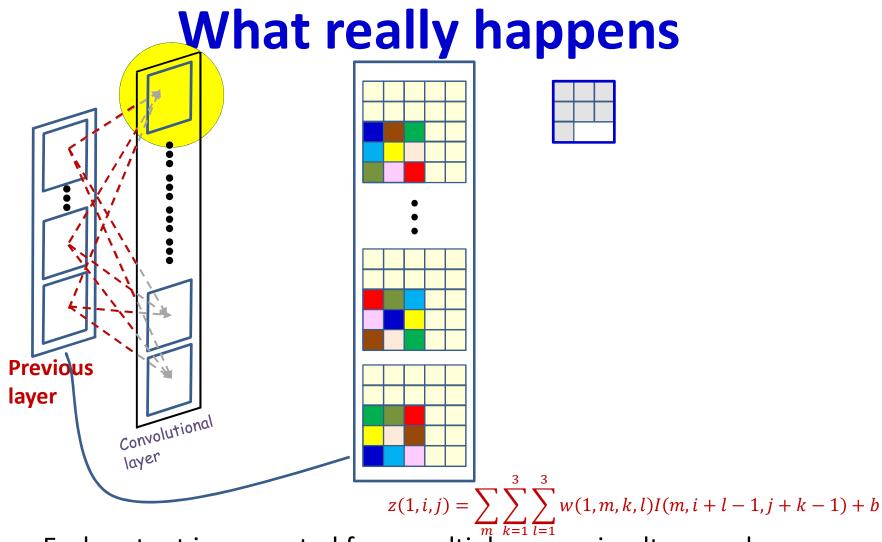
- Each output is computed from multiple maps simultaneously
- There are as many weights (for each output map) as size of the filter x no. of maps in previous layer



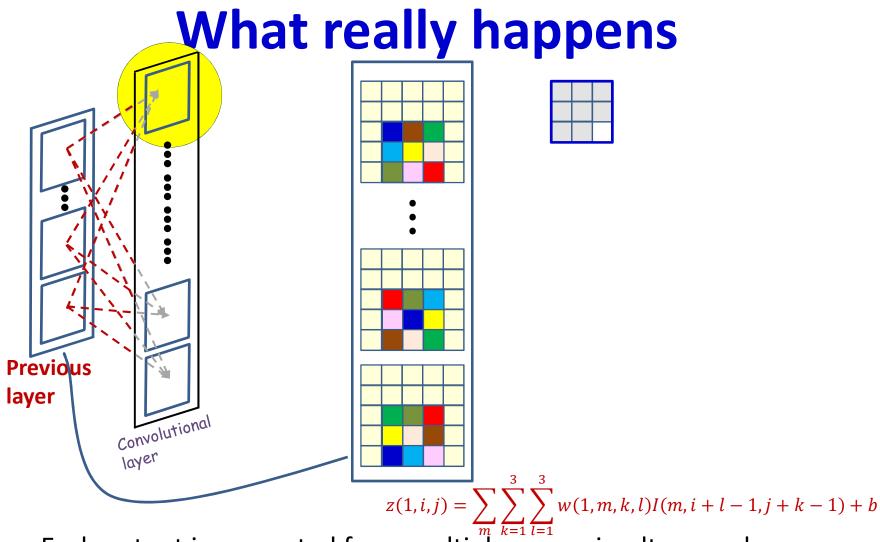
- Each output is computed from multiple maps simultaneously
- There are as many weights (for each output map) as size of the filter x no. of maps in previous layer



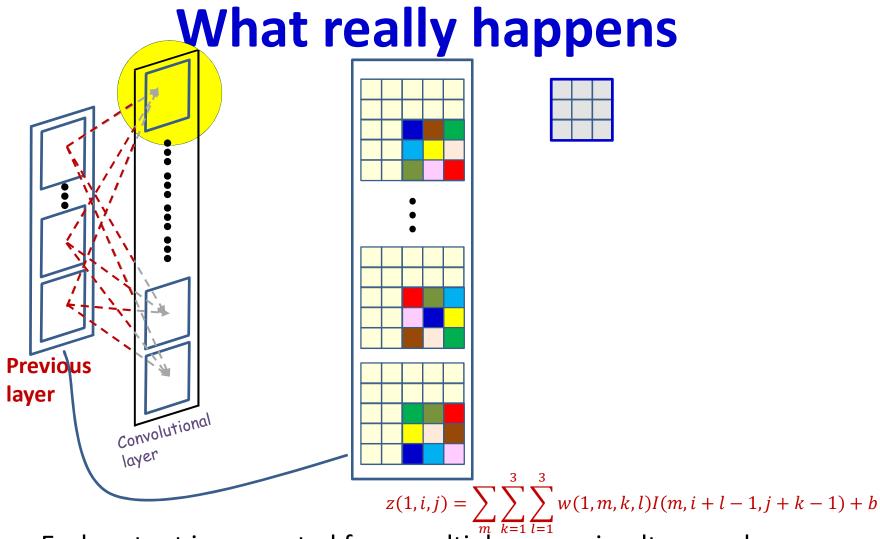
- Each output is computed from multiple maps simultaneously
- There are as many weights (for each output map) as size of the filter x no. of maps in previous layer



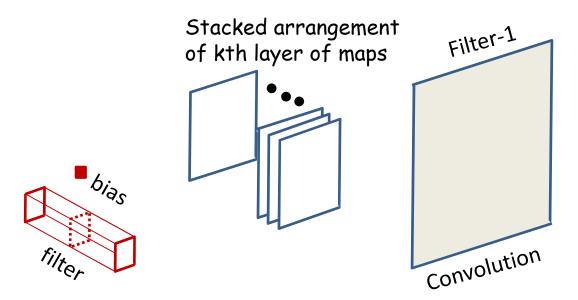
- Each output is computed from multiple maps simultaneously
- There are as many weights (for each output map) as size of the filter x no. of maps in previous layer



- Each output is computed from multiple maps simultaneously
- There are as many weights (for each output map) as size of the filter x no. of maps in previous layer

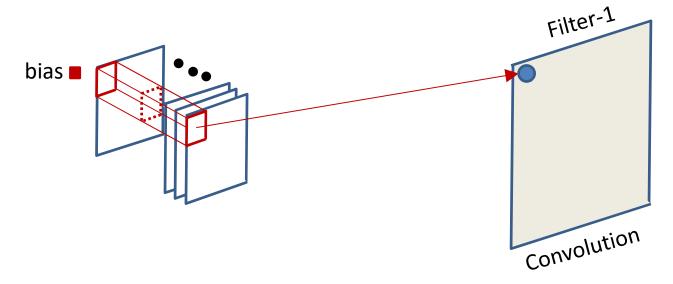


- Each output is computed from multiple maps simultaneously
- There are as many weights (for each output map) as size of the filter x no. of maps in previous layer

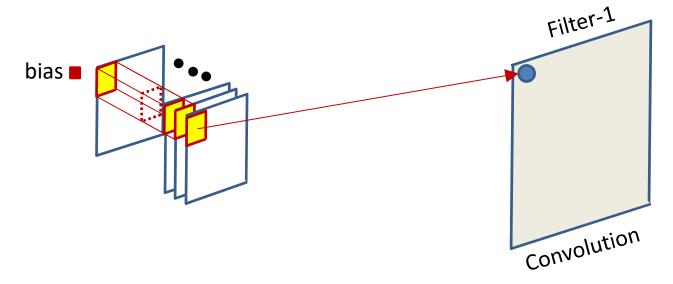


Filter applied to kth layer of maps (convolutive component plus bias)

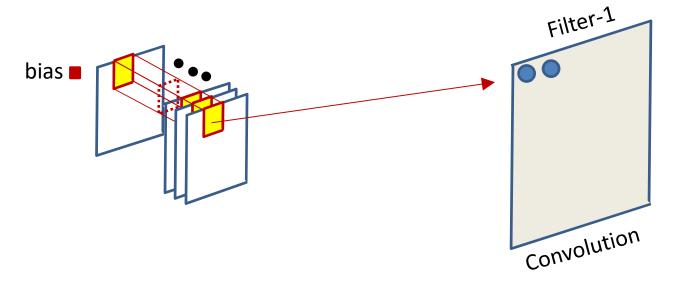
- ..A stacked arrangement of planes
- We can view the joint processing of the various maps as processing the stack using a threedimensional filter



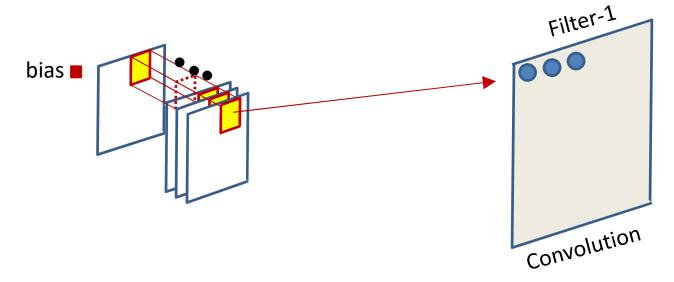
$$z(s,i,j) = \sum_{p} \sum_{k=1}^{L} \sum_{l=1}^{L} w(s,p,k,l) Y(p,i+l-1,j+k-1) + b(s)$$



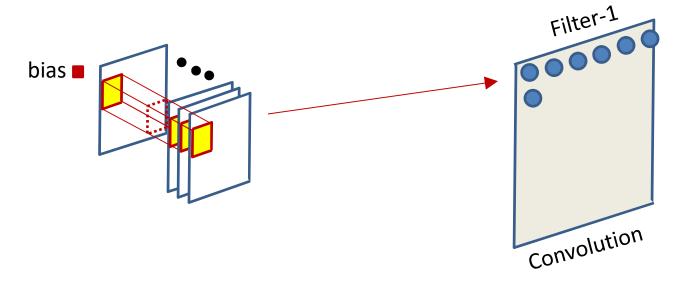
$$z(s,i,j) = \sum_{p} \sum_{k=1}^{L} \sum_{l=1}^{L} w(s,p,k,l) Y(p,i+l-1,j+k-1) + b(s)$$



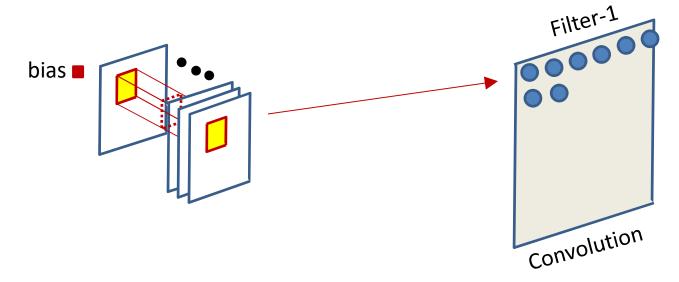
$$z(s,i,j) = \sum_{p} \sum_{k=1}^{L} \sum_{l=1}^{L} w(s,p,k,l) Y(p,i+l-1,j+k-1) + b(s)$$



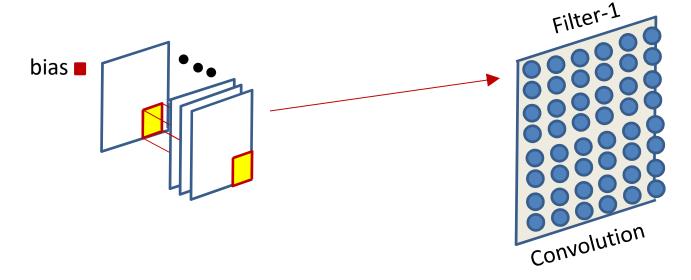
$$z(s,i,j) = \sum_{p} \sum_{k=1}^{L} \sum_{l=1}^{L} w(s,p,k,l) Y(p,i+l-1,j+k-1) + b(s)$$



$$z(s,i,j) = \sum_{p} \sum_{k=1}^{L} \sum_{l=1}^{L} w(s,p,k,l) Y(p,i+l-1,j+k-1) + b(s)$$



$$z(s,i,j) = \sum_{p} \sum_{k=1}^{L} \sum_{l=1}^{L} w(s,p,k,l) Y(p,i+l-1,j+k-1) + b(s)$$



$$z(s,i,j) = \sum_{p} \sum_{k=1}^{L} \sum_{l=1}^{L} w(s,p,k,l) Y(p,i+l-1,j+k-1) + b(s)$$

Convolutional neural net: Vector notation

The weight W(1,j) is a 3D $D_{1-1} \times K_1 \times K_1$ tensor

```
\mathbf{Y}(0) = Image
```

```
for l = 1:L # layers operate on vector at (\mathbf{x}, \mathbf{y})

for j = 1:D_1

for x = 1:W_{1-1}-K_1+1

for y = 1:H_{1-1}-K_1+1

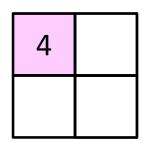
segment = \mathbf{Y}(l-1,:,x:x+K_1-1,y:y+K_1-1) #3D tensor

\mathbf{z}(l,j,x,y) = \mathbf{W}(l,j) segment #tensor inner prod.

\mathbf{Y}(l,j,x,y) = \mathbf{activation}(\mathbf{z}(l,j,x,y))

\mathbf{Y} = \text{softmax}(\{\mathbf{Y}(L,:,:,:)\})
```

1 _{×1}	1 _{x0}	1 _{x1}	0	0
O _{×0}	1 _{×1}	1 _{x0}	1	0
0 _{×1}	0 _{x0}	1 _{x1}	1	1
0	0	1	1	0
0	1	1	0	0



- Scanning an image with a "filter"
 - The filter may proceed by more than 1 pixel at a time
 - E.g. with a "stride" of two pixels per shift

1	1	1 _{×1}	0 _{x0}	0 _{x1}
0	1	1 _{×0}	1 _{x1}	O _{x0}
0	0	1 _{×1}	1 _{x0}	1 _{x1}
0	0	1	1	0
0	1	1	0	0

4	4

- Scanning an image with a "filter"
 - The filter may proceed by more than 1 pixel at a time
 - E.g. with a "stride" of two pixels per shift

1	1	1	0	0
0	1	1	1	0
0 _{x1}	O _{x0}	1 _{x1}	1	1
O _{x0}	0 _{x1}	1 _{x0}	1	0
O _{x1}	1 _{x0}	1 _{x1}	0	0

4	4
2	

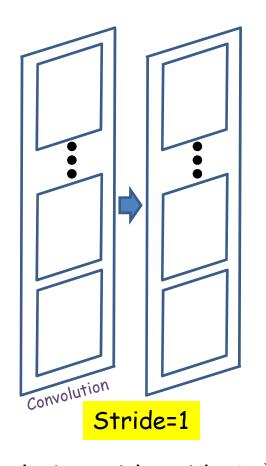
- Scanning an image with a "filter"
 - The filter may proceed by more than 1 pixel at a time
 - E.g. with a "stride" of two pixels per shift

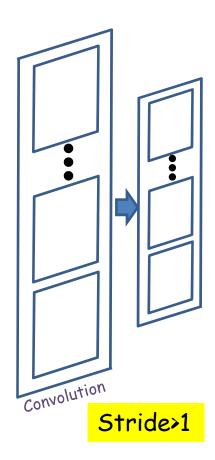
1	1	1	0	0
0	1	1	1	0
0	0	1 _{x1}	1 _{x0}	1 _{x1}
0	0	1 _{x0}	1 _{x1}	0 _{x0}
0	1	1 _{x1}	0 _{x0}	0 _{x1}

4	4
2	4

- Scanning an image with a "filter"
 - The filter may proceed by more than 1 pixel at a time
 - E.g. with a "stride" of two pixels per shift

Convolution strides





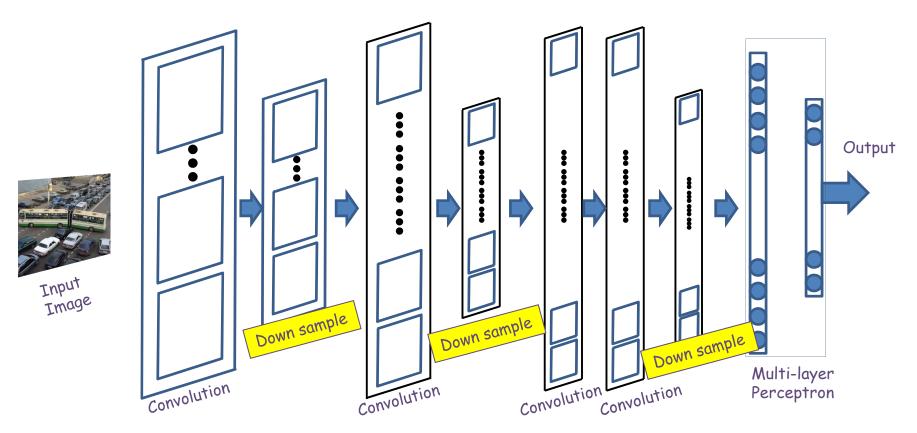
- Convolution with stride 1 → output size same as input size
 - Besides edge effects
- Stride greater than $1 \rightarrow$ output size shrinks w.r.t. input

Convolutional neural net: Vector notation

```
The weight W(1, j) is now a 3D D_{1-1} \times K_1 \times K_1 tensor (assuming
square receptive fields)
\mathbf{Y}(0) = Image
for 1 = 1:L # layers operate on vector at (x,y)
  for j = 1:D_1
     m = 1
     for x = 1:stride:W_{1-1}-K_1+1
        n = 1
         for y = 1:stride:H_{1-1}-K_1+1
           segment = Y(1-1, :, x:x+K_1-1, y:y+K_1-1) #3D tensor
           z(1,j,m,n) = W(1,j).segment #tensor inner prod.
           Y(1,j,m,n) = activation(z(1,j,m,n))
           n++
         m++
```

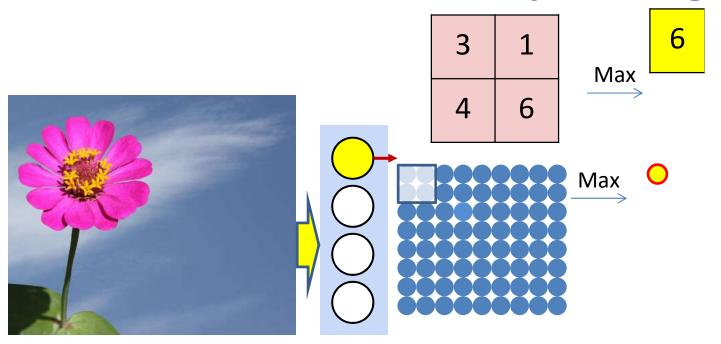
 $Y = softmax({Y(L, :, :, :)})$

The other method for shrinking the maps: Downsampling/Pooling

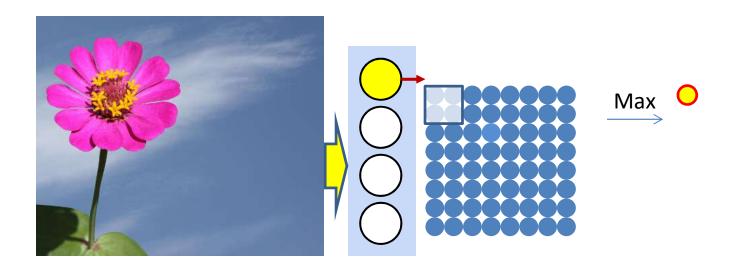


- Convolution (and activation) layers are followed intermittently by "downsampling" (or "pooling") layers
 - Often, they alternate with convolution, though this is not necessary

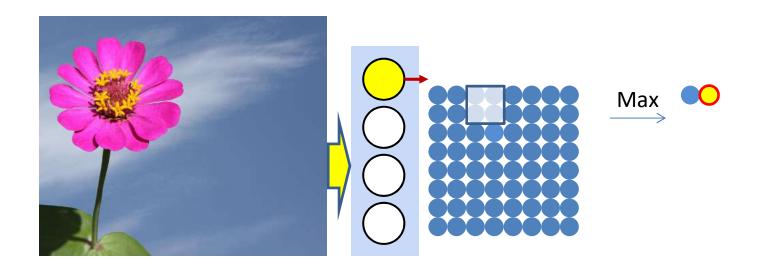
Recall: Max pooling



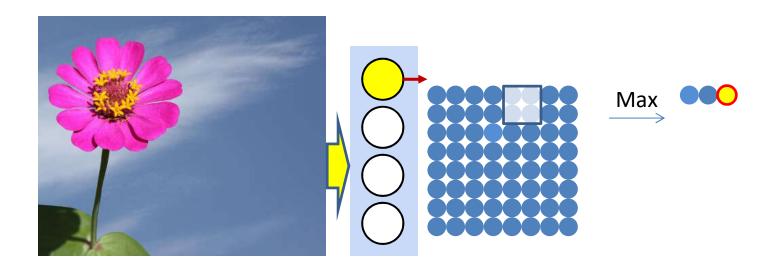
- Max pooling selects the largest from a pool of elements
- Pooling is performed by "scanning" the input



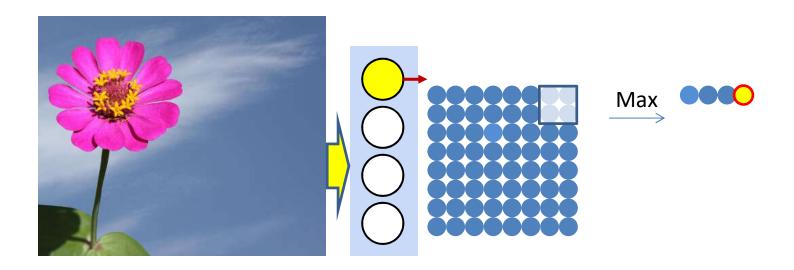
- Pooling is typically performed with strides > 1
 - Results in shrinking of the map
 - "Downsampling"



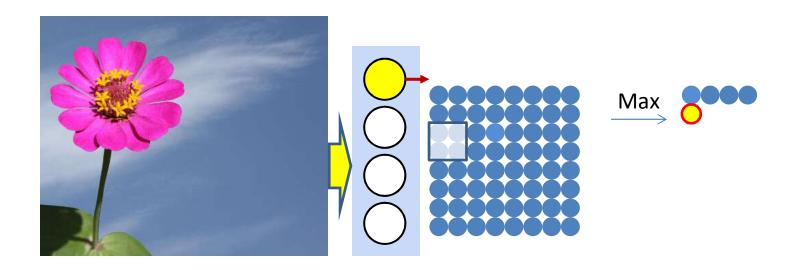
- Pooling is typically performed with strides > 1
 - Results in shrinking of the map
 - "Downsampling"



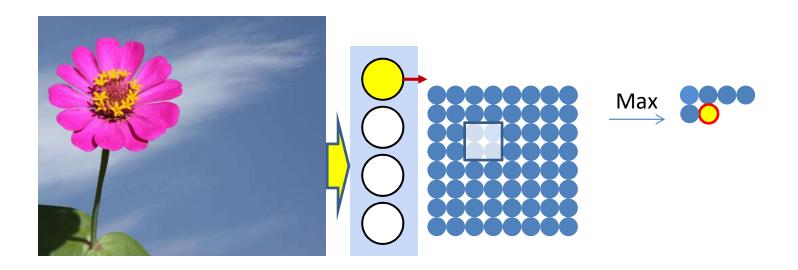
- Pooling is typically performed with strides > 1
 - Results in shrinking of the map
 - "Downsampling"



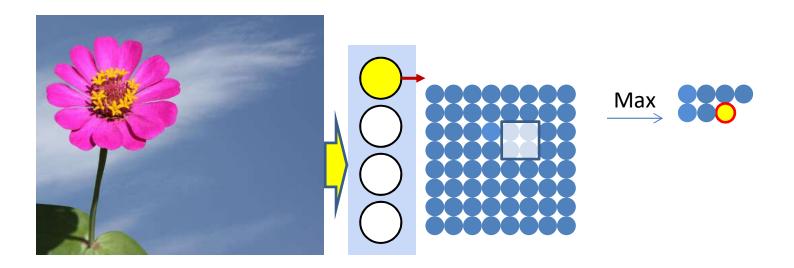
- Pooling is typically performed with strides > 1
 - Results in shrinking of the map
 - "Downsampling"



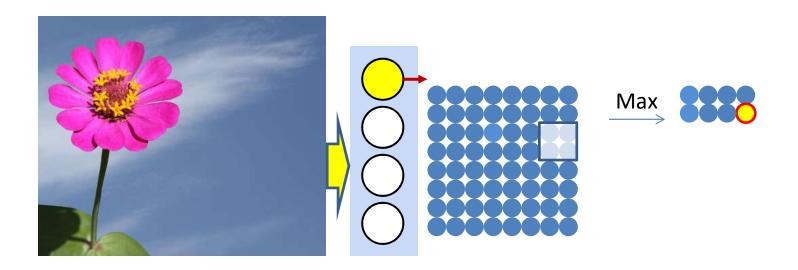
- Pooling is typically performed with strides > 1
 - Results in shrinking of the map
 - "Downsampling"



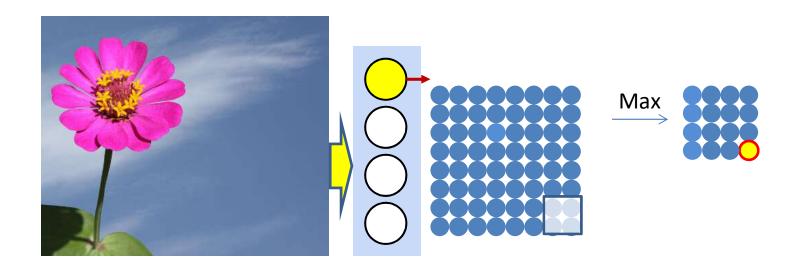
- Pooling is typically performed with strides > 1
 - Results in shrinking of the map
 - "Downsampling"



- Pooling is typically performed with strides > 1
 - Results in shrinking of the map
 - "Downsampling"



- Pooling is typically performed with strides > 1
 - Results in shrinking of the map
 - "Downsampling"



- Pooling is typically performed with strides > 1
 - Results in shrinking of the map
 - "Downsampling"

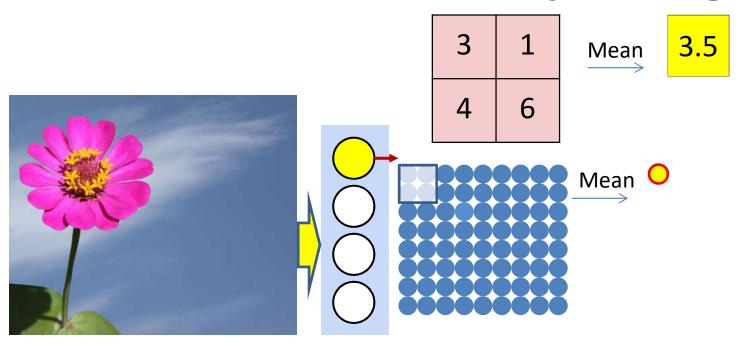
Max Pooling layer at layer *l*

- a) Performed separately for every map (j).*) Not combining multiple maps within a single max operation.
- b) Keeping track of location of max

Max pooling

```
for j = 1:D<sub>1</sub>
    m = 1
    for x = 1:stride(l):W<sub>1-1</sub>-K<sub>1</sub>+1
    n = 1
    for y = 1:stride(l):H<sub>1-1</sub>-K<sub>1</sub>+1
        pidx(l,j,m,n) = maxidx(Y(l-1,j,x:x+K<sub>1</sub>-1,y:y+K<sub>1</sub>-1))
        u(l,j,m,n) = Y(l-1,j,pidx(l,j,m,n))
        n = n+1
    m = m+1
```

Recall: Mean pooling



- Mean pooling computes the *mean* of the window of values
 - As opposed to the max of max pooling
- Scanning with strides is otherwise identical to max pooling

Max Pooling layer at layer *l*

a) Performed separately for every map (j) Max pooling for $j = 1:D_1$ m = 1for $x = 1:stride(1):W_{1-1}-K_1+1$ n = 1for $y = 1:stride(1):H_{1-1}-K_1+1$ $u(l,j,m,n) = mean(Y(l-1,j,x:x+K_1-1,y:y+K_1-1))$ n = n+1m = m+1

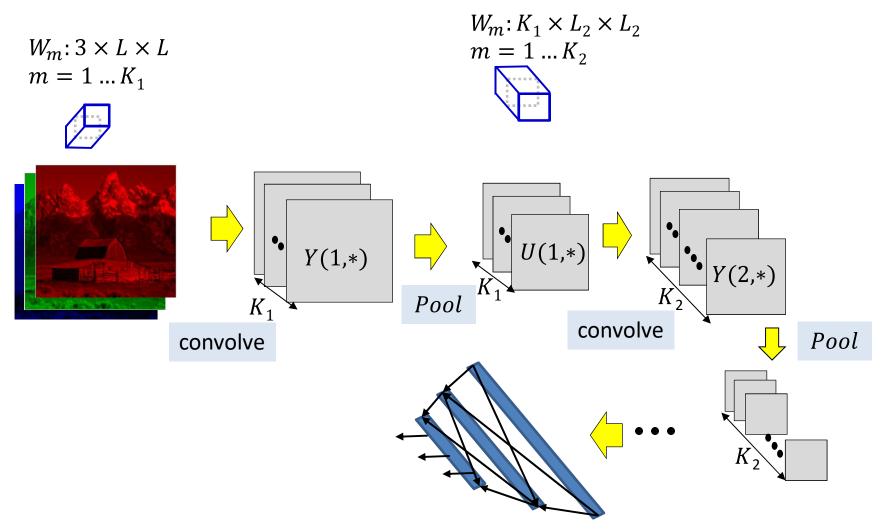
Setting everything together

- Typical image classification task
 - Assuming maxpooling..

Convolutional Neural Networks

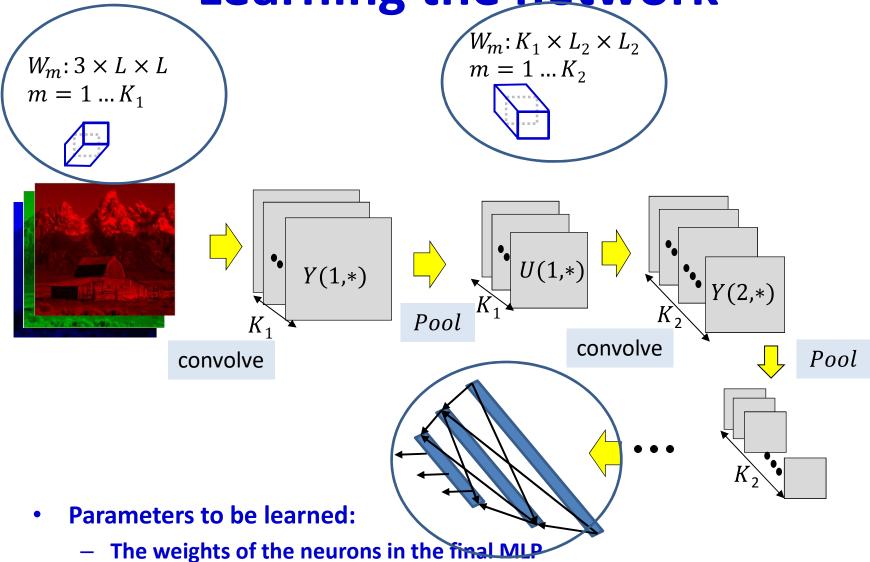
- Input: 1 or 3 images
 Black and white or color
 - Will assume color to be generic

Convolutional Neural Networks



- Several convolutional and pooling layers.
- The output of the last layer is "flattened" and passed through an MLP

Learning the network



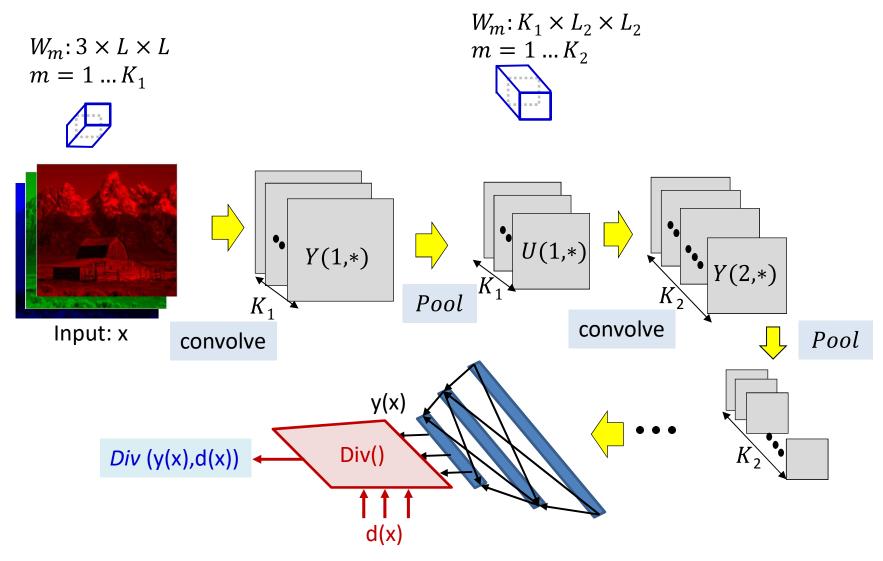
- The (weights and biases of the) filters for every convolutional layer

Learning the CNN

- Training is as in the case of the regular MLP
 - The only difference is in the structure of the network
- Training examples of (Image, class) are provided

- Define a divergence between the desired output and true output of the network in response to any input
- Network parameters are trained through variants of gradient descent
- Gradients are computed through backpropagation

Defining the loss



The loss for a single instance

Problem Setup

- Given a training set of input-output pairs $(X_1, d_1), (X_2, d_2), \dots, (X_T, d_T)$
- The error on the ith instance is $div(Y_i, d_i)$
- The total error

$$Loss = \frac{1}{T} \sum_{i=1}^{T} div(Y_i, d_i)$$

• Minimize Loss w.r.t $\{W_m, b_m\}$

Training CNNs through Gradient Descent

Total training loss:

$$Loss = \frac{1}{T} \sum_{i=1}^{T} div(Y_i, d_i)$$

Assuming the bias is also represented as a weight

- Gradient descent algorithm:
- Initialize all weights and biases $\{w(:,:,:,:,:)\}$
- Do:
 - For every layer l for all filter indices m, update:

•
$$w(l, m, j, x, y) = w(l, m, j, x, y) - \eta \frac{dLoss}{dw(l, m, j, x, y)}$$

Until Err has converged

Training CNNs through Gradient Descent

Total training loss:

$$Loss = \frac{1}{T} \sum_{i=1}^{T} div(Y_i, d_i)$$

Assuming the bias is also represented as a weight

- Gradient descent algorithm:
- Initialize all weights and biases $\{w(:,:,:,:,:)\}$
- Do:
 - For every layer l for all filter indices m, update:

•
$$w(l, m, j, x, y) = w(l, m, j, x, y) - \eta \frac{dLoss}{dw(l, m, j, x, y)}$$

Until Loss has converged

The derivative

Total training loss:

$$Loss = \frac{1}{T} \sum_{i} Div(Y_i, d_i)$$

Computing the derivative

Total derivative:

$$\frac{dLoss}{dw(l,m,j,x,y)} = \frac{1}{T} \sum_{i} \frac{dDiv(Y_i,d_i)}{dw(l,m,j,x,y)}$$

The derivative

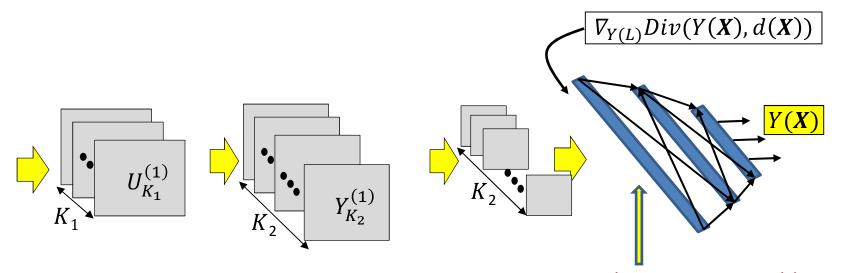
Total training loss:

$$Loss = \frac{1}{T} \sum_{i} Div(Y_i, d_i)$$

Computing the derivative

Total derivative:
$$\frac{dLoss}{dw(l,m,j,x,y)} = \frac{1}{T} \sum_{i} \frac{dDiv(Y_i,d_i)}{dw(l,m,j,x,y)}$$

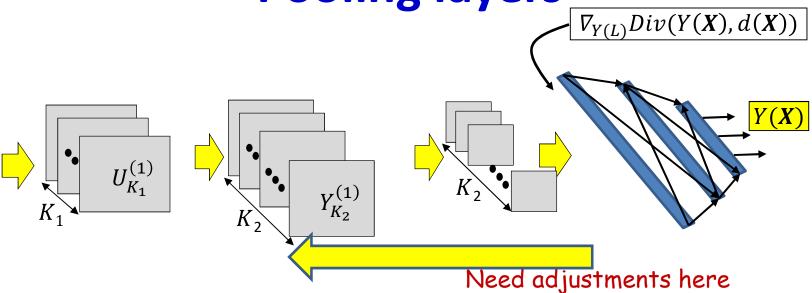
Backpropagation: Final flat layers



Conventional backprop until here

- Backpropagation continues in the usual manner until the computation of the derivative of the divergence w.r.t the inputs to the first "flat" layer
 - Important to recall: the first flat layer is only the "unrolling" of the maps from the final convolutional layer

Backpropagation: Convolutional and Pooling layers



- Backpropagation from the flat MLP requires special consideration of
 - The shared computation in the convolution layers
 - The pooling layers (particularly maxout)

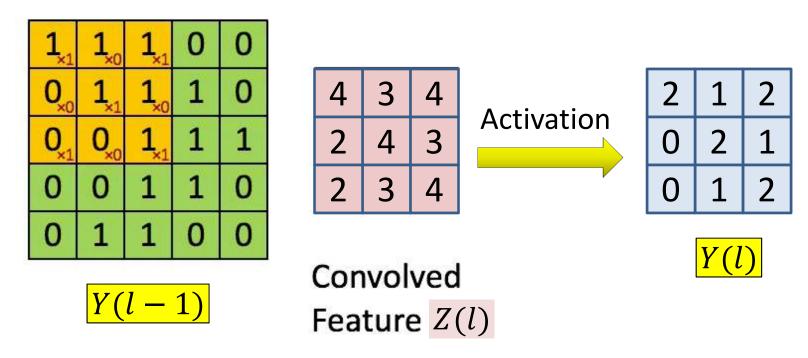
1,	1,0	1,	0	0
0,0	1,	1,0	1	0
0,,1	0,0	1,	1	1
0	0	1	1	0
0	1	1	0	0

4	

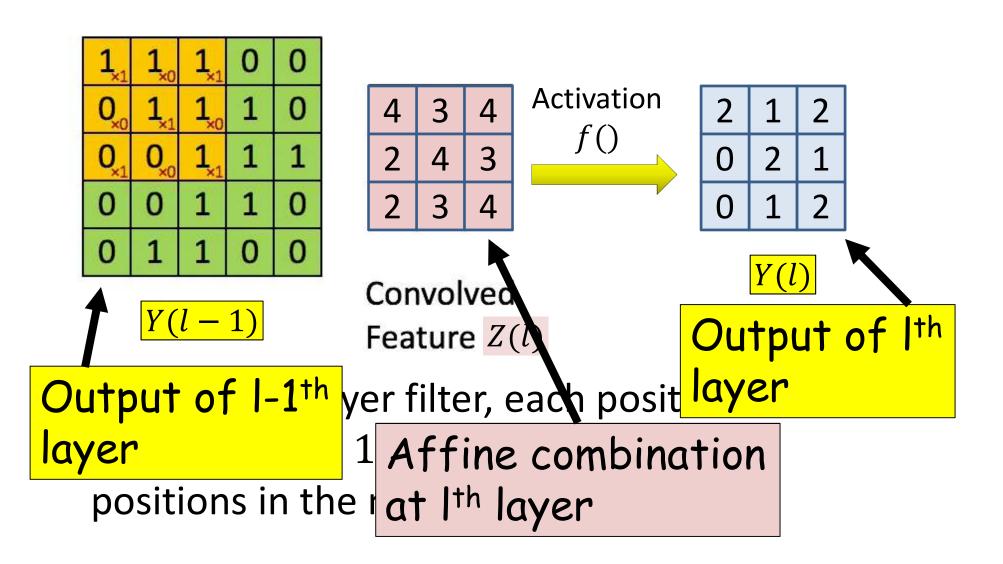
$$Y(l-1)$$

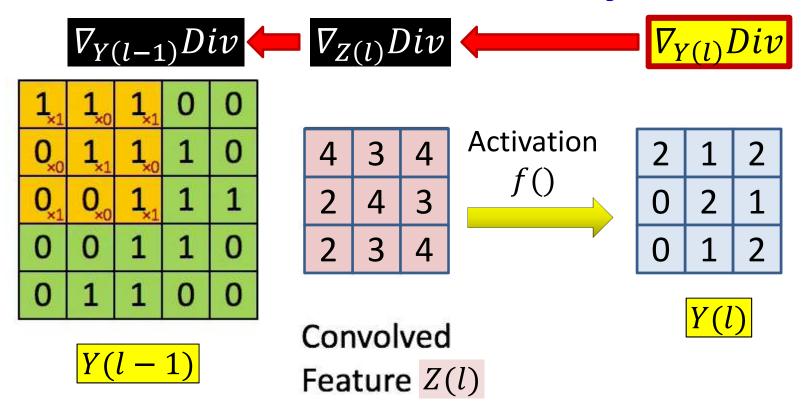
Convolved Feature Z(l)

• For every $l^{\rm th}$ layer filter, each position in the map in the $l-1^{\rm th}$ layer affects several positions in the map of the $l^{\rm th}$ layer

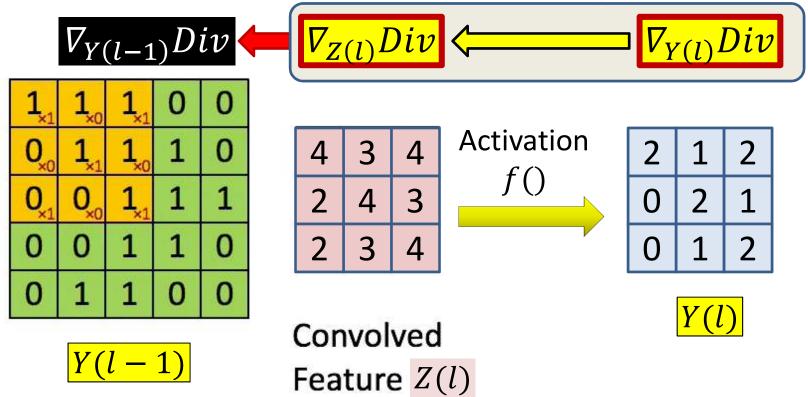


• For every $l^{\rm th}$ layer filter, each position in the map in the $l-1^{\rm th}$ layer affects several positions in the map of the $l^{\rm th}$ layer





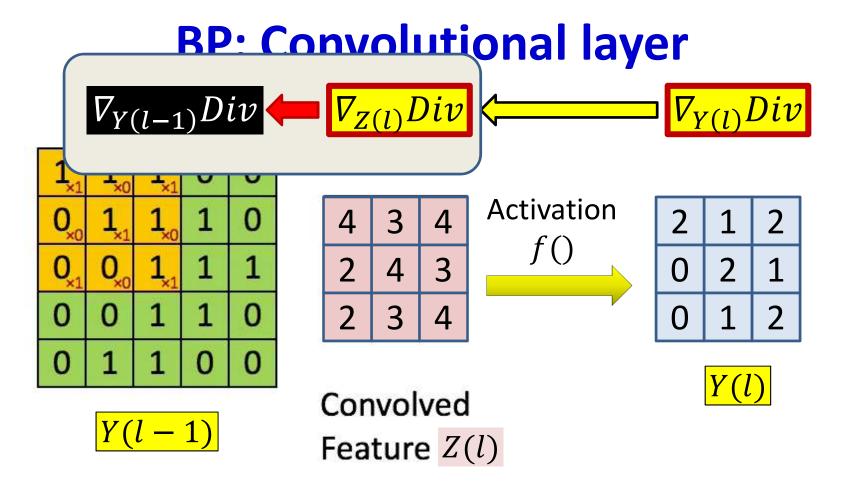
- Assuming $\nabla_{Y(l)}Div$ is available
 - Remember it is available for the Lth layer already from the flat MLP
- Must compute $abla_{Z(l)}Div$ and $abla_{Y(l-1)}Div$



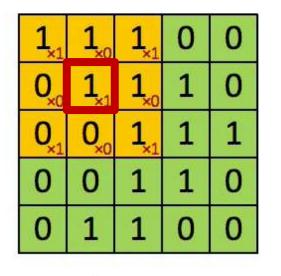
• Computing $\nabla_{Z(l)}Div$

$$\frac{dDiv}{dz(l,m,x,y)} = \frac{dDiv}{dY(l,m,x,y)} f'(z(l,m,x,y))$$

Simple component-wise computation



- Computing $abla_{Y(l-1)}Div$ and $abla_{W(l)}Div$
- Each Y(l-1, m, x, y) affects several z(l, *, x, y) terms
 - All of them contribute to the derivative w.r.t. Y(l-1, m, x, y)

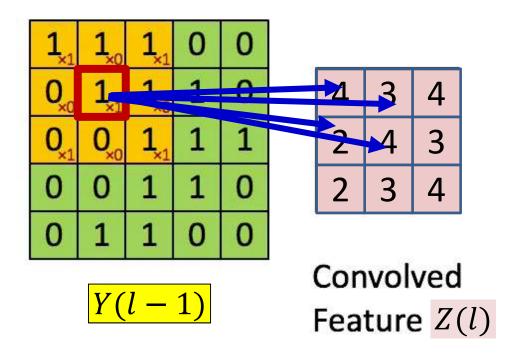


4	

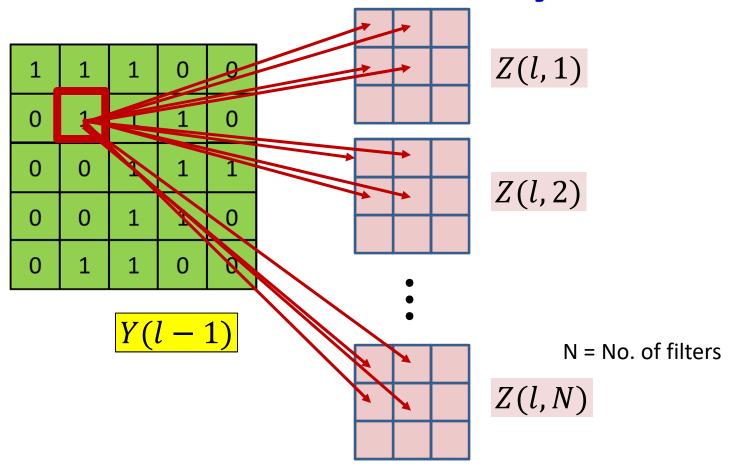
Y(l-1)

Convolved Feature Z(l)

• Each Y(l-1, m, x, y) affects several z(l, n, x, y) terms



• Each Y(l-1, m, x, y) affects several z(l, n, x, y) terms



- Each Y(l-1, m, x, y) affects several z(l, n, x', y') terms
 - Through $w_l(m, n, x x', y y')$
 - Affects terms in all l th layer Z maps

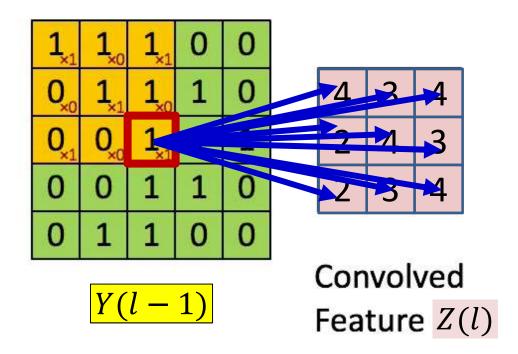
1,	1,0	1,	0	0
0,0	1,	1,0	1	0
0,,1	0,	1,	1	1
0	0	1	1	0
0	1	1	0	0

4	

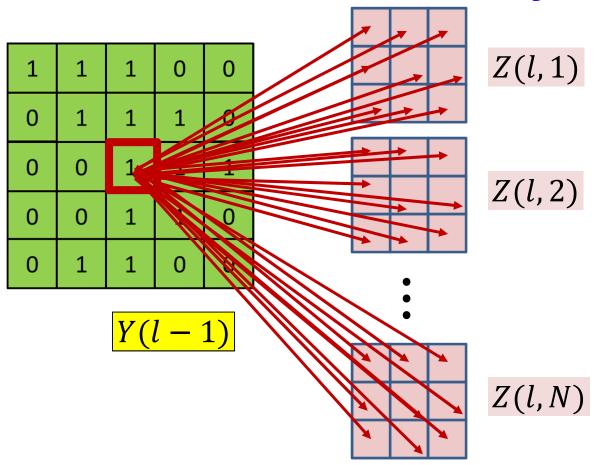
$$Y(l-1)$$

Convolved Feature Z(l)

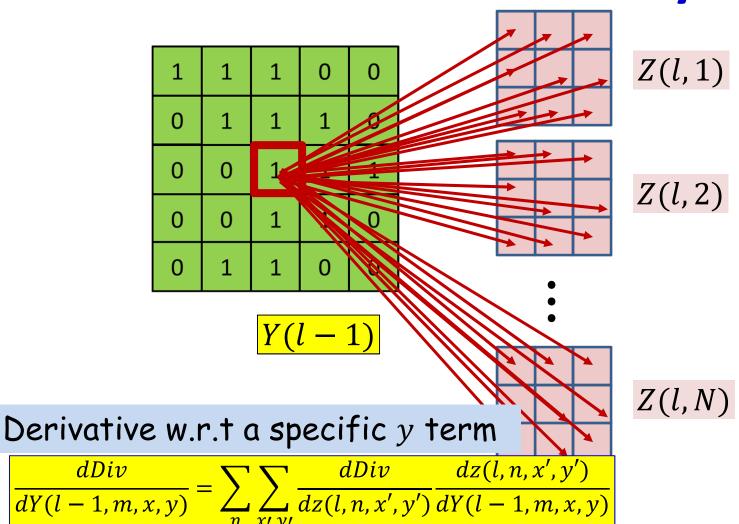
- For every l^{th} layer filter, each Y(l-1,m,x,y) affects several z(l,n,x',y') terms
 - Through $w_l(m, n, x x', y y')$



• For every l^{th} layer filter, each Y(l-1,m,x,y) affects several z(l,n,x',y') terms

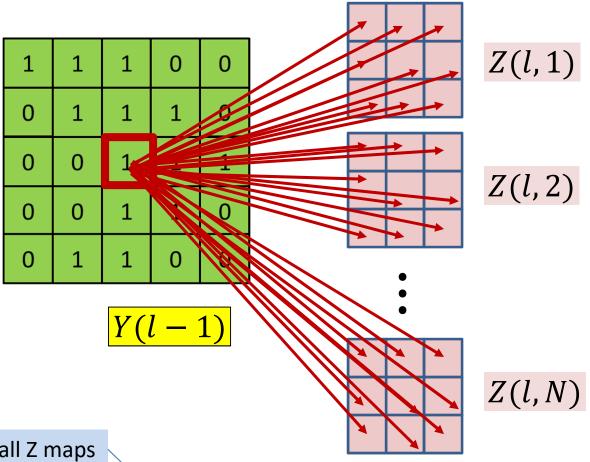


- Each Y(l-1, m, x, y) affects several z(l, n, x', y') terms for every n
 - Affects terms in all l th layer Z maps
 - All of them contribute to the derivative of the divergence w.r.t. Y(l-1, m, x, y)



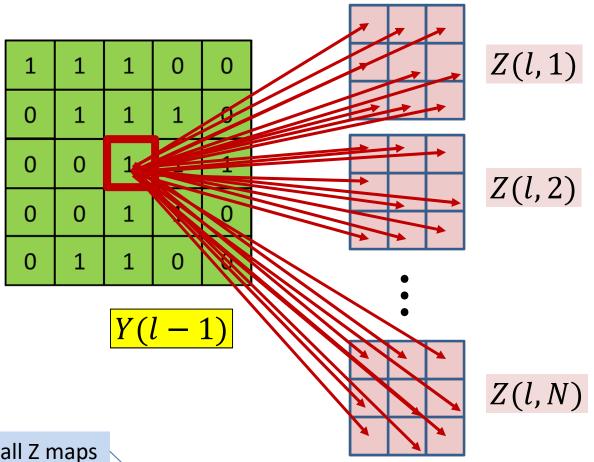
 $= \sum_{n} \sum_{x',y'} \frac{dDiv}{dz(l,n,x',y')} w_l(m,n,x-x',y-y')$

Assuming indexing is from 0



Summing over all Z maps

$$\frac{dDiv}{dY(l-1,m,x,y)} = \sum_{n} \sum_{x',y'} \frac{dDiv}{dz(l,n,x',y')} w_l(m,n,x-x',y-y')$$

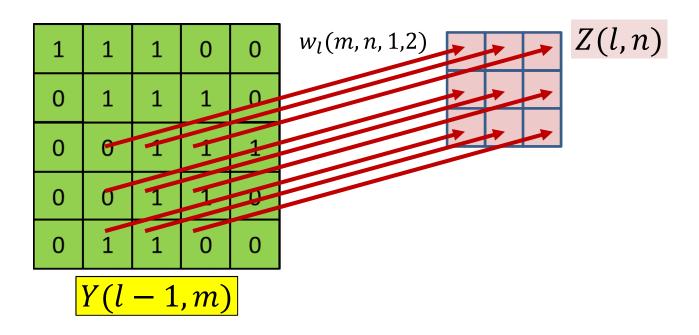


Summing over all Z maps

Summing over all positions in each Z map

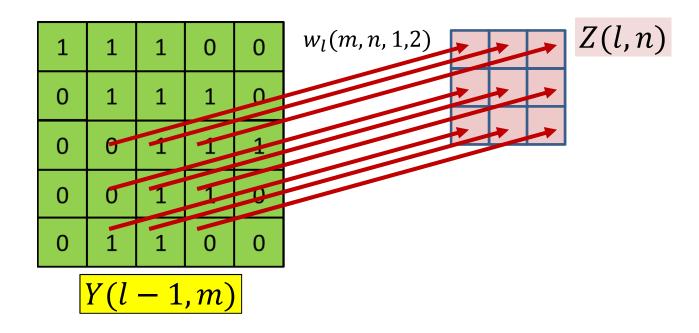
$$\frac{dDiv}{dY(l-1,m,x,y)} = \sum_{n} \sum_{x',y'} \frac{dDiv}{dz(l,n,x',y')} w_l(m,n,x-x',y-y')$$

BP: Convolutional layer



- Each weight $w_l(m, n, x', y')$ also affects several z(l, n, x, y) terms for every n
 - Affects terms in only one Z map (the nth map)
 - All entries in the map contribute to the derivative of the divergence w.r.t. $w_l(m, n, x', y')$

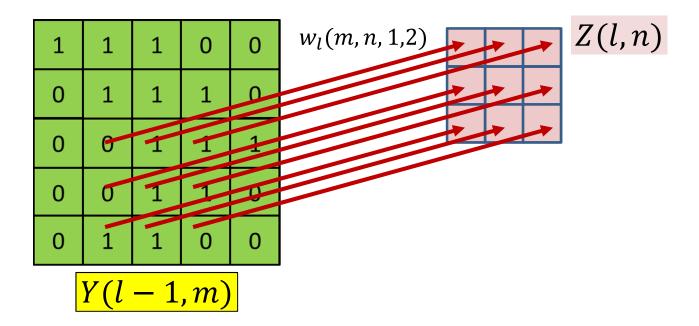
BP: Convolutional layer



Derivative w.r.t a specific w term

$$\frac{dDiv}{dw_{l}(m, n, x, y)} = \sum_{x', y'} \frac{dDiv}{dz(l, n, x', y')} \frac{dz(l, n, x', y')}{dw_{l}(m, n, x, y)}$$
$$= \sum_{x', y'} \frac{dDiv}{dz(l, n, x', y')} Y(l - 1, m, x' + x, y' + y)$$

BP: Convolutional layer



Summing over all (z,Y) pairs that are related multiplicatively by the weight

$$\frac{dDiv}{dw_l(m,n,x,y)} = \sum_{x',y'} \frac{dDiv}{dz(l,n,x',y')} Y(l-1,m,x'+x,y'+y)$$

CNN: Forward

```
Y(0,:,:,:) = Image
for l = 1:L # layers operate on vector at (x,y)
   for j = 1:D_1
      for x = 1:W-K+1
         for y = 1:H-K+1
            z(1,j,x,y) = 0
            for i = 1:D_{1-1}
                 for x' = 1:K_1
                     for y' = 1:K_1
                         z(1,j,x,y) += w(1,j,i,x',y')
                                  Y(1-1, i, x+x'-1, v+v'-1)
            Y(l,j,x,y) = activation(z(l,j,x,y))
Y = softmax(Y(L,:,1,1)...Y(L,:,W-K+1,H-K+1))
```

Backward layer *l*

```
dw(1) = zeros(D_1xD_{1-1}xK_1xK_1)
dY(1-1) = zeros(D_{1-1}xW_{1-1}xH_{1-1})
for j = 1:D_1
   for x = 1:W_{1-1}-K_1+1
       for y = 1:H_{1-1}-K_1+1
         dz(1,j,x,y) = dY(1,j,x,y).f'(z(1,j,x,y))
         for i = 1:D_{1-1}
            for x' = 1:K_1
              for y' = 1:K_1
                dY(1-1, i, x+x'-1, y+y'-1) +=
                               w(1,j,i,x',y')dz(1,j,x,y)
                dw(1,j,i,x',y') +=
                        dz(1, j, x, y) Y (1-1, i, x+x'-1, y+y'-1)
```

Backward layer *l*

```
dw(1) = zeros(D_1xD_{1-1}xK_1xK_1)
                                        Multiple ways of recasting this
dY(1-1) = zeros(D_{1-1}xW_{1-1}xH_{1-1})
                                        as tensor/vector operations.
for j = 1:D_1
   for x = 1:W_{1-1}-K_1+1
                                        Will not discuss here
       for y = 1:H_{1-1}-K_1+1
          dz(1,j,x,y) = dY(1,j,x,y).f'(z(1,j,x,y))
          for i = 1:D_{1-1}
            for x' = 1:K_1
               for y' = 1:K_1
                 dY(1-1, i, x+x'-1, y+y'-1) +=
                                w(1,j,i,x',y')dz(1,j,x,y)
                 dw(1,j,i,x',y') +=
                         dz(1, j, x, y) Y (1-1, i, x+x'-1, y+y'-1)
```

Complete Backward (no pooling)

```
dY(L) = dDiv/dY(L)
for 1 = L:1 # Backward through layers
   dw(1) = zeros(D_1xD_{1-1}xK_1xK_1)
   dY(1-1) = zeros(D_{1-1}xW_{1-1}xH_{1-1})
   for j = 1:D_1
      for x = 1:W_{1-1}-K_1+1
          for y = 1:H_{1-1}-K_1+1
              dz(1,j,x,y) = dY(1,j,x,y).f'(z(1,j,x,y))
              for i = 1:D_{1-1}
                   for x' = 1:K_1
                       for y' = 1:K_1
                            dY(1-1, i, x+x'-1, y+y'-1) +=
                               w(1,j,i,x',y')dz(1,j,x,y)
                            dw(1, j, i, x', y') +=
                            dz(1,j,x,y)y(1-1,i,x+x'-1,y+y'-1,a)
```

Complete Backward (no pooling)

```
dY(L) = dDiv/dY(L)
for 1 = L:1 # Backward through layers
   dw(1) = zeros(D_1xD_{1-1}xK_1xK_1)
                                          Multiple ways of recasting this
   dY(1-1) = zeros(D_{1-1}xW_{1-1}xH_{1-1})
                                          as tensor/vector operations.
   for j = 1:D_1
                                          Will not discuss here
       for x = 1:W_{1-1}-K_1+1
          for y = 1:H_{1-1}-K_1+1
              dz(1,j,x,y) = dY(1,j,x,y).f'(z(1,j,x,y))
              for i = 1:D_{1-1}
                   for x' = 1:K_1
                        for y' = 1:K_1
                            dY(1-1, i, x+x'-1, y+y'-1) +=
                                w(1,j,i,x',y')dz(1,j,x,y)
                            dw(1, j, i, x', y') +=
                            dz(1,j,x,y)y(1-1,i,x+x'-1,y+y'-1)
```

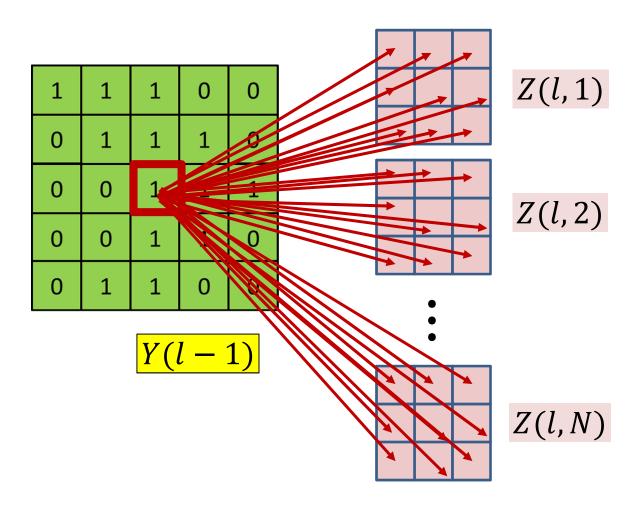
Backward (with strides)

```
dw(1) = zeros(D_1xD_{1-1}xK_1xK_1)
dY(1-1) = zeros(D_{1-1}xW_{1-1}xH_{1-1})
for j = 1:D_1
   for x = 1:W_1
      m = (x-1) stride
       for y = 1:H_1
          n = (v-1) stride
          dz(1,j,x,y) = dY(1,j,x,y).f'(z(1,j,x,y))
          for i = 1:D_{1-1}
              for x' = 1:K_1
                   for y' = 1:K_1
                        dY(1-1, i, m+x'-1, n+y'-1) +=
                           w(1,j,i,x',v')dz(1,j,x,v)
                        dw(1,j,i,x',y') +=
                        dz(1,j,x,y)y(1-1,i,m+x'-1,n+y'-1)
```

Complete Backward (with strides)

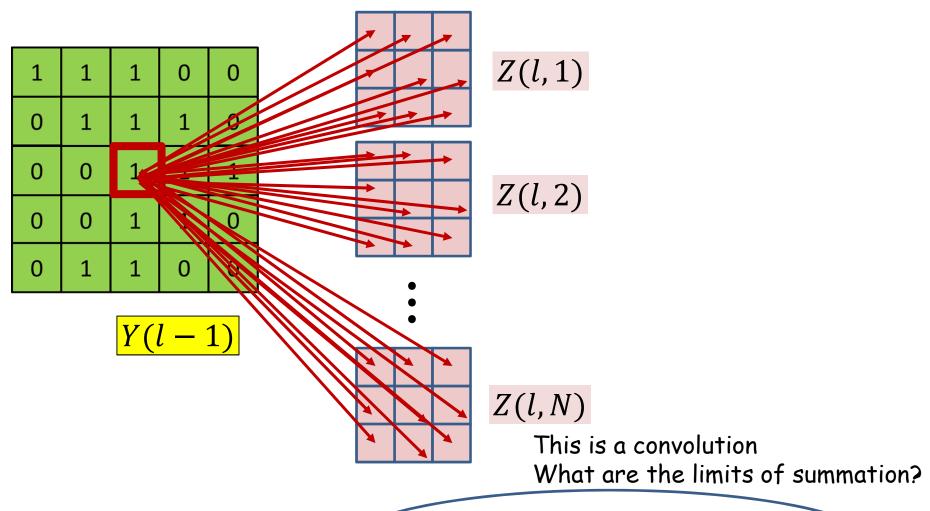
```
dY(L) = dDiv/dY(L)
for 1 = L:1 # Backward through layers
   dw(1) = zeros(D_1xD_{1-1}xK_1xK_1)
   dY(1-1) = zeros(D_{1-1}xW_{1-1}xH_{1-1})
   for j = 1:D_1
      for x = 1:stride:W_1
          m = (x-1) stride
          for y = 1:stride: H_1
             n = (y-1) stride
             dz(1,j,x,y) = dY(1,j,x,y).f'(z(1,j,x,y))
             for i = 1:D_{1-1}
                  for x' = 1:K_1
                       for y' = 1:K_1
                            dY(1-1, i, m+x', n+v') +=
                               w(1, 1, i, x', y') dz(1, 1, x, y)
                            dw(1,i,i,x',v') +=
                               dz(1,j,x,y)y(1-1,i,m+x',n+y')_{xy}
```

Derivative w.r.t y: in practice

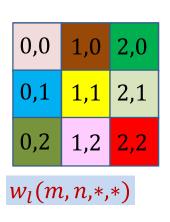


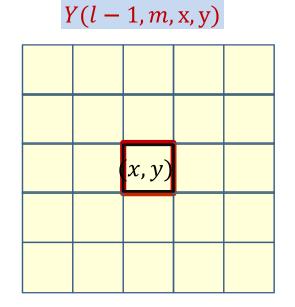
$$\frac{\partial Div}{\partial Y(l-1,m,x,y)} = \sum_{n} \sum_{x',y'} \frac{dDiv}{dz(l,n,x',y')} w_l(m,n,x-x',y-y')$$

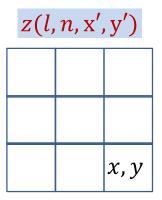
Derivative w.r.t y: in practice



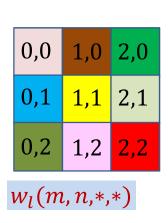
$$\frac{\partial Div}{\partial Y(l-1,m,x,y)} = \sum_{n} \sum_{x',y'} \frac{dDiv}{dz(l,n,x',y')} w_l(m,n,x-x',y-y')$$

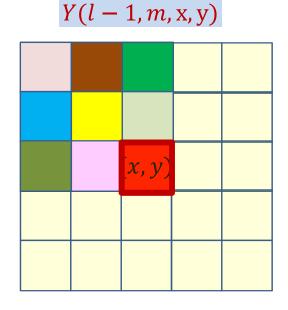






- Compute how each x, y in Y influences various locations of z
 - We will have to reverse the direction of influence to compute the derivative w.r.t that x, y component of Y





$$z(l, n, x', y')$$

$$x - 2$$

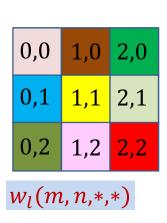
$$y - 2$$

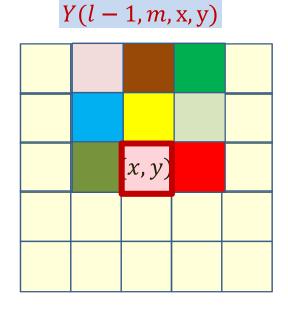
$$x, y$$

$$z(l, n, x - 2, y - 2) += Y(l - 1, m, x, y)w_l(m, n, 2, 2)$$

$$\frac{dDiv}{dY(l-1,m,x,y)} += \frac{dDiv}{dz(l,n,x-2,y-2)} w_l(m,n,2,2)$$

- Compute how each x, y in Y influences various locations of z
 - We will have to reverse the direction of influence to compute the derivative w.r.t that x, y component of Y
- Each z is the sum of component-wise product of the filter elements and the elements of the region of Y it is placed on





$$z(l, n, x', y')$$

$$x - 2 \quad x - 1 \quad y - 2$$

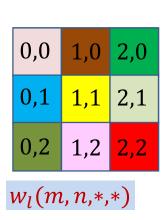
$$x - 2 \quad x - 1 \quad y - 2$$

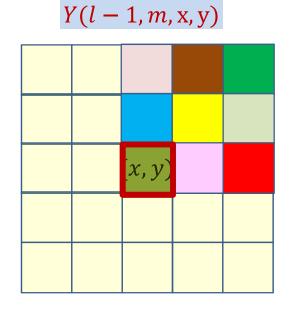
$$x, y$$

$$z(l, n, x - 1, y - 2) += Y(l - 1, m, x, y)w_l(m, n, 1, 2)$$

$$\frac{dDiv}{dY(l-1,m,x,y)} += \frac{dDiv}{dz(l,n,x-1,y-2)} w_l(m,n,1,2)$$

- Compute how each x, y in Y influences various locations of z
 - We will have to reverse the direction of influence to compute the derivative w.r.t that x, y component of Y
- Each z is the sum of component-wise product of the filter elements and the elements of the region of Y it is placed on





$$\begin{array}{c|c}
z(l, n, x', y') \\
x-2 \\
y-2
\end{array}$$

$$\begin{array}{c|c}
x-1 \\
y-2
\end{array}$$

$$\begin{array}{c|c}
x \\
y-2
\end{array}$$

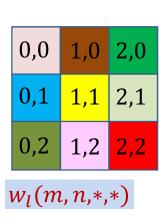
$$\begin{array}{c|c}
x \\
y-2
\end{array}$$

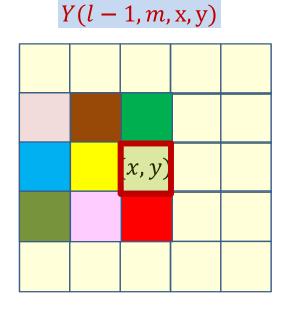
$$\begin{array}{c|c}
x \\
y-2
\end{array}$$

$$z(l, n, x, y - 2) += Y(l - 1, m, x, y)w_l(m, n, 0, 2)$$

$$\frac{dDiv}{dY(l-1,m,x,y)} += \frac{dDiv}{dz(l,n,x,y-2)} w_l(m,n,0,2)$$

- Compute how each x, y in Y influences various locations of z
 - We will have to reverse the direction of influence to compute the derivative w.r.t that x, y component of Y
 - Each z is the sum of component-wise product of the filter elements and the elements of the region of Y it is placed on





$$\begin{array}{c|c}
z(l, n, x', y') \\
x - 2 \\
y - 2
\end{array}$$

$$\begin{array}{c|c}
x - 1 \\
y - 2
\end{array}$$

$$\begin{array}{c|c}
x - 2 \\
y - 1
\end{array}$$

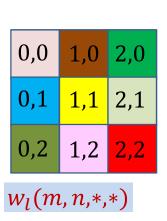
$$\begin{array}{c|c}
x - 2 \\
x - 2 \\
y - 1
\end{array}$$

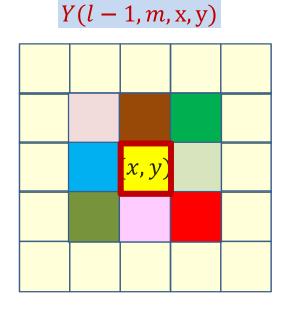
$$\begin{array}{c|c}
x, y
\end{array}$$

$$z(l, n, x - 2, y - 1) += Y(l - 1, m, x, y)w_l(m, n, 2, 1)$$

$$\frac{dDiv}{dY(l-1,m,x,y)} += \frac{dDiv}{dz(l,n,x-2,y-1)} w_l(m,n,2,1)$$

- Compute how each x, y in Y influences various locations of z
 - We will have to reverse the direction of influence to compute the derivative w.r.t that x, y component of Y
 - Each z is the sum of component-wise product of the filter elements and the elements of the region of Y it is placed on





$$\begin{array}{c|c}
 z(l, n, x', y') \\
 x - 2 & x - 1 & x \\
 y - 2 & y - 2 & y - 2
 \end{array}$$

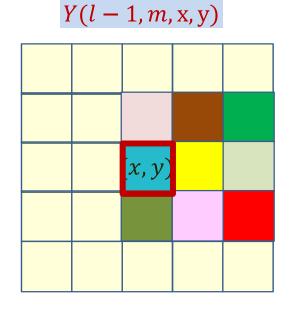
$$\begin{array}{c|c}
 x - 2 & x - 1 \\
 x - 2 & y - 1 & y - 1
 \end{array}$$

$$\begin{array}{c|c}
 x - 1 & x \\
 y - 1 & y - 1
 \end{array}$$

$$z(l, n, x - 2, y - 2) += Y(l - 1, m, x, y)w_l(m, n, 1, 1)$$

$$\frac{dDiv}{dY(l-1,m,x,y)} += \frac{dDiv}{dz(l,n,x-1,y-1)} w_l(m,n,1,1)$$

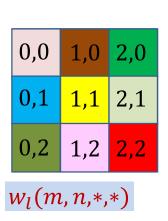
- Compute how each x, y in Y influences various locations of z
 - We will have to reverse the direction of influence to compute the derivative w.r.t that x, y component of Y
 - Each z is the sum of component-wise product of the filter elements and the elements of the region of Y it is placed on

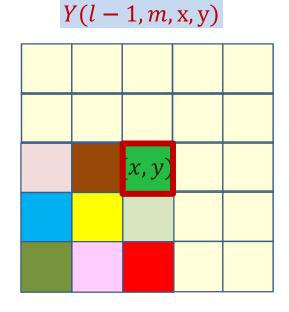


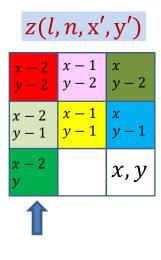
$$z(l, n, x, y - 1) += Y(l - 1, m, x, y)w_l(m, n, 0, 1)$$

$$\frac{dDiv}{dY(l-1,m,x,y)} += \frac{dDiv}{dz(l,n,x,y-1)} w_l(m,n,0,1)$$

- Compute how each x, y in Y influences various locations of z
 - We will have to reverse the direction of influence to compute the derivative w.r.t that x, y component of Y
 - Each z is the sum of component-wise product of the filter elements and the elements of the region of Y it is placed on



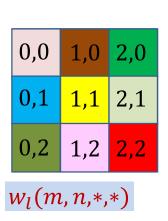


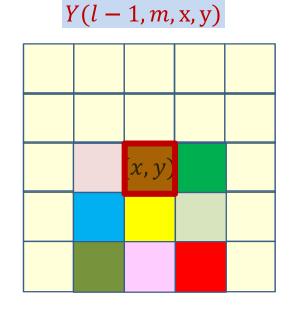


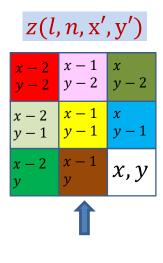
$$z(l, n, x - 2, y) += Y(l - 1, m, x, y)w_l(m, n, 2, 0)$$

$$\frac{dDiv}{dY(l-1,m,x,y)} += \frac{dDiv}{dz(l,n,x-2,y)} w_l(m,n,2,0)$$

- Compute how each x, y in Y influences various locations of z
 - We will have to reverse the direction of influence to compute the derivative w.r.t that x, y component of Y
 - Each z is the sum of component-wise product of the filter elements and the elements of the region of Y it is placed on



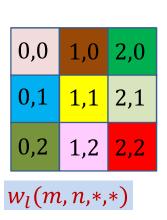


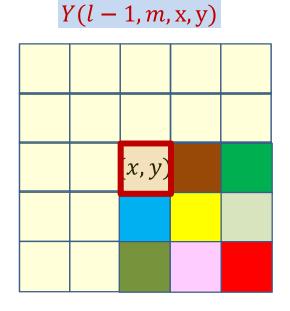


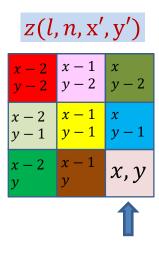
$$z(l, n, x - 1, y) += Y(l - 1, m, x, y)w_l(m, n, 1, 0)$$

$$\frac{dDiv}{dY(l-1,m,x,y)} += \frac{dDiv}{dz(l,n,x-1,y)} w_l(m,n,1,0)$$

- Compute how each x, y in Y influences various locations of z
 - We will have to reverse the direction of influence to compute the derivative w.r.t that x, y component of Y
 - Each z is the sum of component-wise product of the filter elements and the elements of the region of Y it is placed on



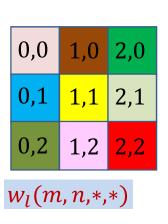


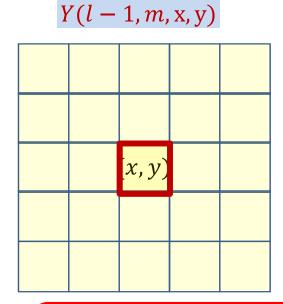


$$z(l, n, x, y) += Y(l-1, m, x, y)w_l(m, n, 0, 0)$$

$$\frac{dDiv}{dY(l-1,m,x,y)} += \frac{dDiv}{dz(l,n,x,y)} w_l(m,n,0,0)$$

- Compute how each x, y in Y influences various locations of z
 - We will have to reverse the direction of influence to compute the derivative w.r.t that x, y component of Y
 - Each z is the sum of component-wise product of the filter elements and the elements of the region of Y it is placed on





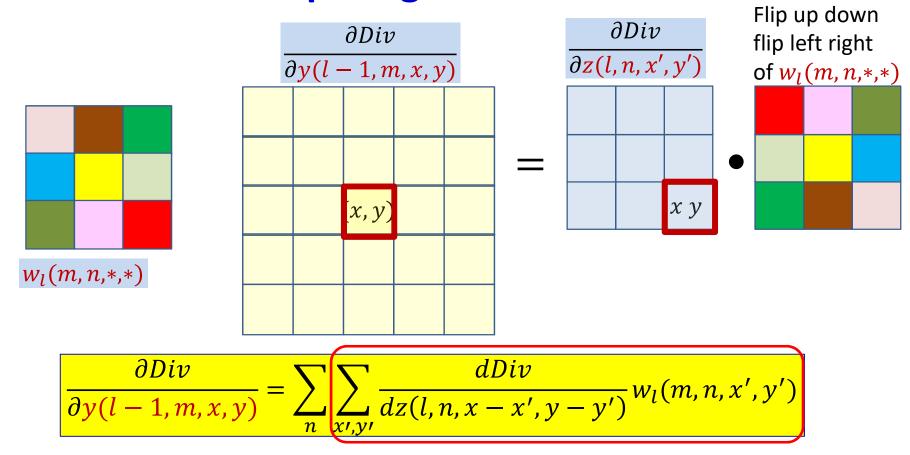
$$\begin{array}{c|cccc}
z(l, n, x', y') \\
x-2 & x-1 & x \\
y-2 & y-2 & y-2
\end{array}$$

$$\begin{array}{c|cccc}
x-2 & x-1 & x \\
y-1 & y-1 & y-1
\end{array}$$

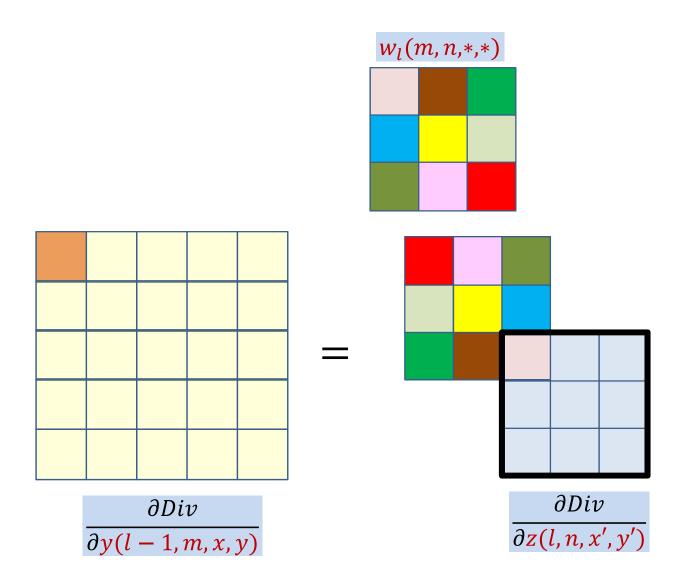
$$\begin{array}{c|cccc}
x & x & x & x \\
x & y & y & y-1
\end{array}$$

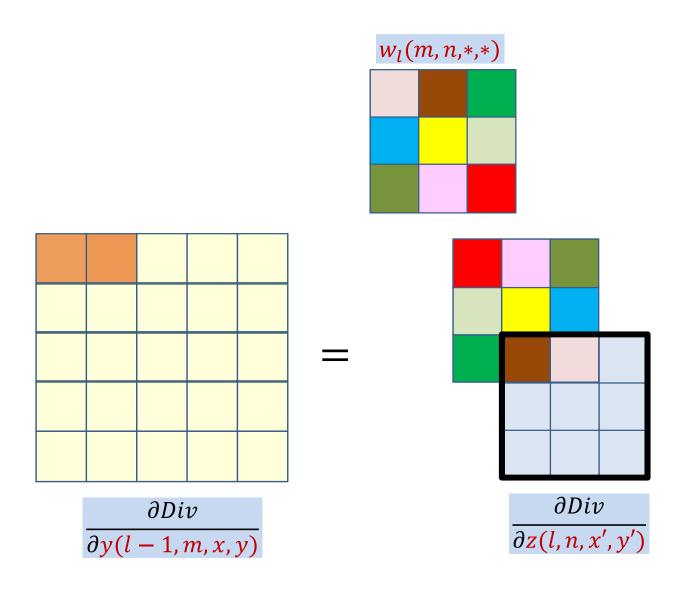
$$\frac{\partial Div}{\partial y(l-1,m,x,y)} = \sum_{n} \sum_{x',y'} \frac{dDiv}{dz(l,n,x-x',y-y')} w_l(m,n,x',y')$$

• Lets see the derivative maps..

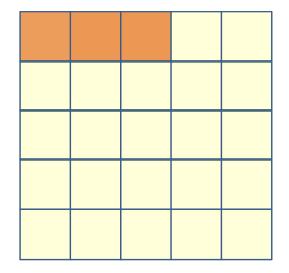


- The derivative (w.r.t) y at (x, y) is obtained by flipping the filter left-right, top-bottom, and computing the inner product with respect to the square patch of $\frac{\partial Div}{\partial z}$ ending at (x, y)
 - This would be for any (x, y)

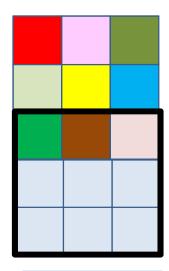




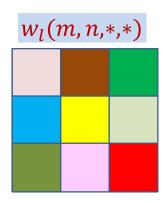


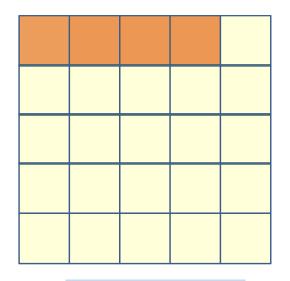


$$\frac{\partial Div}{\partial y(l-1,m,x,y)}$$

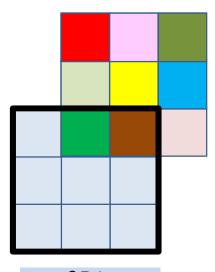


$$\frac{\partial Div}{\partial z(l,n,x',y')}$$



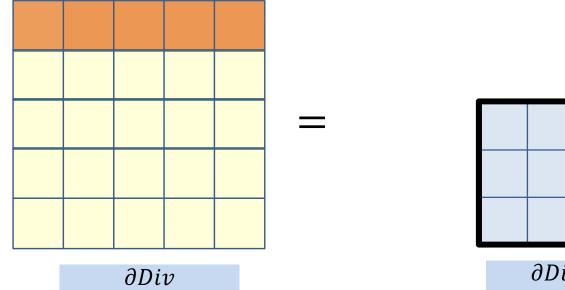


$$\frac{\partial Div}{\partial y(l-1,m,x,y)}$$

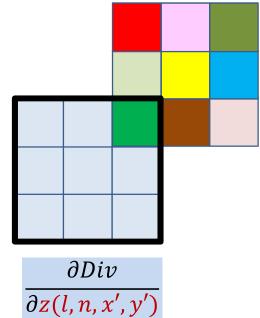


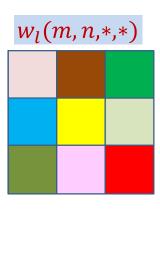
$$\frac{\partial Div}{\partial z(l,n,x',y')}$$

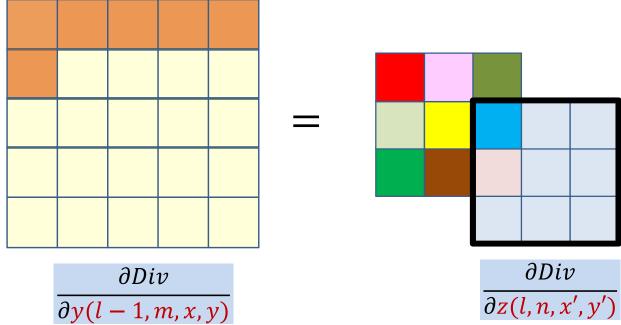


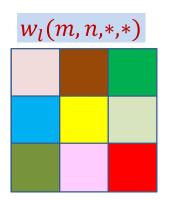


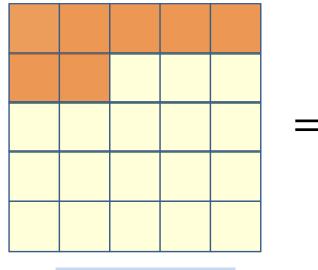
 $\partial y(l-1,m,x,y)$

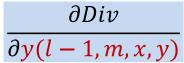


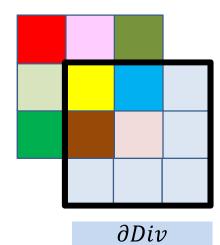




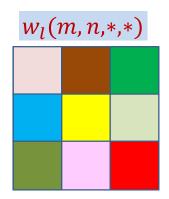


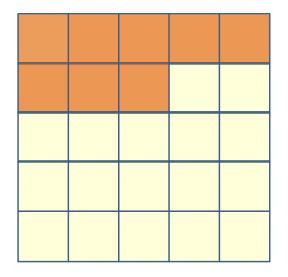




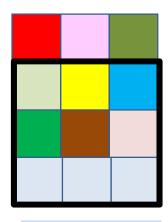


 $\overline{\partial z(l,n,x',y')}$

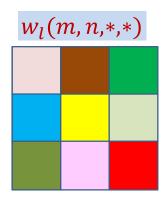


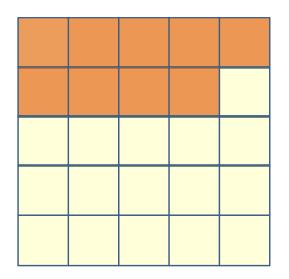


$$\frac{\partial Div}{\partial y(l-1,m,x,y)}$$

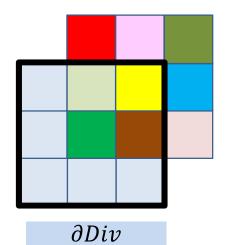


$$\frac{\partial Div}{\partial z(l,n,x',y')}$$

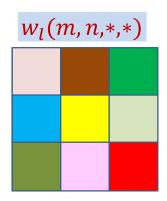


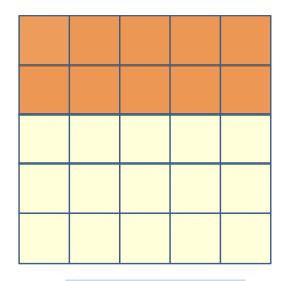


$$\frac{\partial Div}{\partial y(l-1,m,x,y)}$$

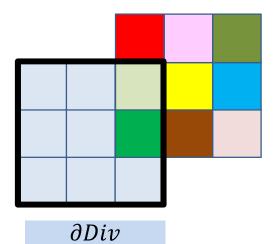


 $\overline{\partial z(l,n,x',y')}$

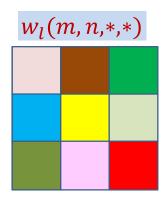


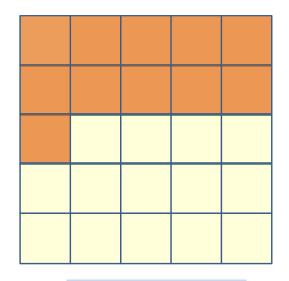


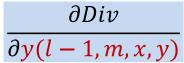
$$\frac{\partial Div}{\partial y(l-1,m,x,y)}$$

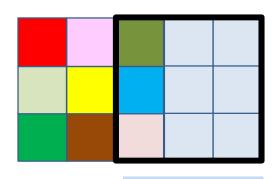


 $\overline{\partial z(l,n,x',y')}$

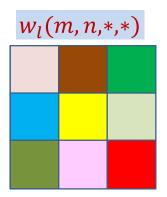


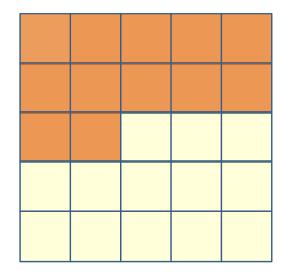


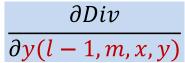


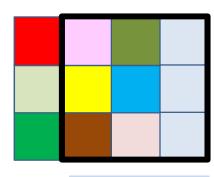


 $\frac{\partial Div}{\partial z(l,n,x',y')}$

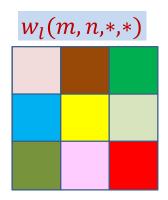


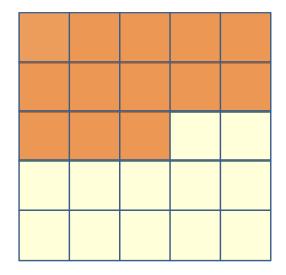




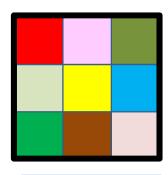


$$\frac{\partial Div}{\partial z(l,n,x',y')}$$

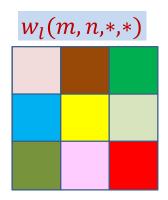


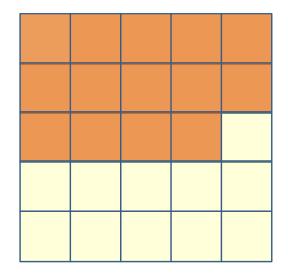


$$\frac{\partial Div}{\partial y(l-1,m,x,y)}$$

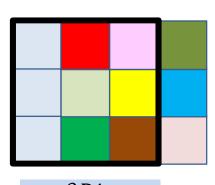


$$\frac{\partial Div}{\partial z(l,n,x',y')}$$



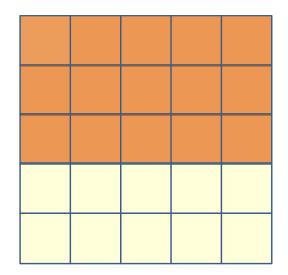


$$\frac{\partial Div}{\partial y(l-1,m,x,y)}$$

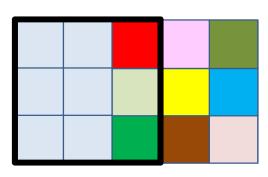


$$\frac{\partial Div}{\partial z(l,n,x',y')}$$

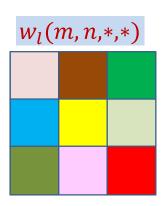


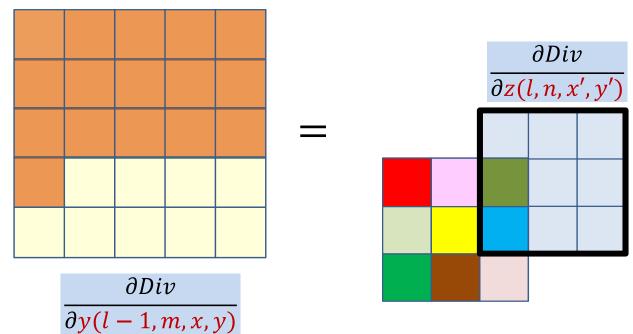


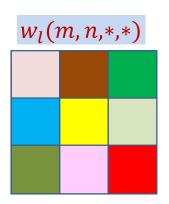
$$\frac{\partial Div}{\partial y(l-1,m,x,y)}$$

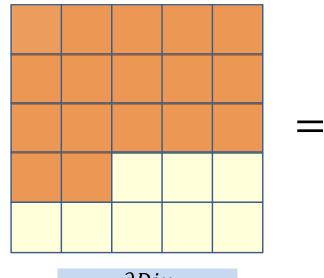


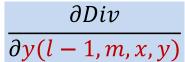
$$\frac{\partial Div}{\partial z(l,n,x',y')}$$

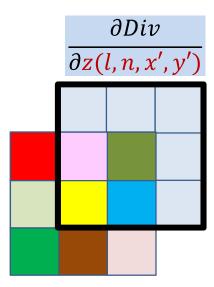


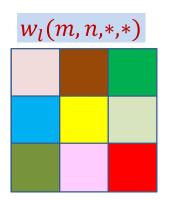


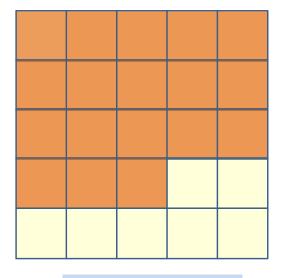




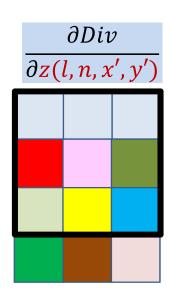


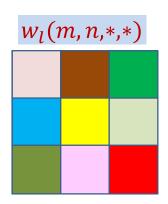


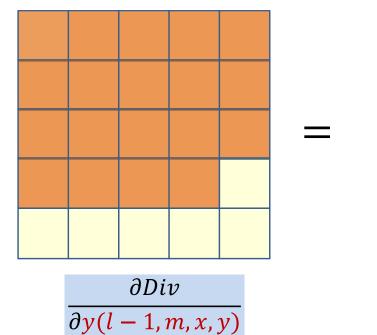


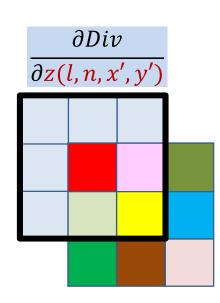


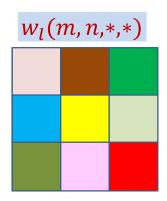
$$\frac{\partial Div}{\partial y(l-1,m,x,y)}$$

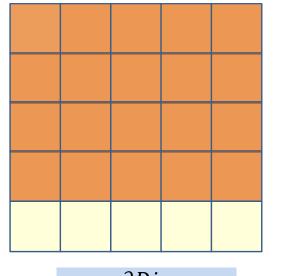


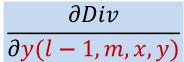


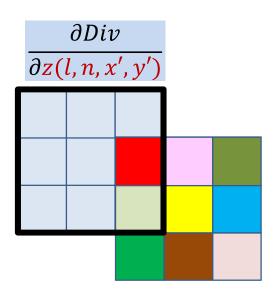


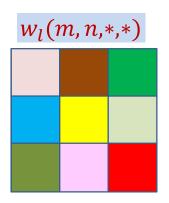


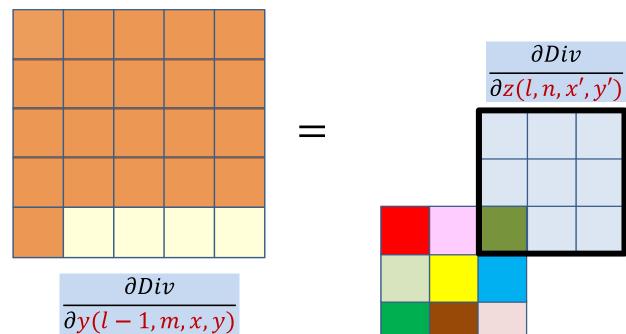


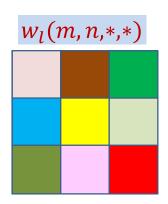


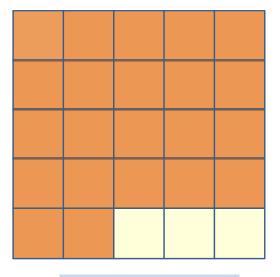


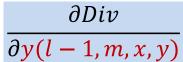


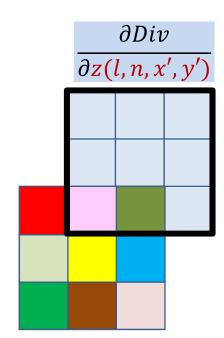




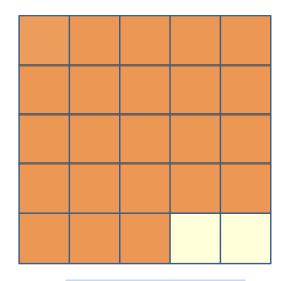




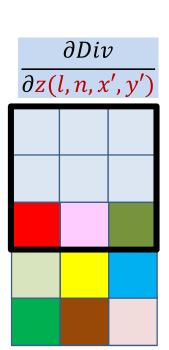


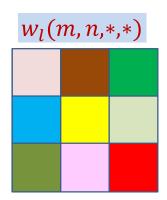


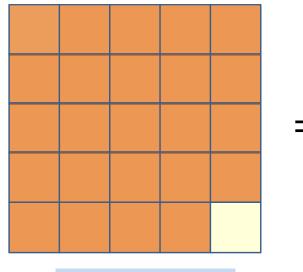




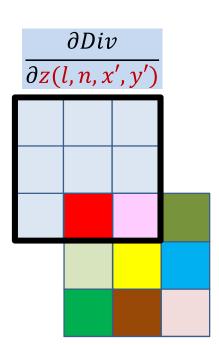
 $\frac{\partial Div}{\partial y(l-1,m,x,y)}$

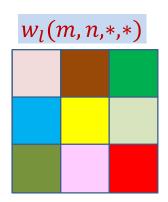


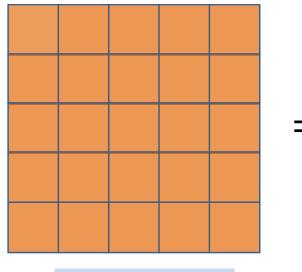




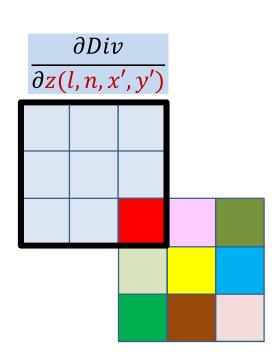
$$\frac{\partial Div}{\partial y(l-1,m,x,y)}$$

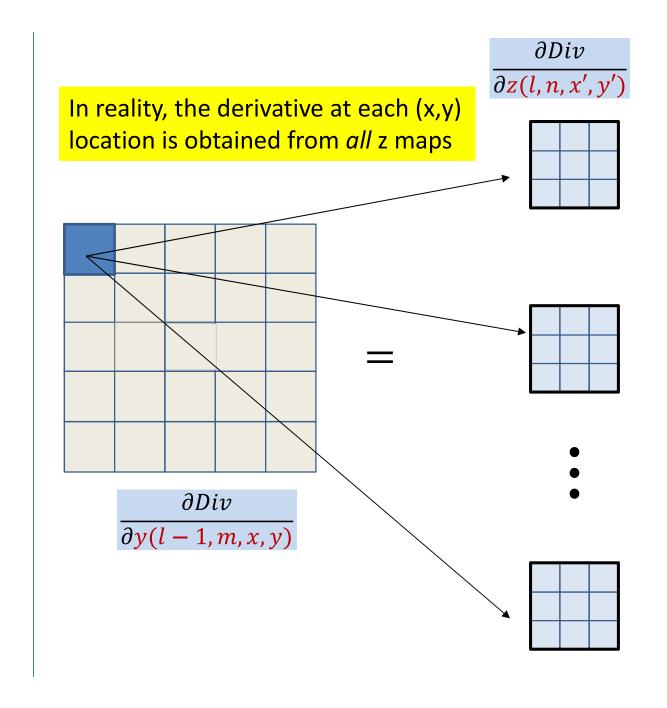


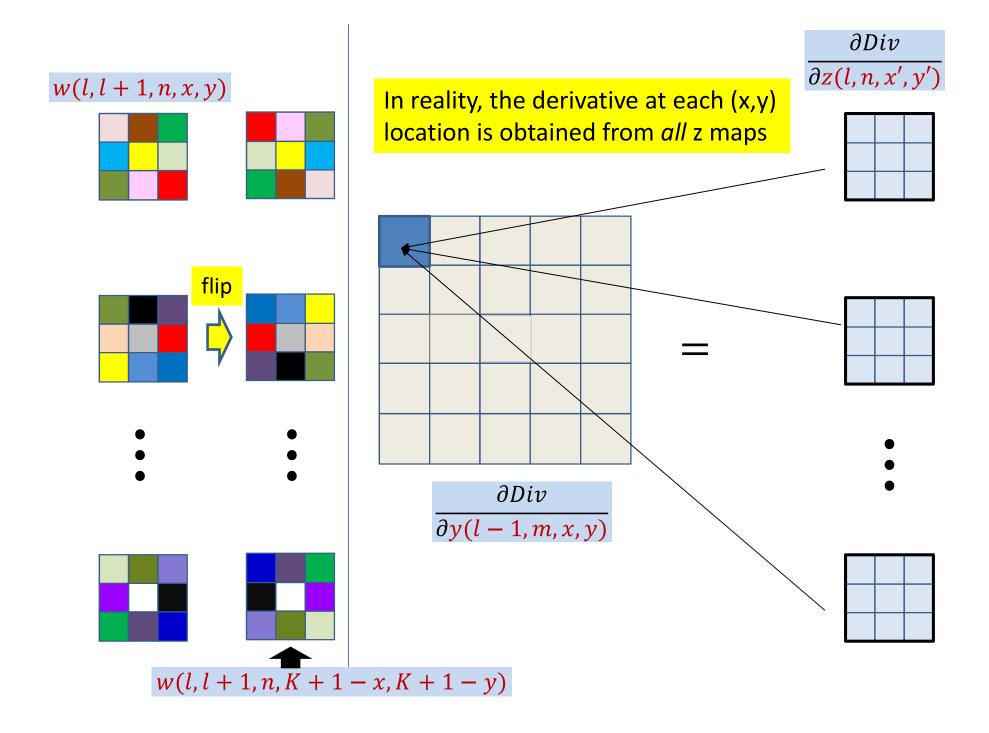


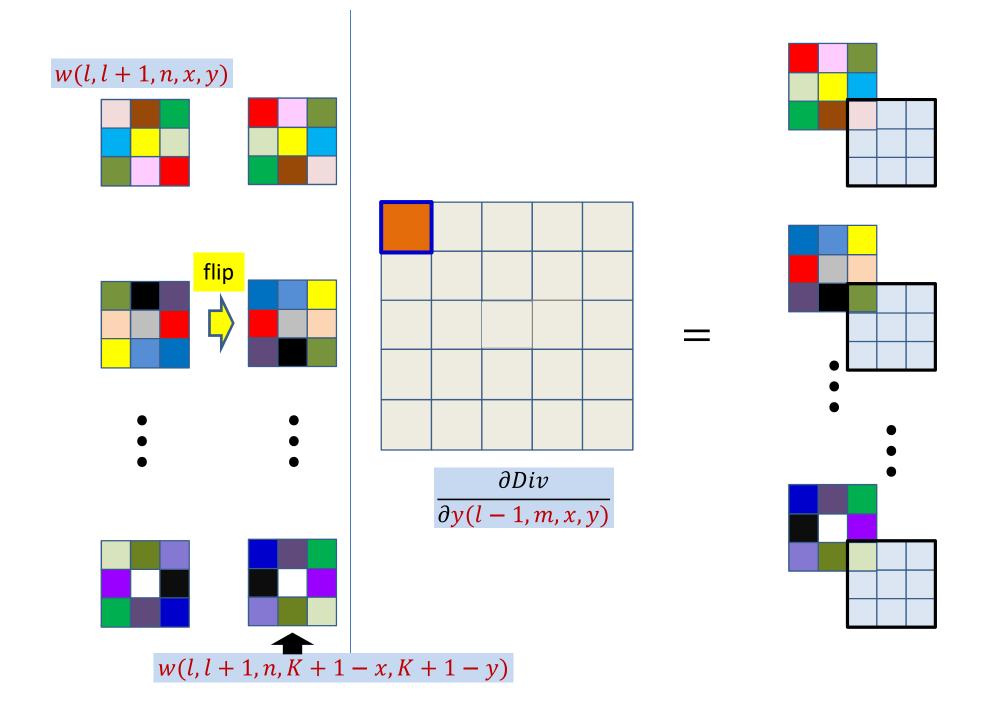


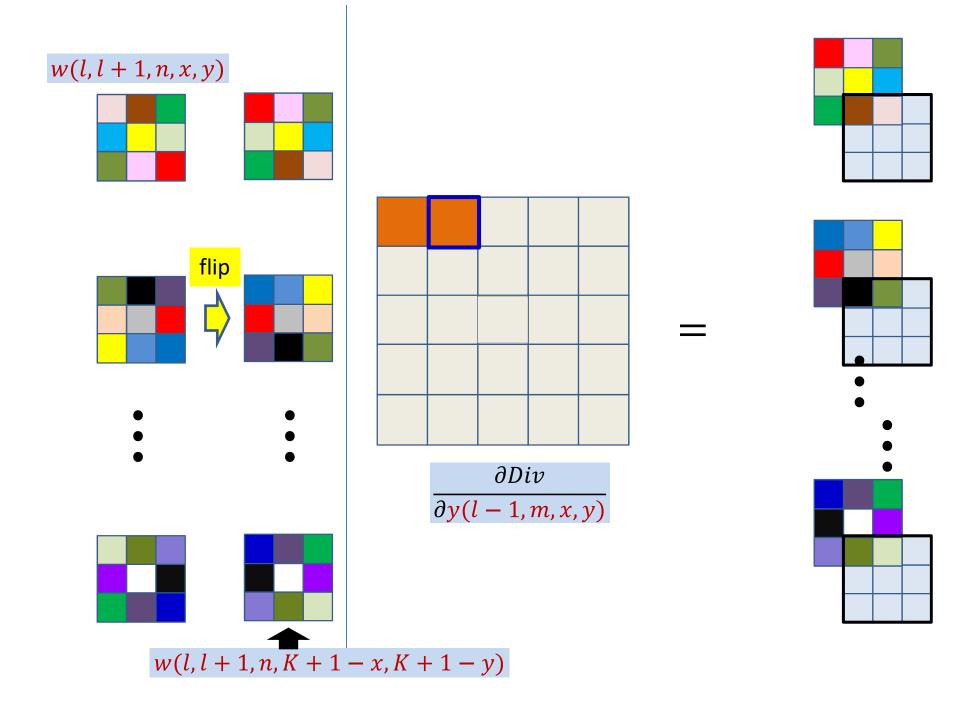
$$\frac{\partial Div}{\partial y(l-1,m,x,y)}$$

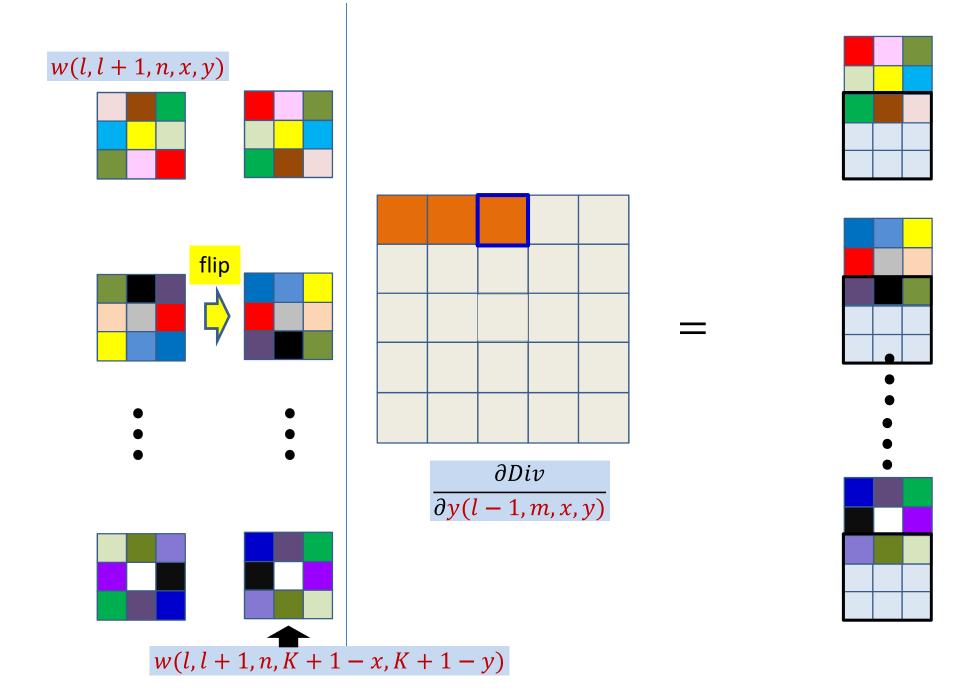


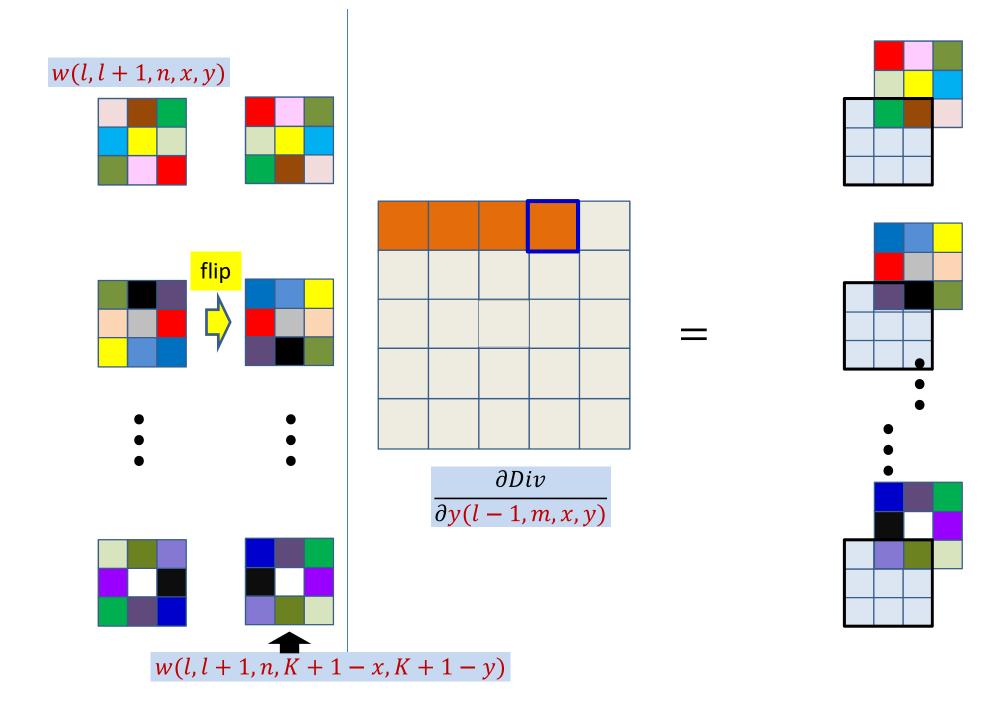


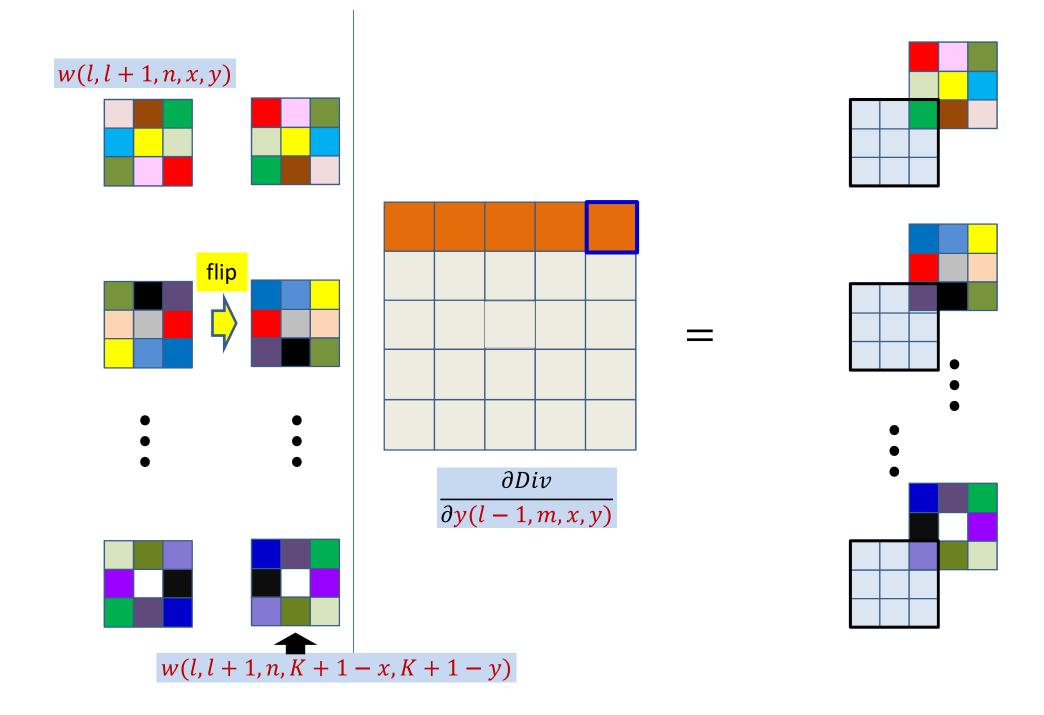


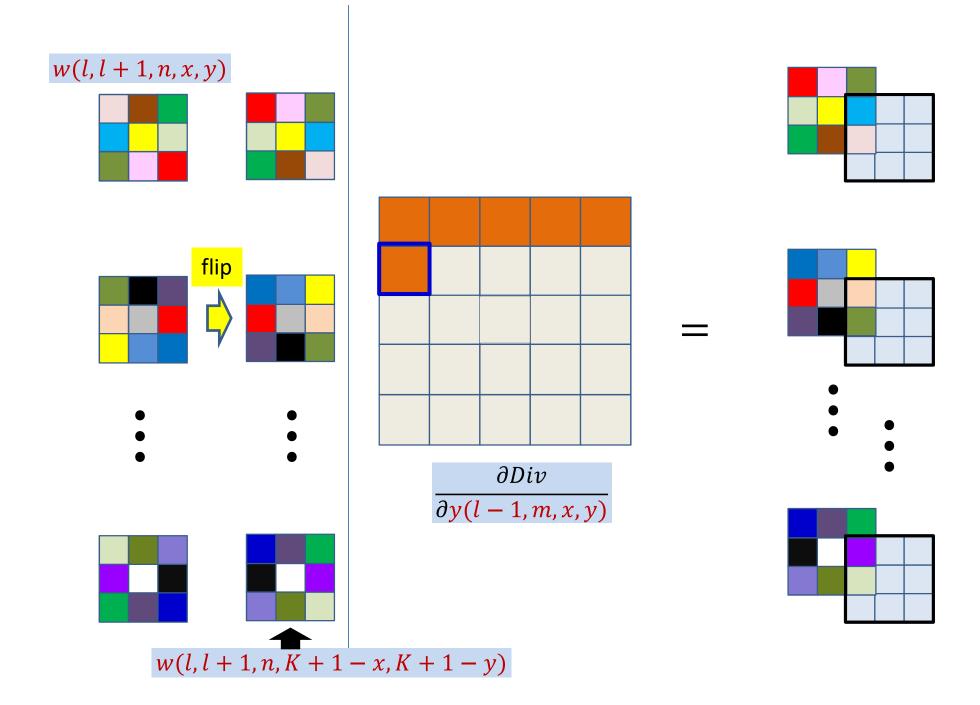


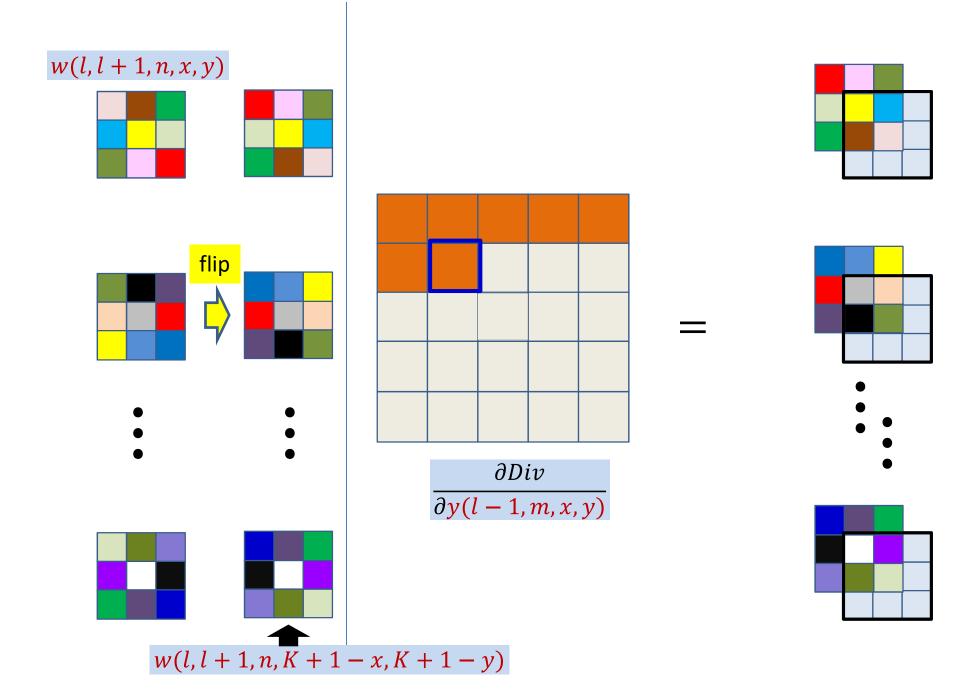


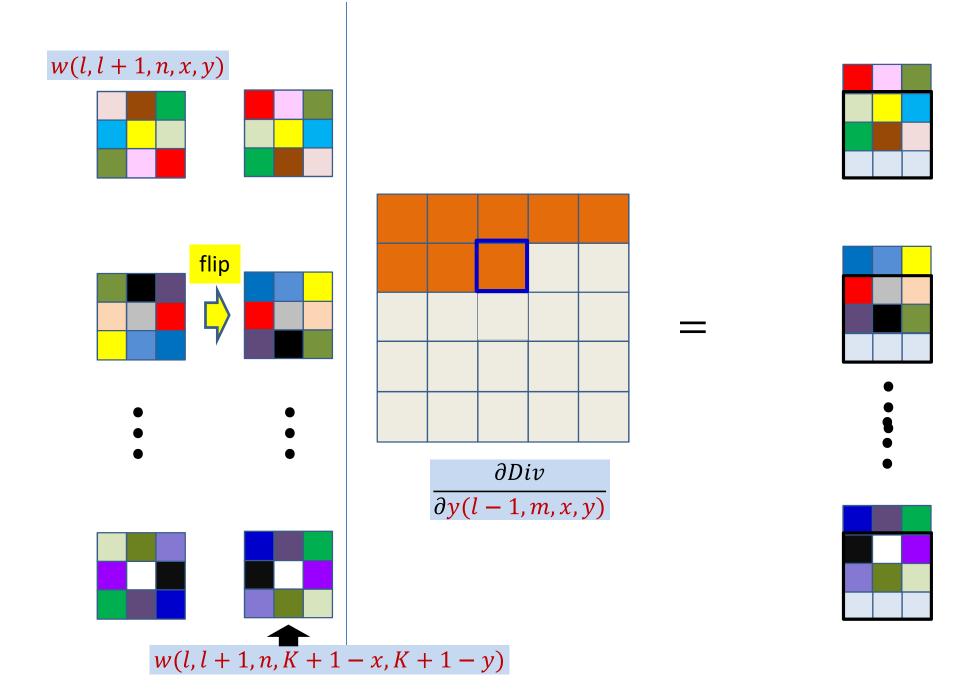


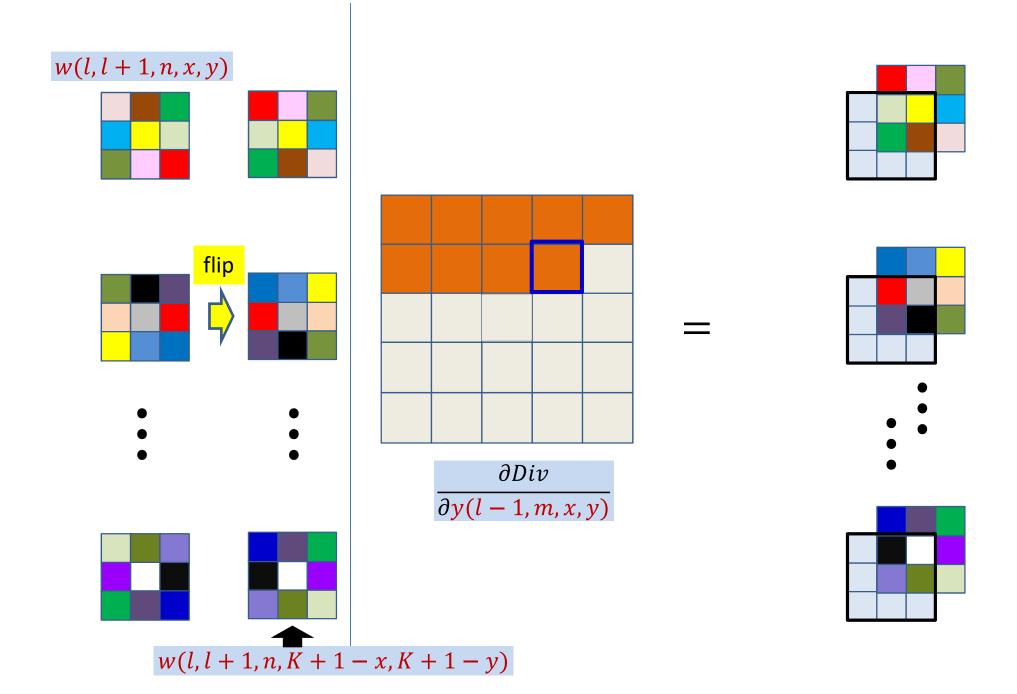


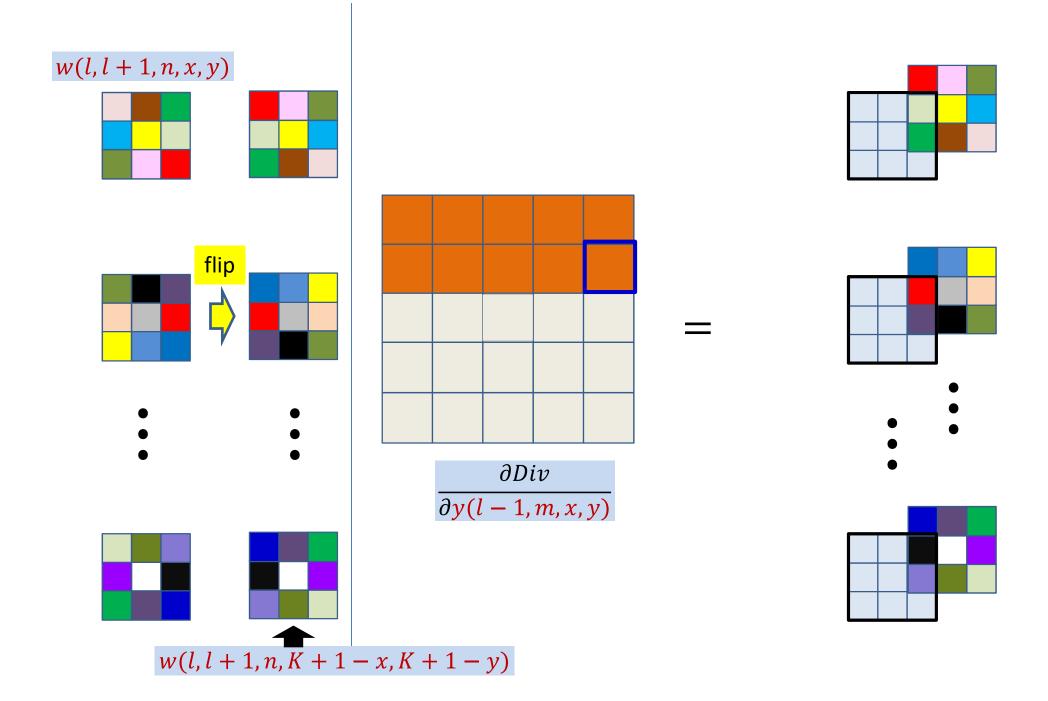


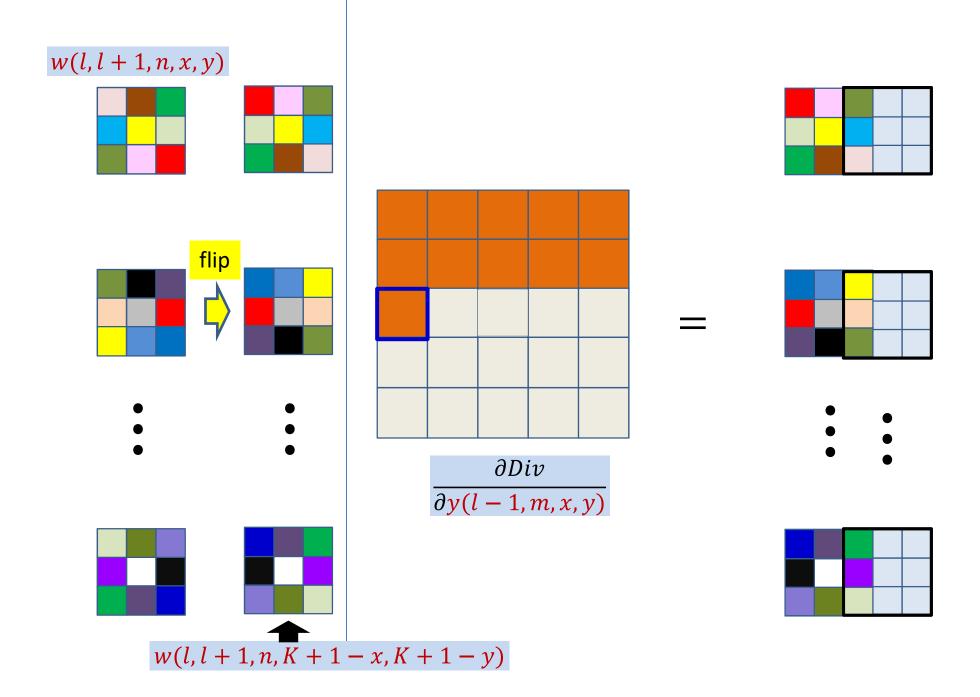


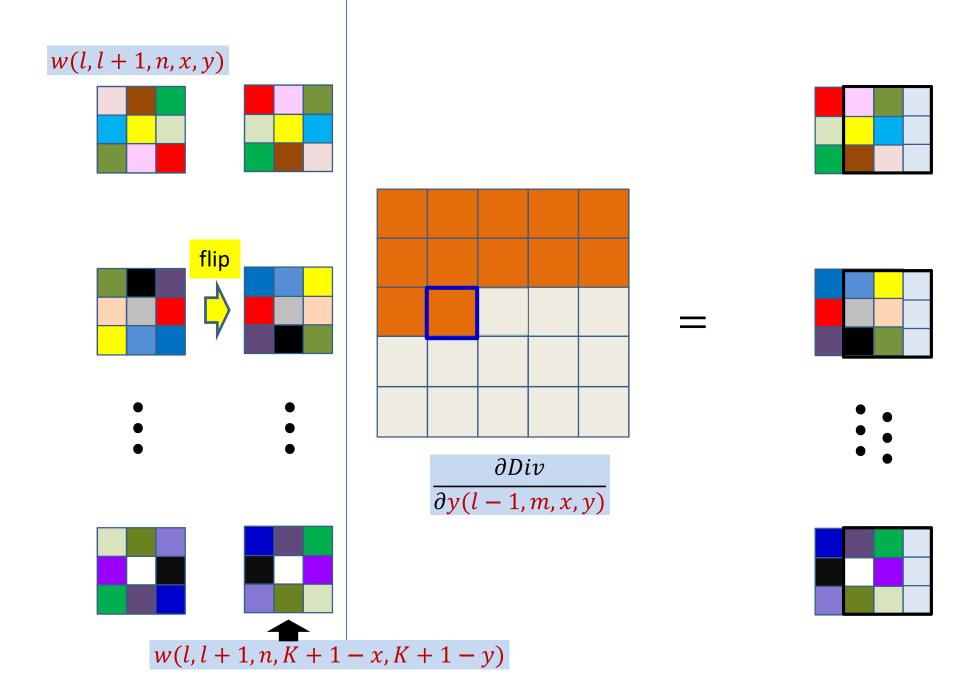


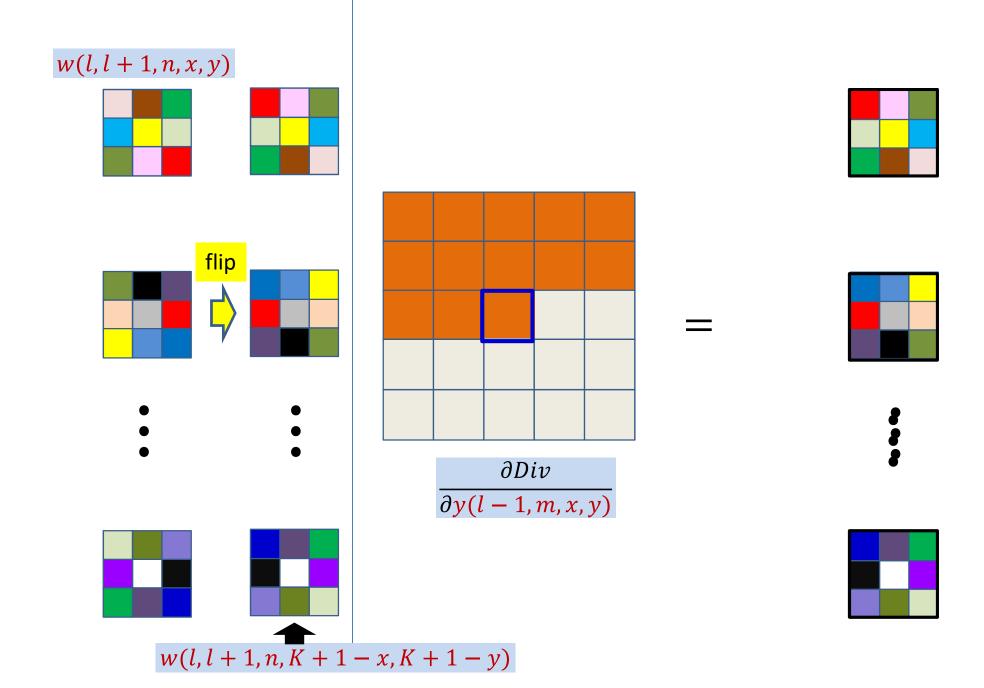


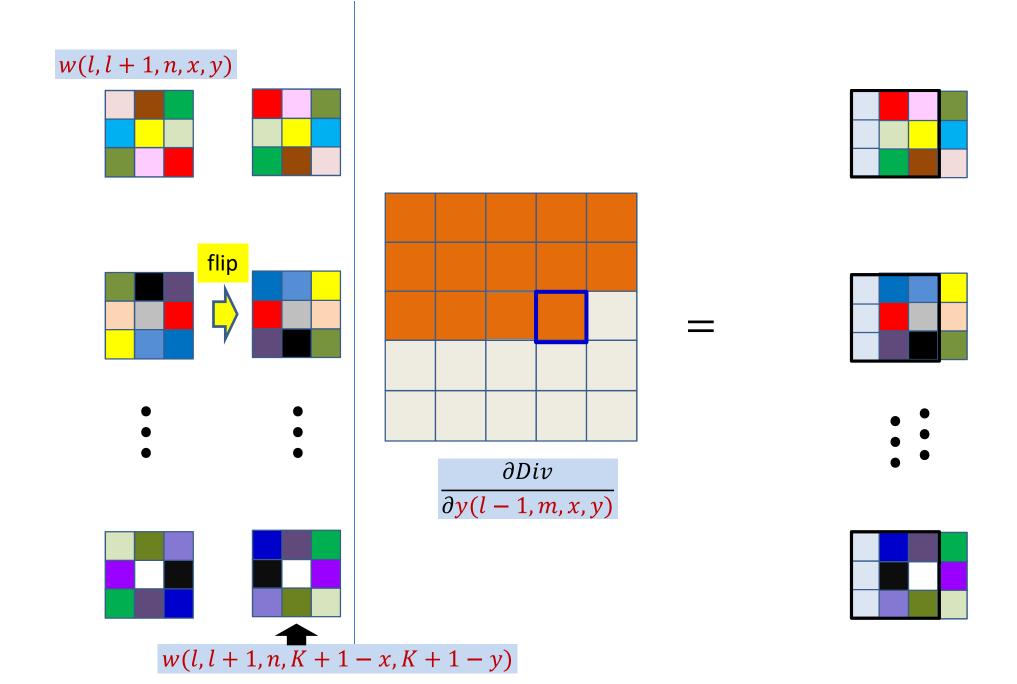


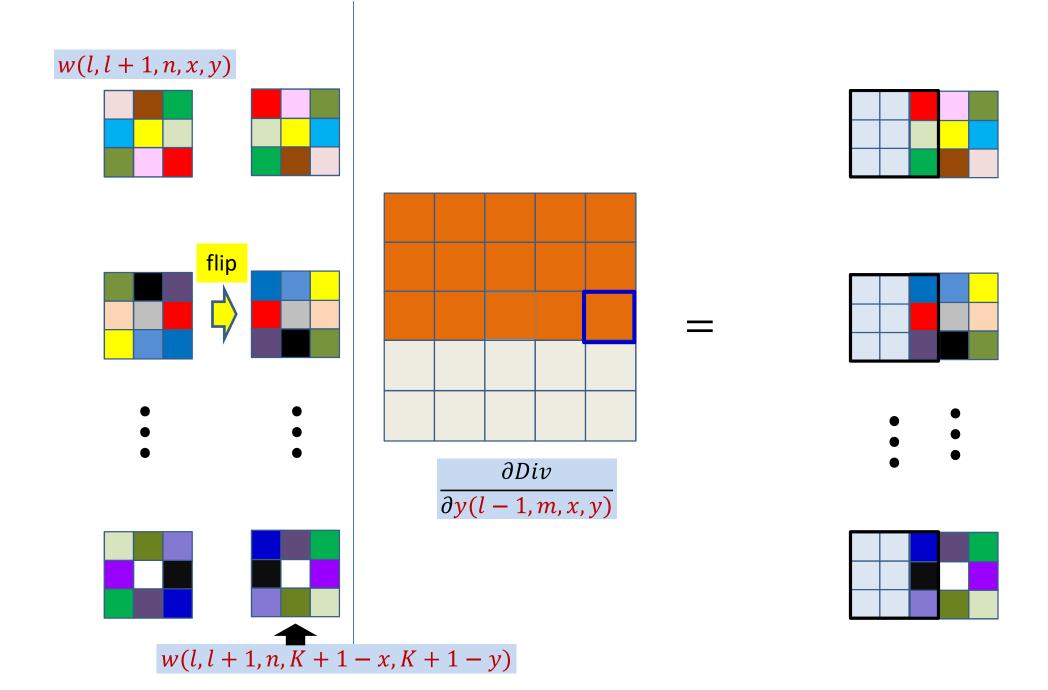


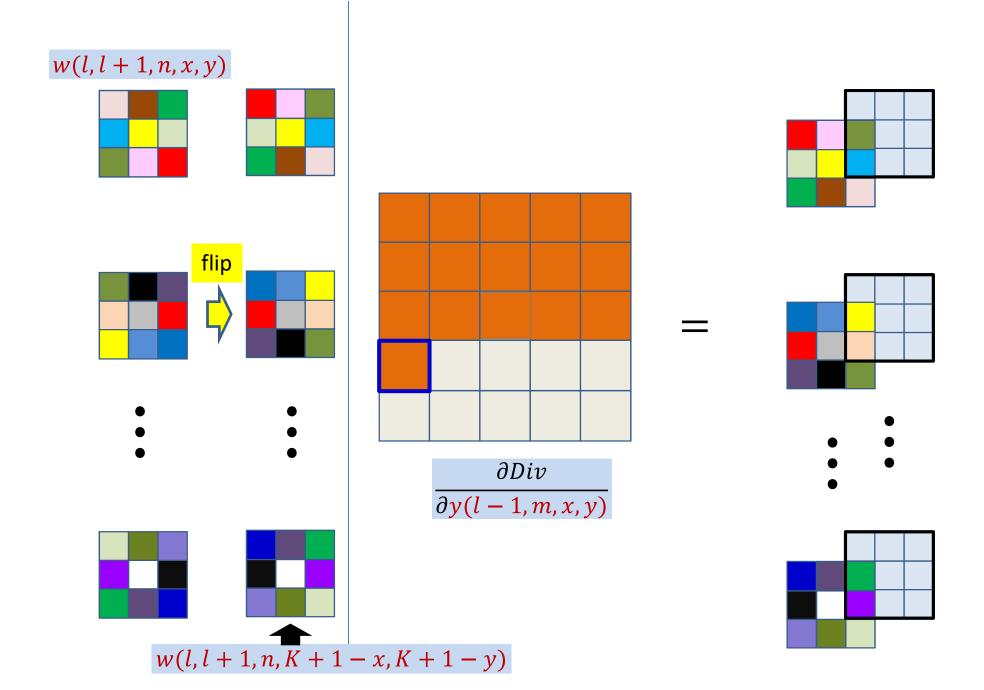


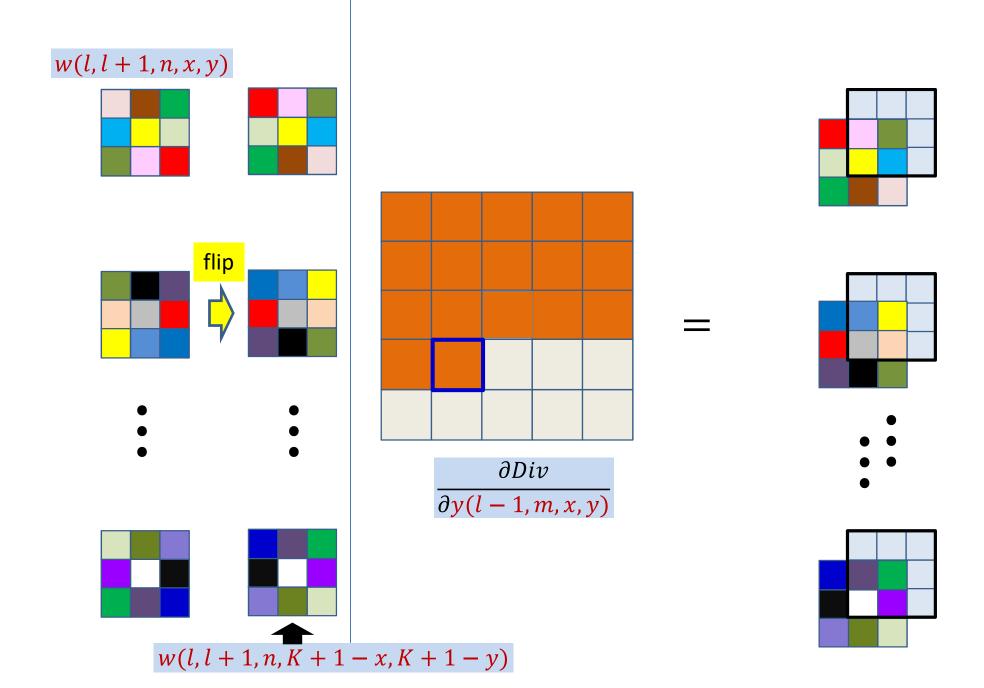


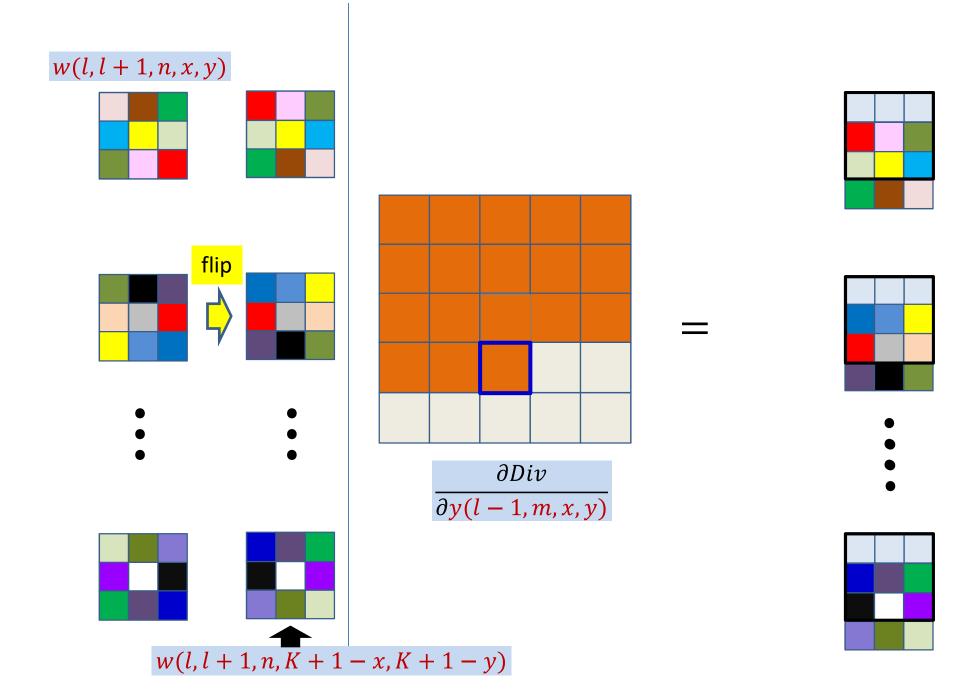


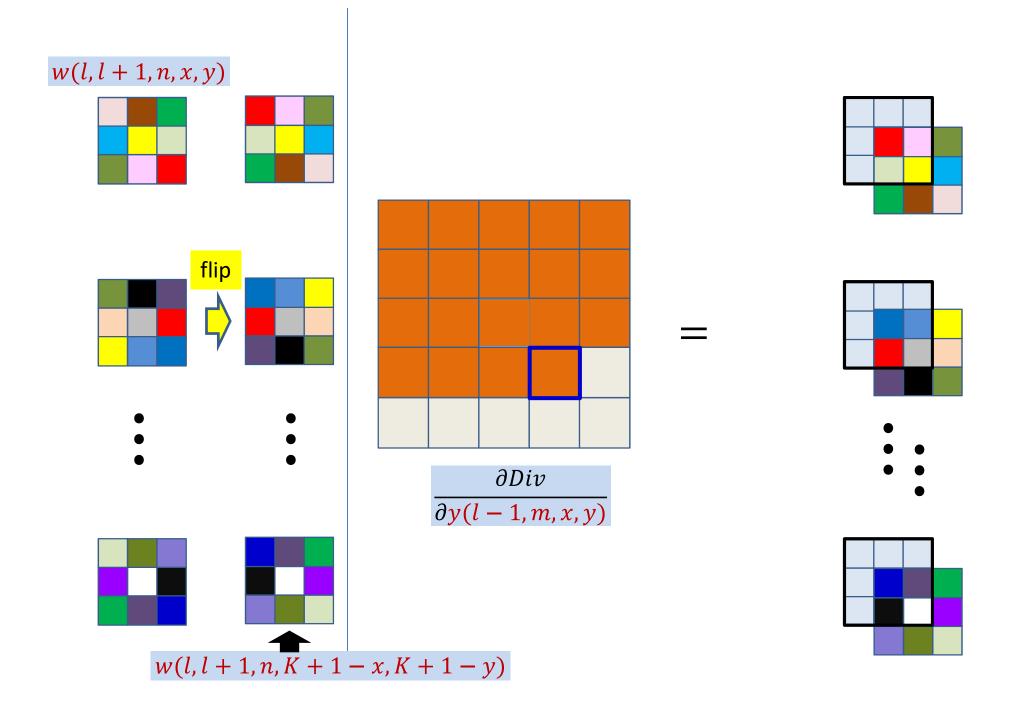


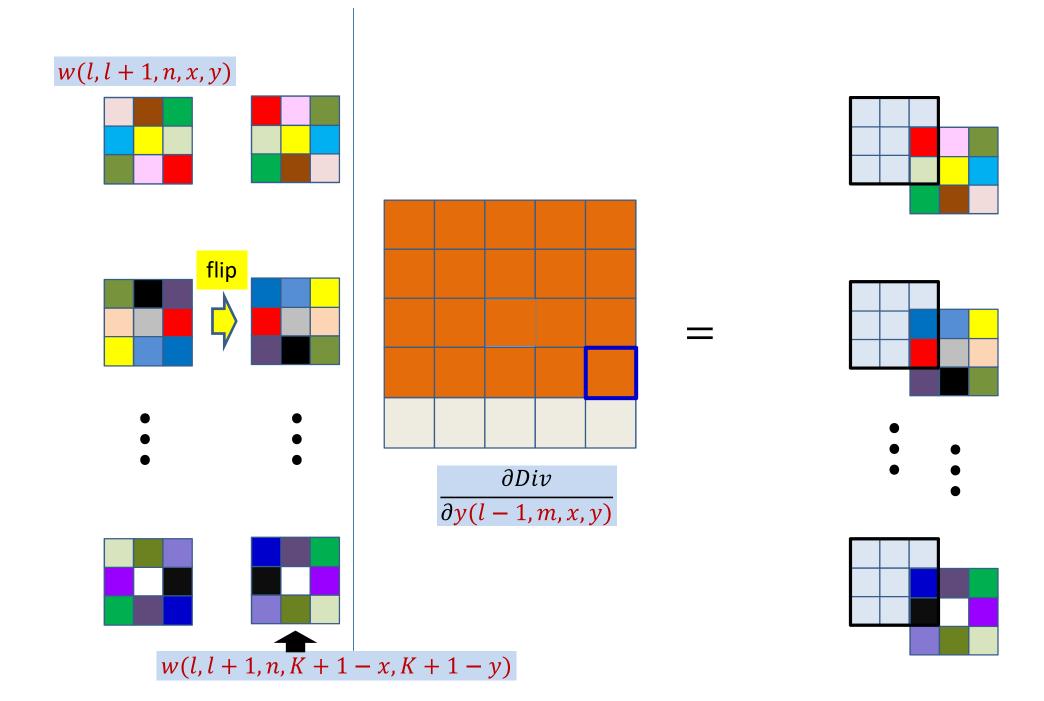


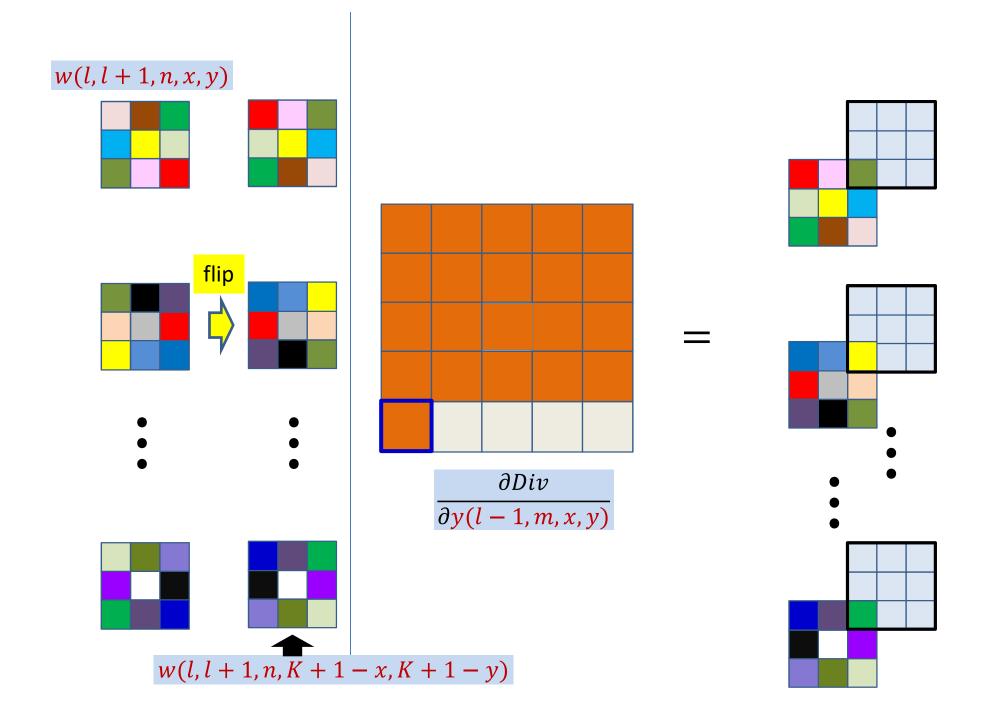


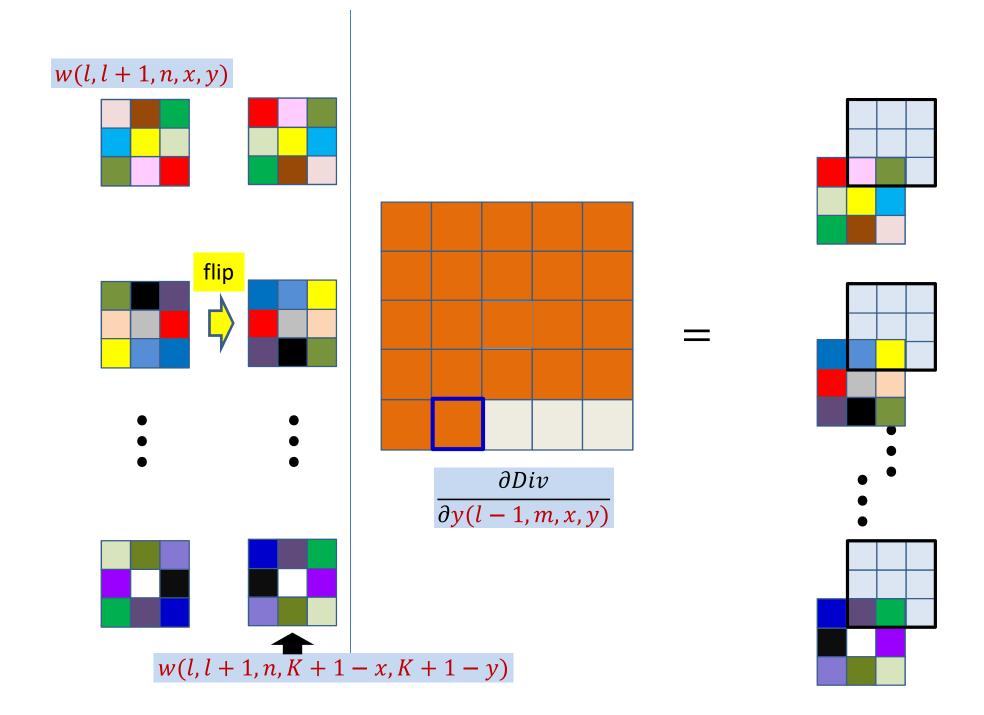


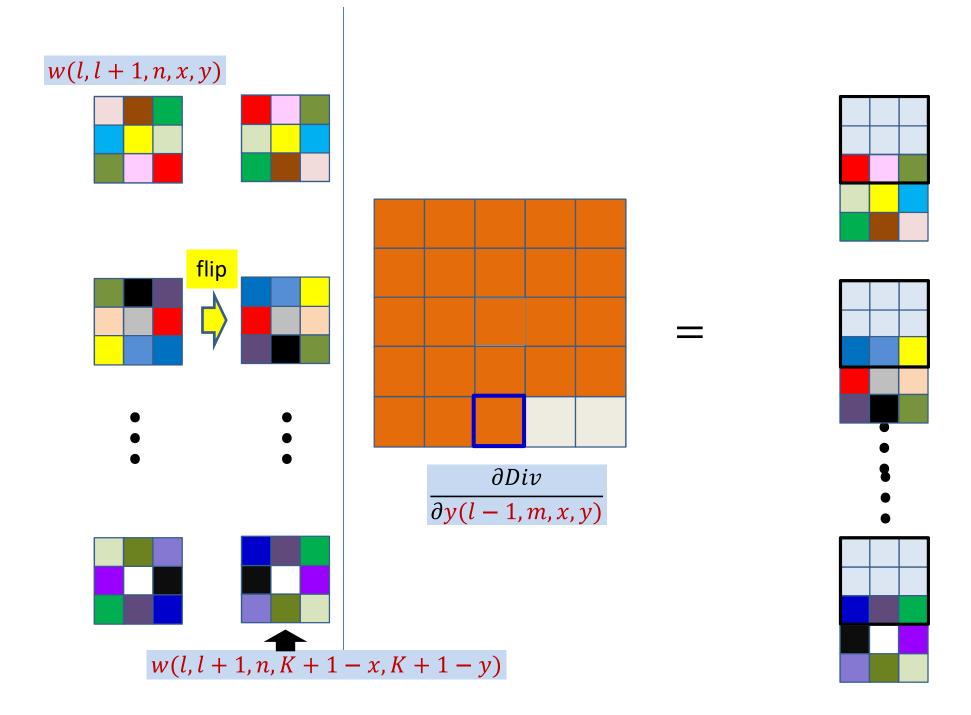


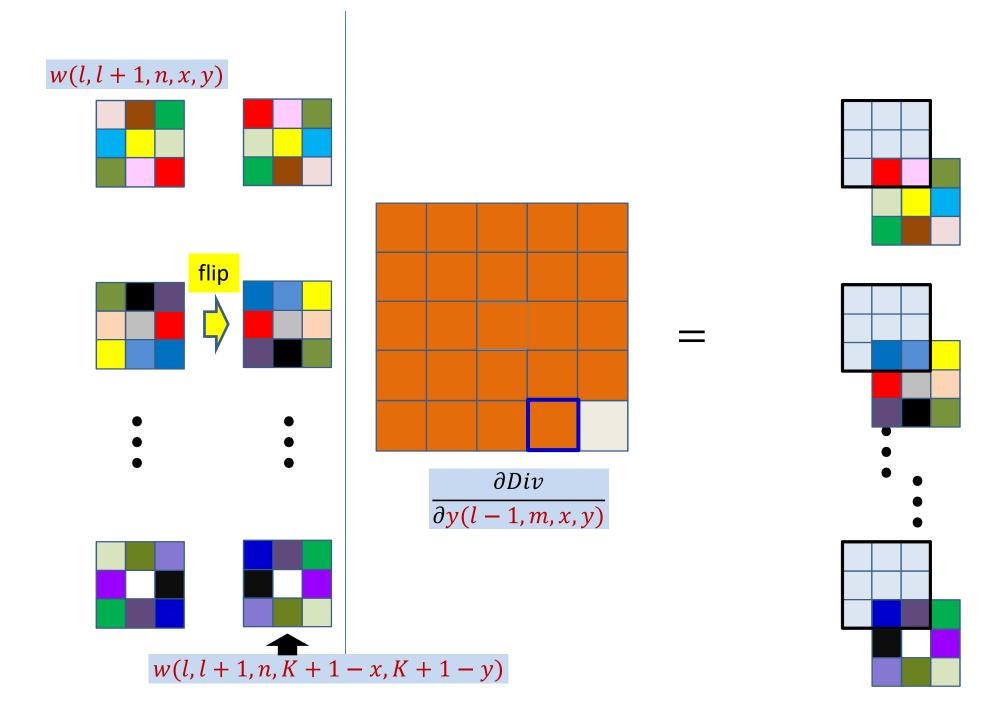


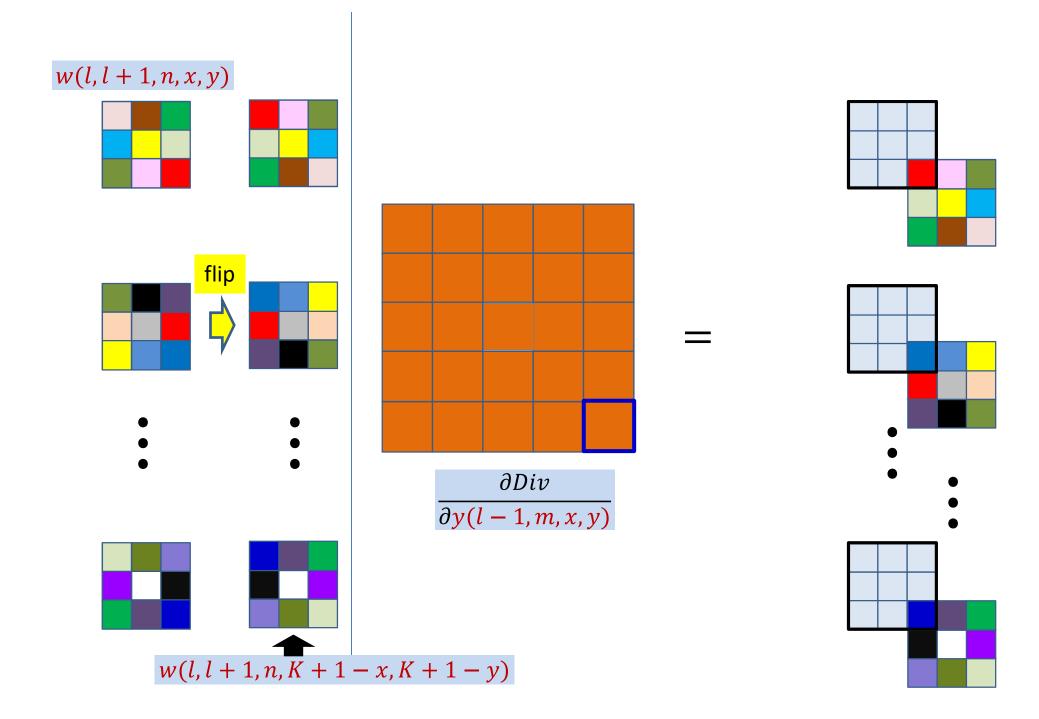




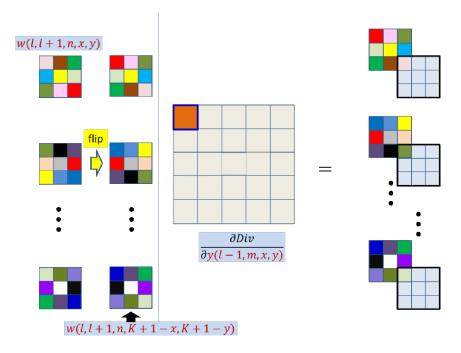








Computing the derivative



- This is just a convolution of $\frac{\partial Div}{\partial z(l,n,x,y)}$ by the inverted filter
 - After zero padding it first with L-1 zeros on every side

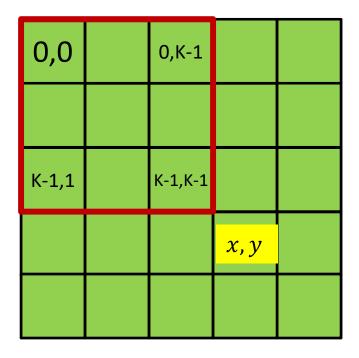
Define

Flipping the fiter left-right and top-bottom

$$\widehat{w}(l, n, m, x', y') = w(l, n, m, K - 1 - x', K - 1 - y')$$

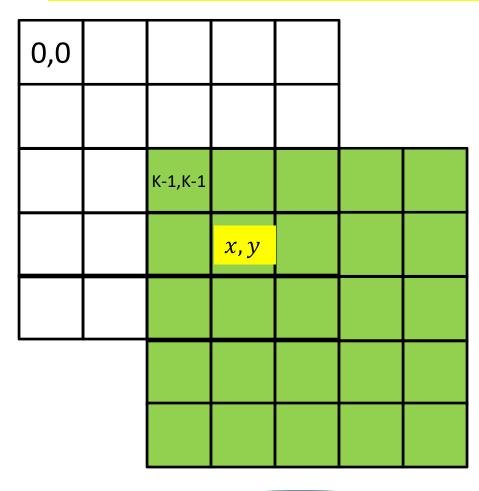
$$\frac{\partial Div}{\partial y(l-1, m, x, y)} = \sum_{n} \sum_{x', y'} w(l, n, m, K-1-x', K-1-y') \frac{\partial Div}{\partial z(l, n, x+x'-(K-1), y+y'-(K-1))}$$

$$\frac{\partial Div}{\partial y(l-1,m,x,y)} = \sum_{n} \sum_{x',y'} \widehat{w}(l,n,m,x',y') \frac{\partial Div}{\partial z(l,n,x+x'-(K-1),y+y'-(K-1))}$$

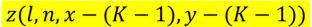


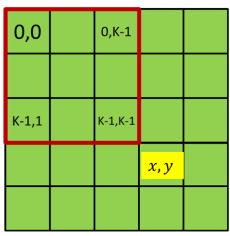
Reading the value at (x,y) from a shifted version of z

$$z(l, n, x - (K - 1), y - (K - 1))$$

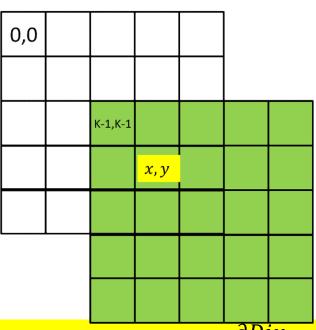


$$\frac{\partial Div}{\partial y(l-1,m,x,y)} = \sum_{n} \sum_{x',y'} \widehat{w}(l,n,m,x',y') \underbrace{\frac{\partial Div}{\partial z(l,n,x+x'-(K-1),y+y'-(K-1))}}_{}$$





Reading the value at (x,y) from a shifted version of z



$$\frac{\partial Div}{\partial y(l-1,m,x,y)} = \sum_{n} \sum_{x',y'} \widehat{w}(l,n,m,x',y') \frac{\partial Div}{\partial z(l,n,x+x'-(K-1),y+y'-(K-1))}$$

Shifting down and right by K-1, such that 0,0 becomes K-1,K-1

$$z_{shift}(l, n, m, x, y) = z(l, n, x - K + 1, y - K + 1)$$

$$\frac{\partial Div}{\partial y(l-1,m,x,y)} = \sum_{n} \sum_{x',y'} \widehat{w}(l,n,m,x',y') \frac{\partial Div}{\partial z_{shift}(l,n,x+x',y+y')}$$

$$\frac{\partial Div}{\partial y(l-1,m,x,y)} = \sum_{n} \sum_{x',y'} w(l,n,m,K-1-x',K-1-y') \frac{\partial Div}{\partial z(l,n,x+x'-(K-1),y+y'-(K-1))}$$

Define

$$\widehat{w}(l, n, m, x', y') = w(l, n, m, K - 1 - x', K - 1 - y')$$

$$z_{shift}(l, n, m, x, y) = z(l, n, x - K + 1, y - K + 1)$$

$$\frac{\partial Div}{\partial y(l-1,m,x,y)} = \sum_{n} \sum_{x',y'} \widehat{w}(l,n,m,x',y') \frac{\partial Div}{\partial z_{shift}(l,n,x+x',y+y')}$$

Define

$$\widehat{w}(l, n, m, x', y') = w(l, n, m, K - 1 - x', K - 1 - y')$$

$$z_{shift}(l, n, m, x, y) = z(l, n, x - K + 1, y - K + 1)$$

Regular convolution running on shifted derivative maps using flipped filter

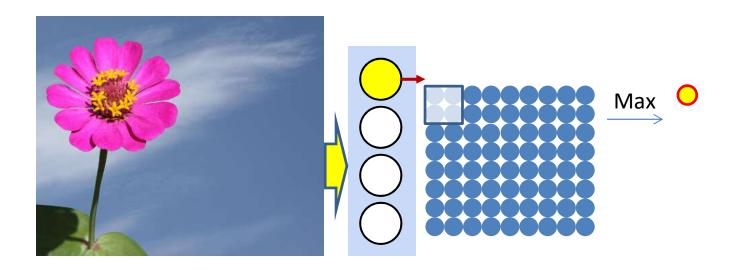
$$\frac{\partial Div}{\partial y(l-1,m,x,y)} = \sum_{n} \sum_{x',y'} \widehat{w}(l,n,m,x',y') \frac{\partial Div}{\partial z_{shift}(l,n,x+x',y+y')}$$

Derivatives for a single layer *l*: Vector notation

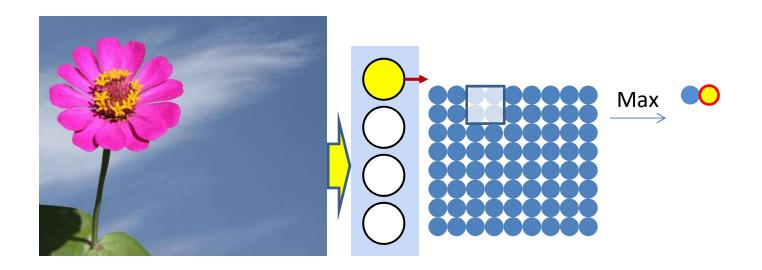
```
# The weight W(l,j) is a 3D D_{l-1} \times K_1 \times K_1 dzshift = zeros(D_1 \times (H_1 + K_1 - 1) \times (W_1 + K_1 - 1)) #pad for -ve indices for j = 1:D_1 Wflip(j,:,:) = flipLeftRight(flipUpDown(W(l,j,:,:))) dzshift(j,K_1:end,K_1:end) = dz(l,j,:,:) # move idx l->K_1 end
```

```
for j = 1:D<sub>1</sub>
for x = 1:W<sub>1-1</sub>
for y = 1:H<sub>1-1</sub>

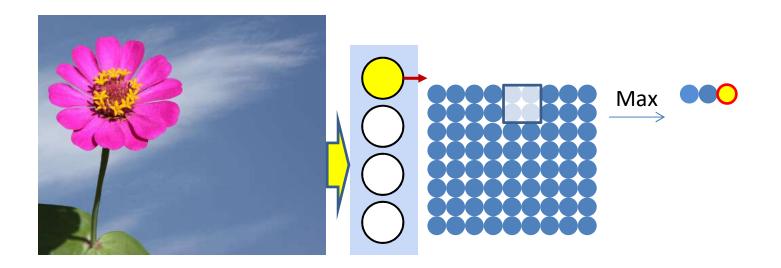
segment = dzshift(:, x:x+K<sub>1</sub>-1, y:y+K<sub>1</sub>-1) #3D tensor
dy(1-1,j,x,y) = Wflip.segment #tensor inner prod.
```



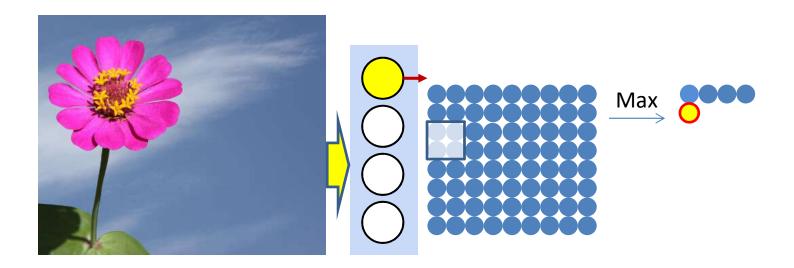
- Pooling is typically performed with strides > 1
 - Results in shrinking of the map
 - "Downsampling"



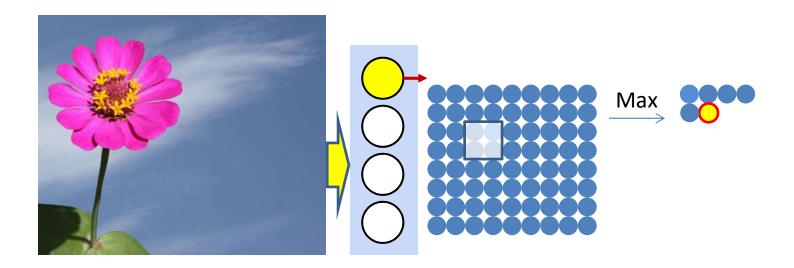
- Pooling is typically performed with strides > 1
 - Results in shrinking of the map
 - "Downsampling"



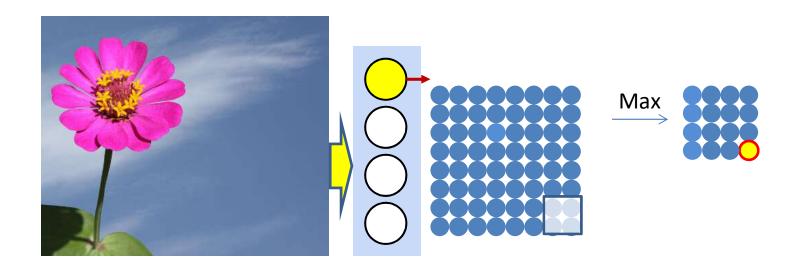
- Pooling is typically performed with strides > 1
 - Results in shrinking of the map
 - "Downsampling"



- Pooling is typically performed with strides > 1
 - Results in shrinking of the map
 - "Downsampling"

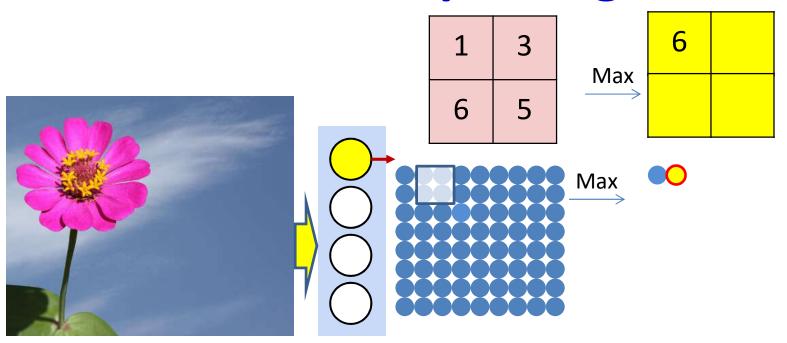


- Pooling is typically performed with strides > 1
 - Results in shrinking of the map
 - "Downsampling"



- Pooling is typically performed with strides > 1
 - Results in shrinking of the map
 - "Downsampling"

Max pooling

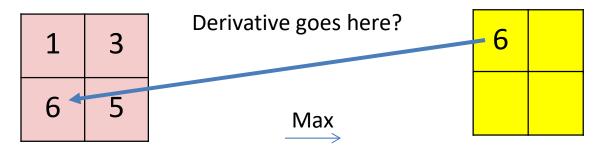


- Max pooling selects the largest from a pool of elements
- Pooling is performed by "scanning" the input

$$P(l, m, i, j) = \underset{k \in \{(i-1)d+1, (i-1)d+K_{lpool}\},\\ n \in \{(j-1)d+1, (j-1)d+K_{lpool}\}\}$$

$$U(l, m, i, j) = Y(l, m, P(l, m, i, j))$$

Derivative of Max pooling



$$\frac{dDiv}{dY(l,m,k,l)} = \begin{cases} \frac{dDiv}{dU(l,m,i,j)} & \text{if } (k,l) = P(l,m,i,j) \\ 0 & \text{otherwise} \end{cases}$$

- Max pooling selects the largest from a pool of elements
- Pooling is performed by "scanning" the input

$$P(l, m, i, j) = \underset{k \in \{(i-1)d+1, (i-1)d+K_{lpool}\},\\ n \in \{(j-1)d+1, (j-1)d+K_{lpool}\}\}$$

$$U(l, m, i, j) = Y(l, m, P(l, m, i, j))$$

Max Pooling layer at layer *l*

- a) Performed separately for every map (j).*) Not combining multiple maps within a single max operation.
- b) Keeping track of location of max

Max pooling

```
for j = 1:D<sub>1</sub>
  m = 1
  for x = 1:stride(l):W<sub>1-1</sub>-K<sub>1</sub>+1
    n = 1
    for y = 1:stride(l):H<sub>1-1</sub>-K<sub>1</sub>+1
       pidx(l,j,m,n) = maxidx(y(l-1,j,x:x+K<sub>1</sub>-1,y:y+K<sub>1</sub>-1))
       u(l,j,m,n) = y(l-1,j,pidx(l,j,m,n))
       n = n+1
    m = m+1
```

Derivative of max pooling layer at layer *l*

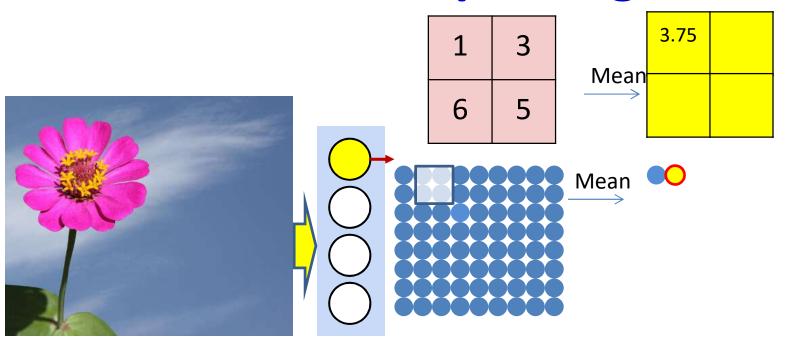
- a) Performed separately for every map (j).*) Not combining multiple maps within a single max operation.
- b) Keeping track of location of max

Max pooling

```
\begin{aligned} \text{dy(:,:,:)} &= \text{zeros}(D_1 \times W_1 \times H_1) \\ \text{for j} &= 1:D_1 \\ \text{for x} &= 1:W_{1\_\text{downsampled}} \\ \text{for y} &= 1:H_{1\_\text{downsampled}} \\ \text{dy(l,j,pidx(l,j,x,y))} &+= \text{u(l,j,x,y)} \end{aligned}
```

"+=" because this entry may be selected in multiple adjacent overlapping windows

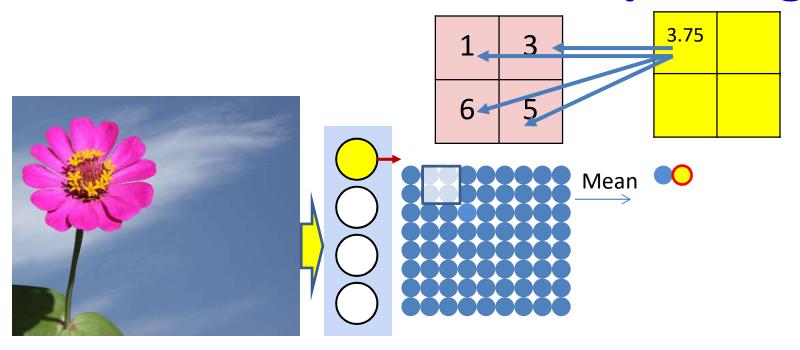
Mean pooling



- Mean pooling compute the mean of a pool of elements
- Pooling is performed by "scanning" the input

$$U(l, m, i, j) = \frac{1}{K_{lpool}^{2}} \sum_{k \in \{(i-1)d+1, (i-1)d+K_{lpool}\}, \\ n \in \{(j-1)d+1, (j-1)d+K_{lpool}\}} y(l, m, k, n)$$

Derivative of mean pooling



The derivative of mean pooling is distributed over the pool

$$k \in \{(i-1)d+1, (i-1)d+K_{lpool}\}, dy(l, m, k, n) = \frac{1}{K_{lpool}^2} du(l, m, k, n)$$

$$n \in \{(j-1)d+1, (j-1)d+K_{lpool}\} dy(l, m, k, n) = \frac{1}{K_{lpool}^2} du(l, m, k, n)$$

Mean Pooling layer at layer *l*

- a) Performed separately for every map (j).*) Not combining multiple maps within a single max operation.
- b) Keeping track of location of max

Mean pooling

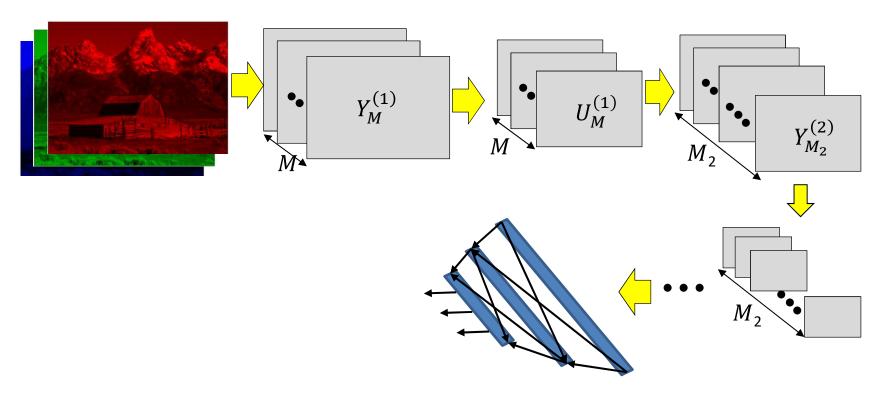
```
for j = 1:D<sub>1</sub>
    m = 1
    for x = 1:stride(l):W<sub>1-1</sub>-K<sub>1</sub>+1
    n = 1
    for y = 1:stride(l):H<sub>1-1</sub>-K<sub>1</sub>+1
        u(l,j,m,n) = mean(y(l-1,j,x:x+K<sub>1</sub>-1,y:y+K<sub>1</sub>-1))
        n = n+1
    m = m+1
```

Derivative of mean pooling layer at layer l

Mean pooling

```
dy(:,:,:) = zeros(D_1 \times W_1 \times H_1)
for j = 1:D_1
   m = 1
    for x = 1:W_{1 \text{ downsampled}}
        n = (x-1) stride
        for y = 1:H_{1 \text{ downsampled}}
            m = (y-1) stride
            for i = 1:K_{lpool}
                for j = 1:K_{lpool}
                    dy(1,j,pidx(1,j,n+i,m+j)) +=
                                                    (1/K^{2}_{lpool}) u (1,j,x,y)
```

Learning the network

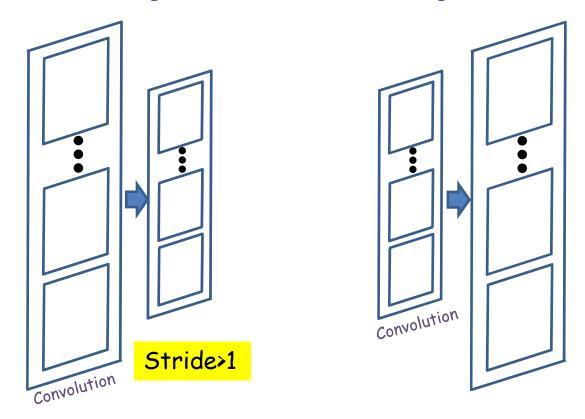


- Have shown the derivative of divergence w.r.t every intermediate output, and every free parameter (filter weights)
- Can now be embedded in gradient descent framework to learn the network

Story so far

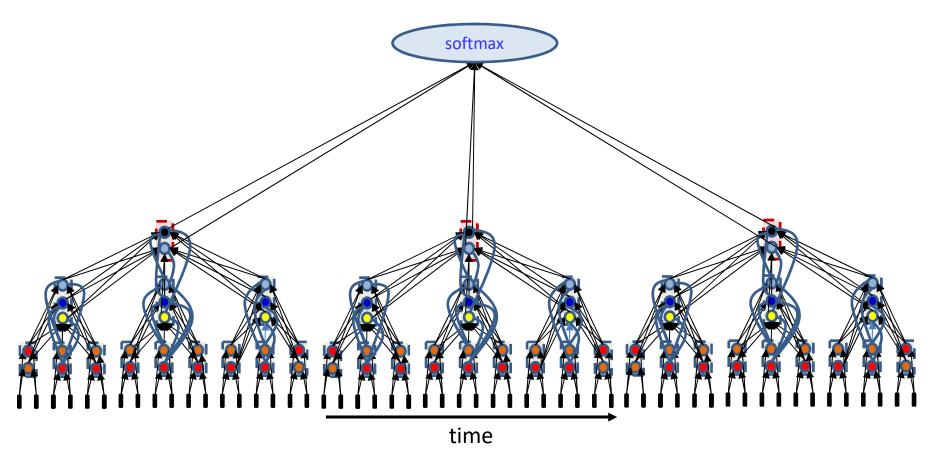
- The convolutional neural network is a supervised version of a computational model of mammalian vision
- It includes
 - Convolutional layers comprising learned filters that scan the outputs of the previous layer
 - Downsampling layers that operate over groups of outputs from the convolutional layer to reduce network size
- The parameters of the network can be learned through regular back propagation
 - Maxpooling layers must propagate derivatives only over the maximum element in each pool
 - Other pooling operators can use regular gradients or subgradients
 - Derivatives must sum over appropriate sets of elements to account for the fact that the network is, in fact, a shared parameter network

An implicit assumption



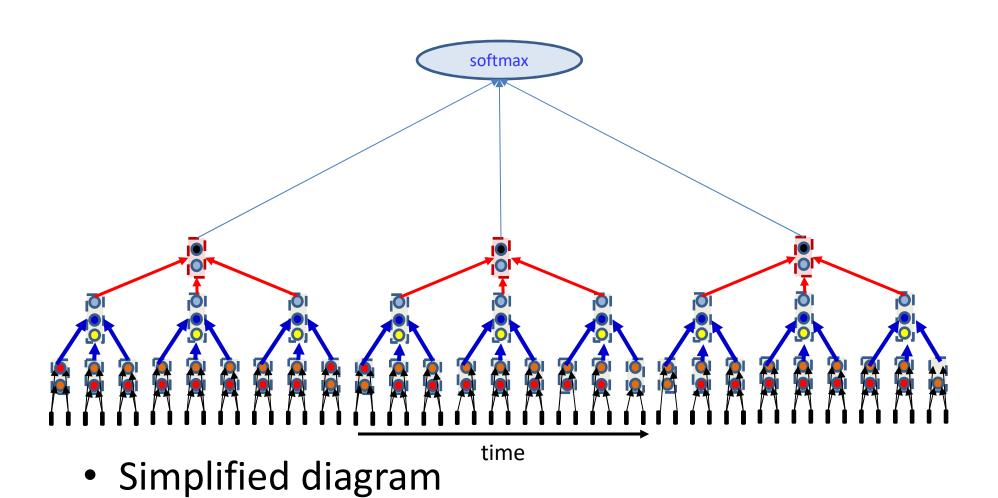
- We've always assumed that subsequent steps shrink the size of the maps
- Can subsequent maps increase in size

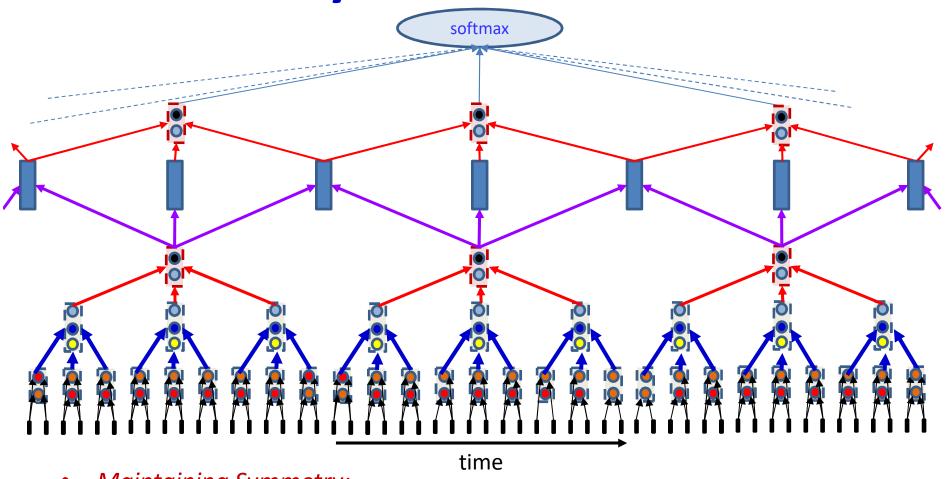
Recall this 1-D figure



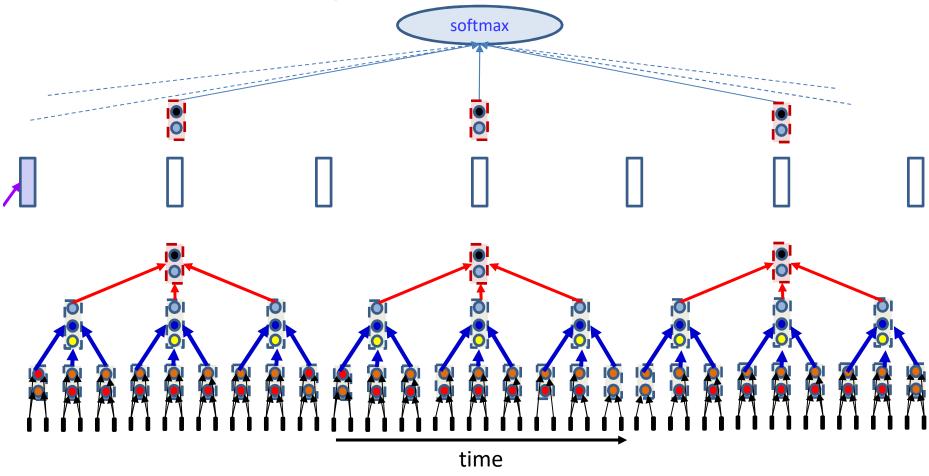
• We've seen this before.. where??

Recall this 1-D figure

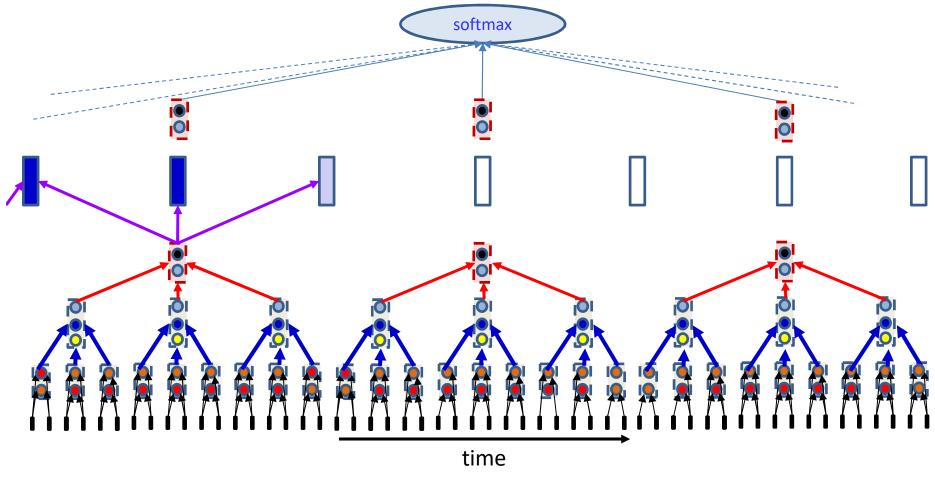




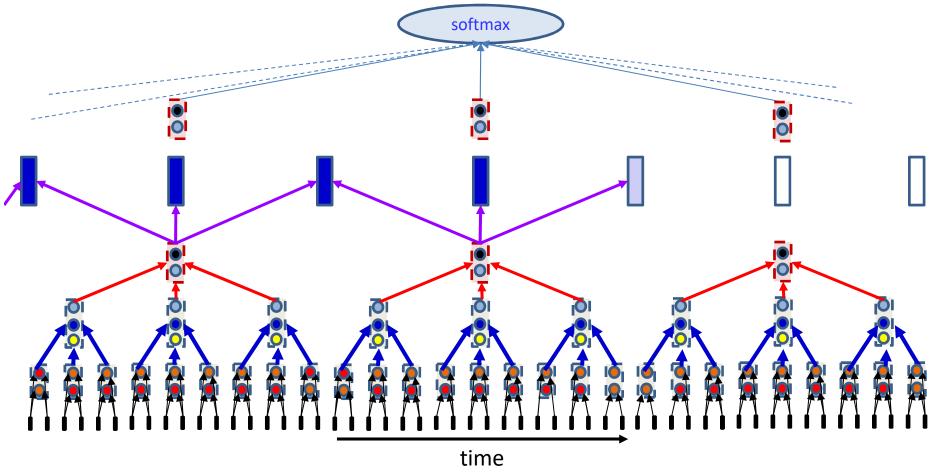
- Maintaining Symmetry:
 - Vertical bars in the 4th layer are regularly arranged w.r.t. bars of layer 3
 - The pattern of values of upward weights for each of the three pink (3rd layer)
 bars is identical



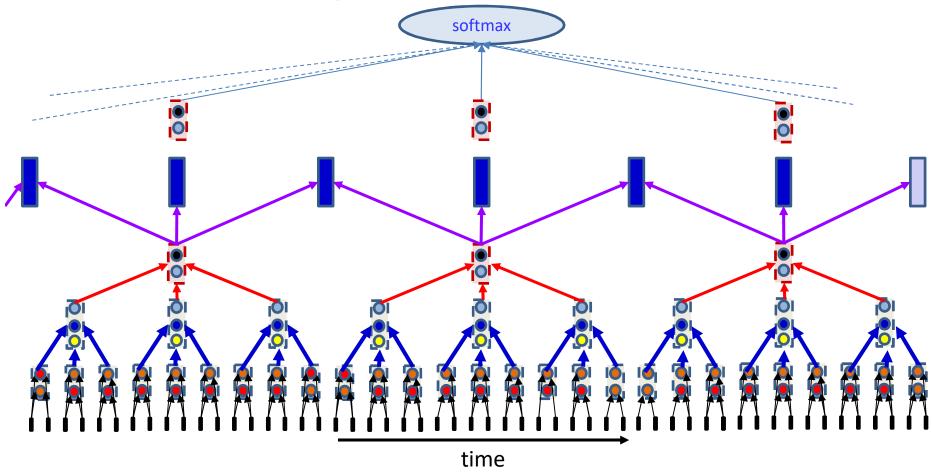
- Flow of info from bottom to top when implemented as a leftto-right scan
 - Note: Arrangement of vertical bars is predetermined by architecture



- Flow of info from bottom to top when implemented as a leftto-right scan
 - Note: Arrangement of vertical bars is predetermined by architecture

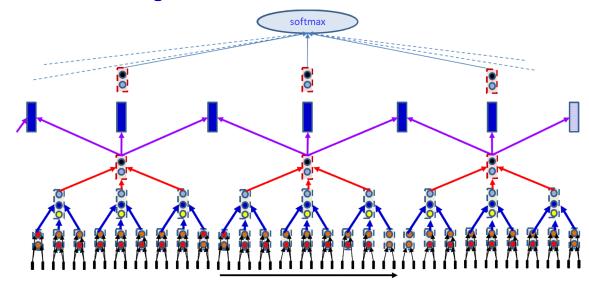


- Flow of info from bottom to top when implemented as a leftto-right scan
 - Note: Arrangement of vertical bars is predetermined by architecture



- Flow of info from bottom to top when implemented as a leftto-right scan
 - Note: Arrangement of vertical bars is predetermined by architecture

"Transposed Convolution"

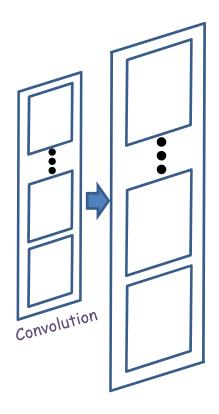


- Connection rules are transposed for expanding layers
 - In shrinking layers, the pattern of incoming weights is identical for each bar
 - In expanding layers, the pattern of outgoing (upward) weights is identical for each bar
- When thought of as an MLP, can write

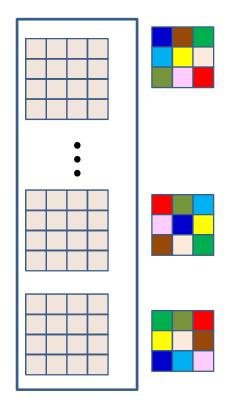
$$Z_l = W_l Y_{l-1}$$

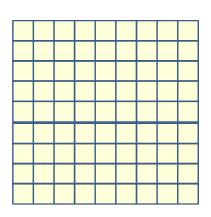
- W_l is broader than tall for a shrinking layer
- W_l is taller than broad for an expanding layer
 - Sometimes viewed as the transpose of a broad matrix
- Leading to terminology "transpose convolution"

In 2-D



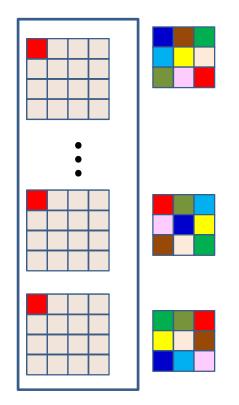
• Similar computation

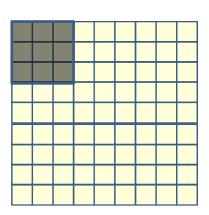




$$z(1, i, j) = \sum_{m} \sum_{k} \sum_{l} w(1, m, i - kb, j - lb) I(m, k, l)$$

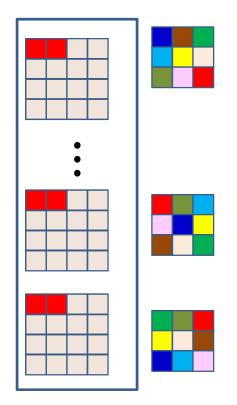
- Output size is typically an integer multiple of input
 - +1 if filter width is odd
 - Easier to determine assignment of output to input

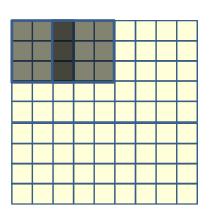




$$z(1, i, j) = \sum_{m} \sum_{k} \sum_{l} w(1, m, i - kb, j - lb) I(m, k, l)$$

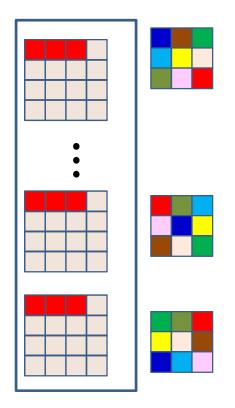
- Output size is typically an integer multiple of input
 - +1 if filter width is odd
 - Easier to determine assignment of output to input





$$z(1, i, j) = \sum_{m} \sum_{k} \sum_{l} w(1, m, i - kb, j - lb) I(m, k, l)$$

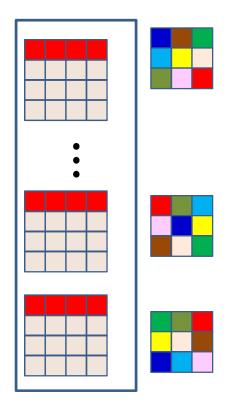
- Output size is typically an integer multiple of input
 - +1 if filter width is odd
 - Easier to determine assignment of output to input

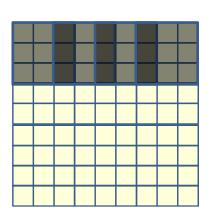




$$z(1, i, j) = \sum_{m} \sum_{k} \sum_{l} w(1, m, i - kb, j - lb) I(m, k, l)$$

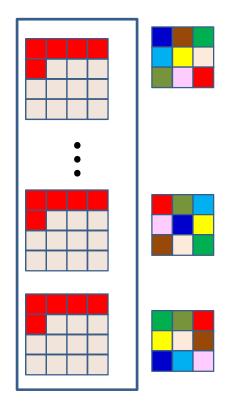
- Output size is typically an integer multiple of input
 - +1 if filter width is odd
 - Easier to determine assignment of output to input

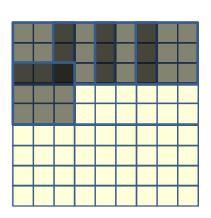




$$z(1, i, j) = \sum_{m} \sum_{k} \sum_{l} w(1, m, i - kb, j - lb) I(m, k, l)$$

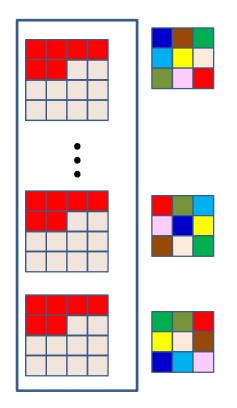
- Output size is typically an integer multiple of input
 - +1 if filter width is odd
 - Easier to determine assignment of output to input

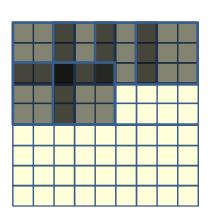




$$z(1, i, j) = \sum_{m} \sum_{k} \sum_{l} w(1, m, i - kb, j - lb) I(m, k, l)$$

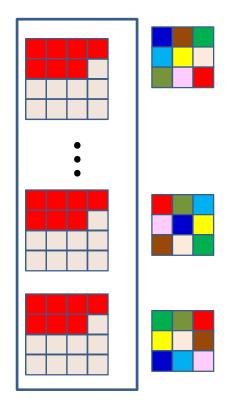
- Output size is typically an integer multiple of input
 - +1 if filter width is odd
 - Easier to determine assignment of output to input

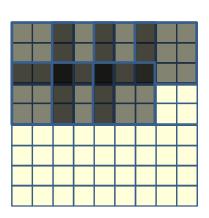




$$z(1, i, j) = \sum_{m} \sum_{k} \sum_{l} w(1, m, i - kb, j - lb) I(m, k, l)$$

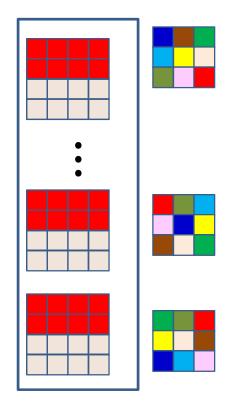
- Output size is typically an integer multiple of input
 - +1 if filter width is odd
 - Easier to determine assignment of output to input

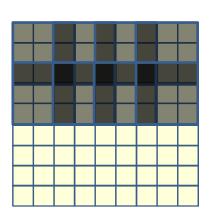




$$z(1, i, j) = \sum_{m} \sum_{k} \sum_{l} w(1, m, i - kb, j - lb) I(m, k, l)$$

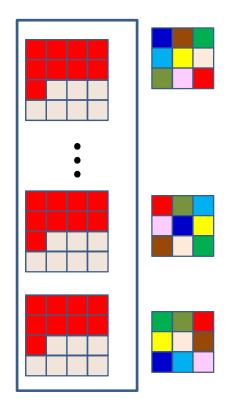
- Output size is typically an integer multiple of input
 - +1 if filter width is odd
 - Easier to determine assignment of output to input

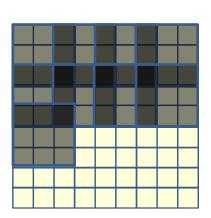




$$z(1, i, j) = \sum_{m} \sum_{k} \sum_{l} w(1, m, i - kb, j - lb) I(m, k, l)$$

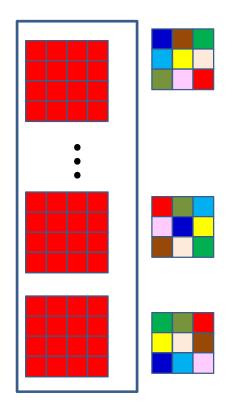
- Output size is typically an integer multiple of input
 - +1 if filter width is odd
 - Easier to determine assignment of output to input

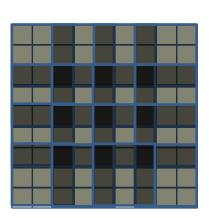




$$z(1, i, j) = \sum_{m} \sum_{k} \sum_{l} w(1, m, i - kb, j - lb) I(m, k, l)$$

- Output size is typically an integer multiple of input
 - +1 if filter width is odd
 - Easier to determine assignment of output to input





$$z(1,i,j) = \sum_{m} \sum_{k} \sum_{l} w(1,m,i-kb,j-lb) I(m,k,l)$$

- Output size is typically an integer multiple of input
 - +1 if filter width is odd
 - Easier to determine assignment of output to input

CNN: Expanding convolution layer l

```
Z(l) = zeros(Dl x (Wb+K_1) x (Hb+K_1))  # b = stride for j = 1:D<sub>1</sub> for x = 1:W for y = 1:H for i = 1:D<sub>1-1</sub> for x' = 1:K<sub>1</sub> for y' = 1:K<sub>1</sub> z(l,j,(x-1)b+x',(y-1)b+y') += w(l,j,i,x',y')y(l-1,i,x,y)
```

CNN: Expanding convolution layer l

```
Z(1) = zeros(D1 \times (Wb+K_1) \times (Hb+K_1)) # b = stride

for j = 1:D<sub>1</sub>

for x = 1:W

for y = 1:H

for i = 1:D<sub>1-1</sub>

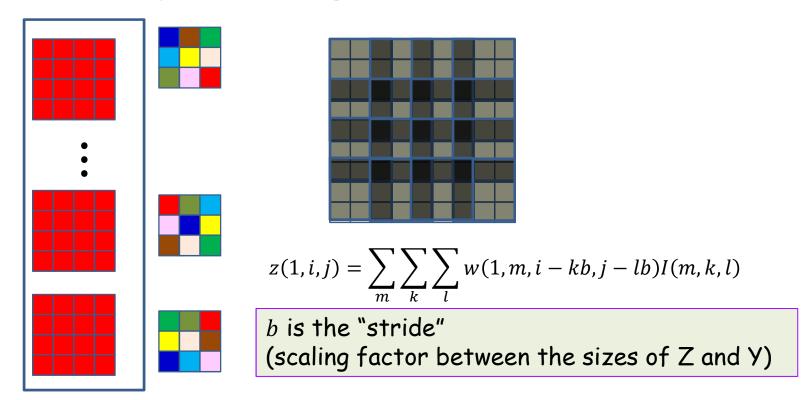
for x' = 1:K<sub>1</sub>

for y' = 1:K<sub>1</sub>

z(1,j,(x-1)b+x',(y-1)b+y') +=

w(1,j,i,x',y')y(1-1,i,x,y)
```

We leave the rather trivial issue of how to modify this code to compute the derivatives w.r.t w and y to you

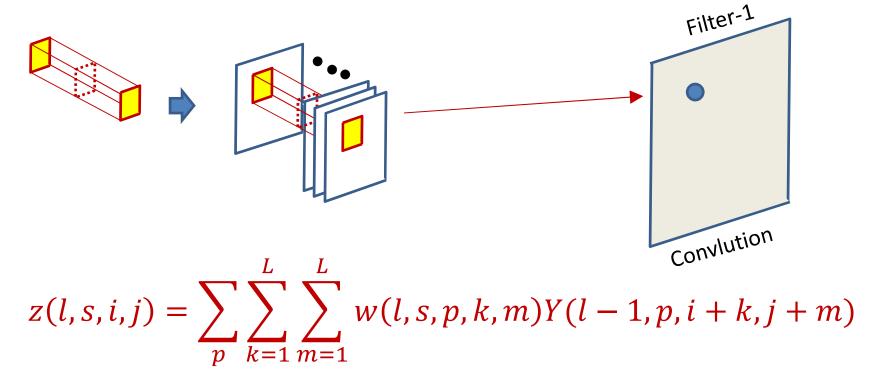


- Also called transpose convolution
 - If you recast the CNN as a shared-parameter MLP, expanding layers have weight matrices that are taller than wide
- Also called "deconvolution"
 - Strictly speaking, abuse of terminology

Invariance

- CNNs are shift invariant
- What about rotation, scale or reflection invariance

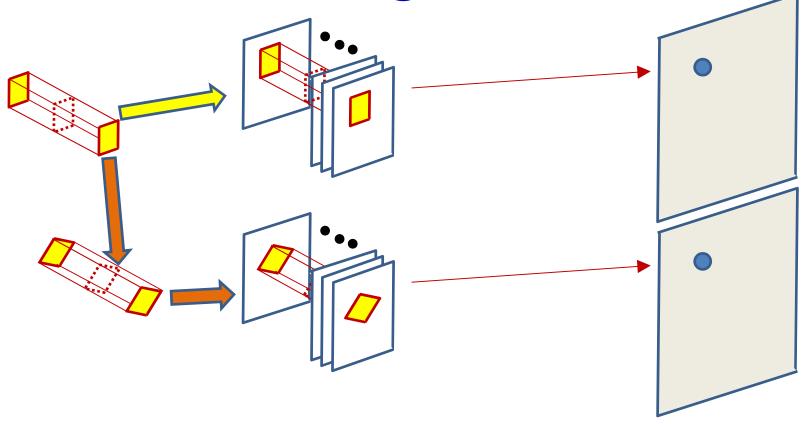
Shift-invariance – a different perspective



We can rewrite this as so (tensor inner product)

$$z(s,i,j) = Y.shift(w(s),i,j)$$

Generalizing shift-invariance



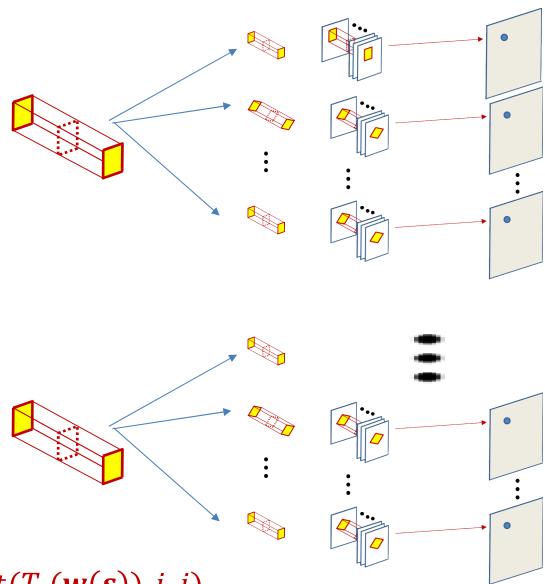
$$z_{regular}(s,i,j) = \mathbf{Y}.shift(\mathbf{w}(\mathbf{s}),i,j)$$

Also find rotated by 45 degrees version of the pattern

$$z_{rot45}(s,i,j) = \mathbf{Y}.shift(rotate45(\mathbf{w}(\mathbf{s})),i,j)$$

Transform invariance

- More generally each filter produces a set of transformed (and shifted) maps
 - Set of transforms
 must be enumerated
 and discrete
 - E.g. discrete set of rotations and scaling, reflections etc.
- The network becomes invariant to all the transforms considered



$$z_{T_t}(s,i,j) = \mathbf{Y}.shift(T_t(\mathbf{w}(\mathbf{s})),i,j)$$

Regular CNN: single layer l

The weight W(1,j) is a 3D $D_{1-1} \times K_1 \times K_1$ tensor

```
for j = 1:D_1

for x = 1:W_{1-1}-K_1+1

for y = 1:H_{1-1}-K_1+1

segment = Y(1-1, :, x:x+K_1-1, y:y+K_1-1) #3D tensor

z(1,j,x,y) = W(1,j).segment #tensor inner prod.

Y(1,j,x,y) = activation(z(1,j,x,y))
```

Transform invariance

The weight W(1,j) is a 3D $D_{1-1} \times K_1 \times K_1$ tensor

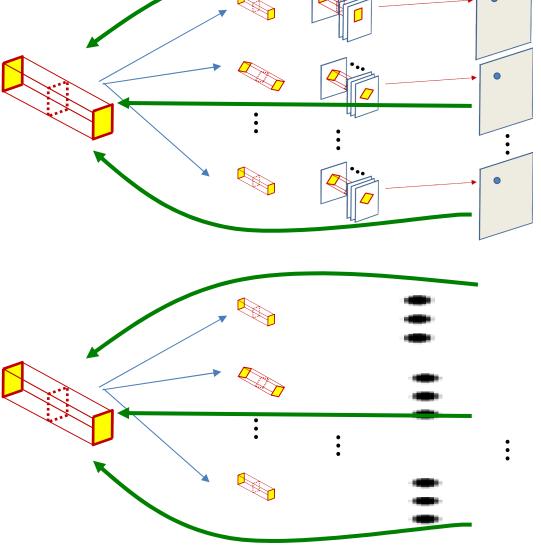
 $\begin{array}{lll} \textbf{m} = 1 \\ \textbf{for j} = 1 \colon D_1 \\ & \textbf{for t in {Transforms} \# enumerated transforms} \\ & \textbf{TW} = \textbf{T(W(1,j))} \\ & \textbf{for } x = 1 \colon W_{1-1} - K_1 + 1 \\ & \textbf{for } y = 1 \colon H_{1-1} - K_1 + 1 \\ & \textbf{segment} = \textbf{Y}(1-1, :, x \colon x + K_1 - 1, y \colon y + K_1 - 1) \# \textbf{3D tensor} \\ & z(1,m,x,y) = \textbf{TW.segment \# tensor inner prod.} \\ & Y(1,m,x,y) = \textbf{activation}(z(1,m,x,y)) \\ & \textbf{m} = \textbf{m} + 1 \end{array}$

BP with transform invariance

 Derivatives flow back through the transforms to update individual filters

Need point
 correspondences
 between original and
 transformed filters

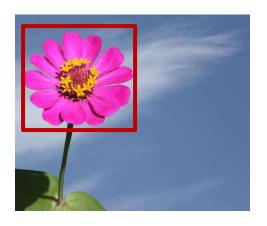
Left as an exercise

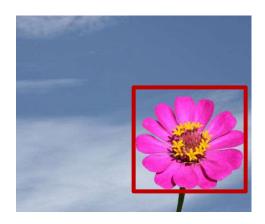


Story so far

- CNNs are shift-invariant neural-network models for shift-invariant pattern detection
 - Are equivalent to scanning with shared-parameter MLPs with distributed representations
- The parameters of the network can be learned through regular back propagation
- Like a regular MLP, individual layers may either increase or decrease the span of the representation learned
- The models can be easily modified to include invariance to other transforms
 - Although these tend to be computationally painful

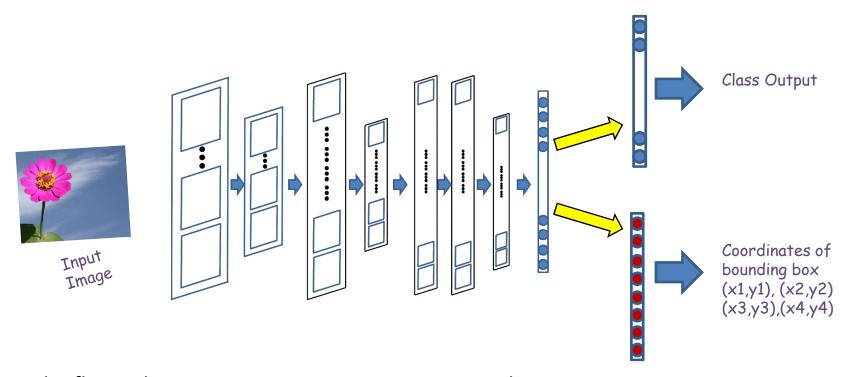
But what about the exact location?





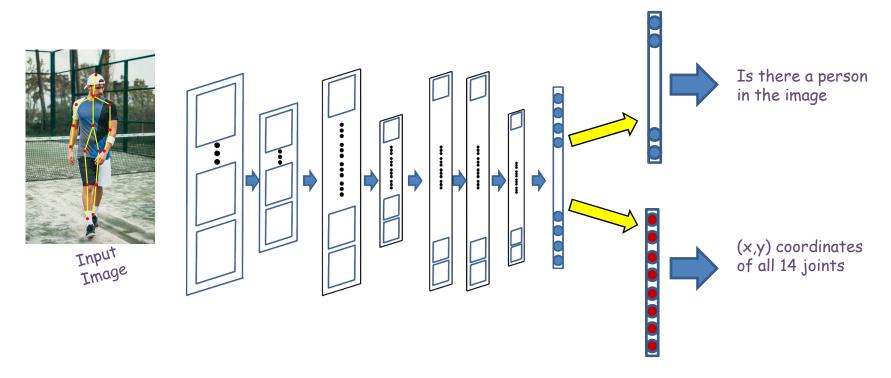
- We began with the desire to identify the picture as containing a flower, regardless of the position of the flower
 - Or more generally the class of object in the picture
- But can we detect the position of the main object?

Finding Bounding Boxes



- The flatten layer outputs to two separate output layers
- One predicts the class of the output
- The second predicts the corners of the bounding box of the object (8 coordinates)
 in all
- The divergence minimized is the sum of the cross-entropy loss of the classifier layer and L2 loss of the bounding-box predictor
 - Multi-task learning

Pose estimation



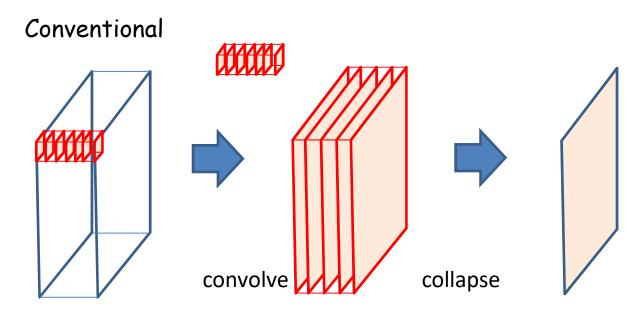
- Can use the same mechanism to predict the joints of a stick model
 - For post estimation

Model variations

- Very deep networks
 - 100 or more layers in MLP
 - Formalism called "Resnet"

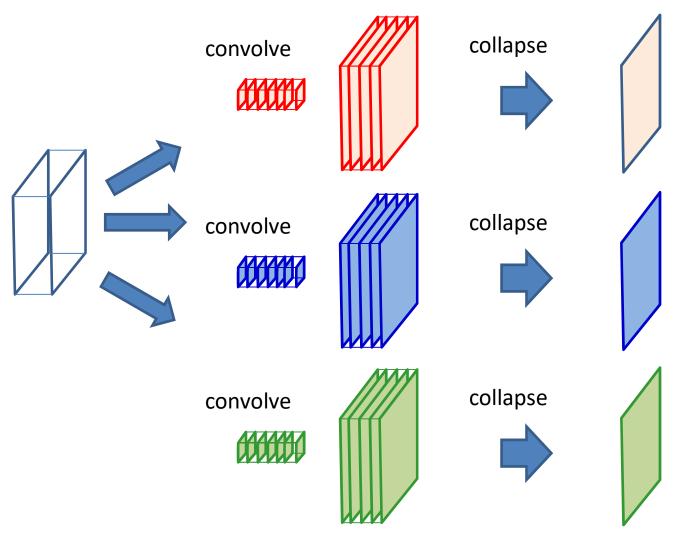
- "Depth-wise" convolutions
 - Instead of multiple independent filters with independent parameters, use common layer-wise weights and combine the layers differently for each filter

Depth-wise convolutions



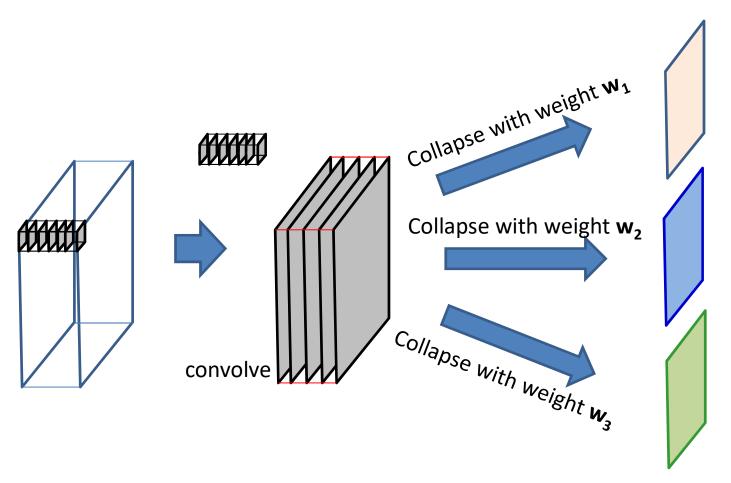
- Alternate view of conventional convolution:
- Each layer of each filter scans its corresponding map to produce a convolved map
- N input channels will require a filter with N layers
- The independent convolutions of each layer of the filter result in N convolved maps
- The N convolved maps are *added together* to produce the final output map (or channel) for that filter

Conventional convolutoins



 This is done separately for each of the M filters producing M output maps (channels)

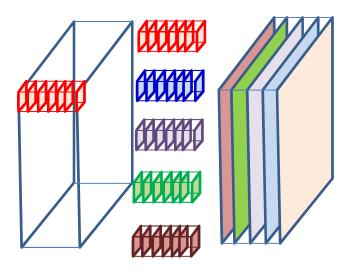
Depth-wise convolution



- In depth-wise convolution the convolution step is performed only once
- The simple summation is replaced by a *weighted* sum across channels
 - Different weights (for summation) produce different output channels

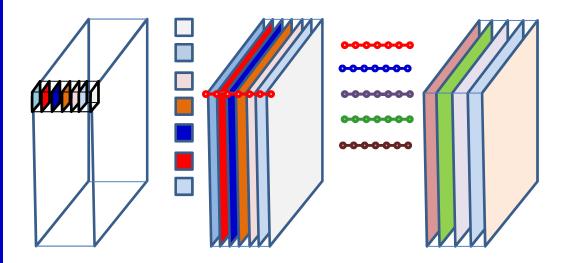
Conventional vs. depth-wise convolution

Conventional



- M input channels, N output channels:
- N independent MxKxK 3D filters, which span all M input channels
- Each filter produces one output channel
- Total NMK² parameters

Depth-wise

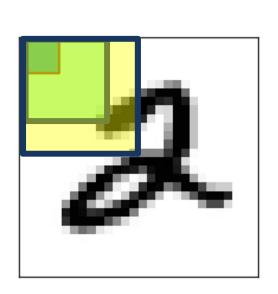


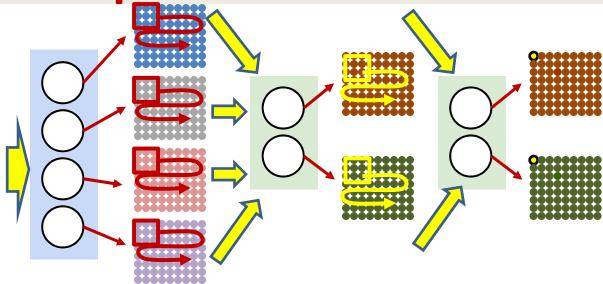
- M input channels, N output channels in 2 stages:
- Stage 1:
 - M independent KxK **2D** filters, one per input channel
 - Each filter applies to only one input channel
 - No. of output channels = no. of input channels
- Stage 2:
 - N Mx1x1 1D filters
 - Each applies to one 2D location across all M input channels
- Total NM + MK² parameters

Story so far

- CNNs are shift-invariant neural-network models for shift-invariant pattern detection
 - Are equivalent to scanning with shared-parameter MLPs with distributed representations
- The parameters of the network can be learned through regular back propagation
- Like a regular MLP, individual layers may either increase or decrease the span of the representation learned
- The models can be easily modified to include invariance to other transforms
 - Although these tend to be computationally painful
- Can also make predictions related to the position and arrangement of target object through multi-task learning
- Several variations on the basic model exist to obtain greater parameter efficiency, better ability to compute derivatives, etc.

What do the filters learn? Receptive fields





- The pattern in the input image that each neuron sees is its "Receptive Field"
- The receptive field for a first layer neurons is simply its arrangement of weights
- For the higher level neurons, the actual receptive field is not immediately obvious and must be *calculated*
 - What patterns in the input do the neurons actually respond to?
 - We estimate it by setting the output of the neuron to 1, and learning the *input* by backpropagation

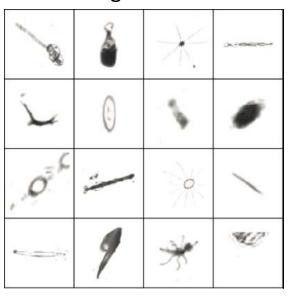
Features learned from training on different object classes. Faces Cars Elephants Chairs

Training Issues

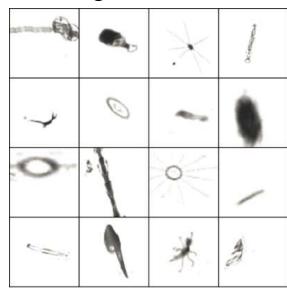
- Standard convergence issues
 - Solution: Adam or other momentum-style algorithms
 - Other tricks such as batch normalization
- The number of parameters can quickly become very large
- Insufficient training data to train well
 - Solution: Data augmentation

Data Augmentation

Original data



Augmented data

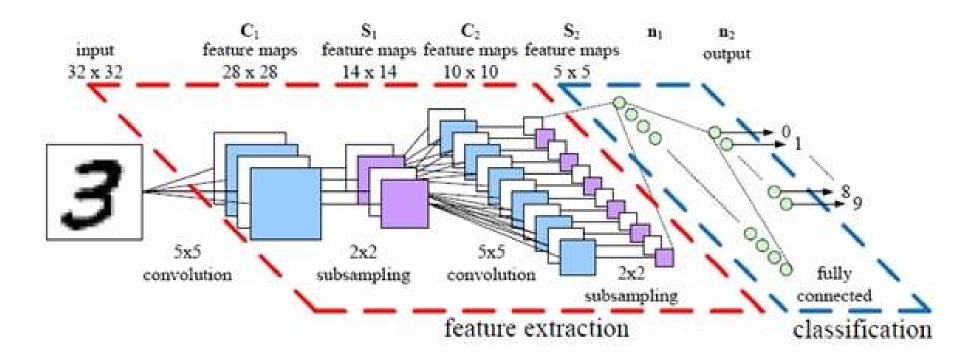


- rotation: uniformly chosen random angle between 0° and 360°
- translation: random translation between -10 and 10 pixels
- rescaling: random scaling with scale factor between 1/1.6 and 1.6 (log-uniform)
- flipping: yes or no (bernoulli)
- shearing: random shearing with angle between -20° and 20°
- stretching: random stretching with stretch factor between 1/1.3 and 1.3 (log-uniform)

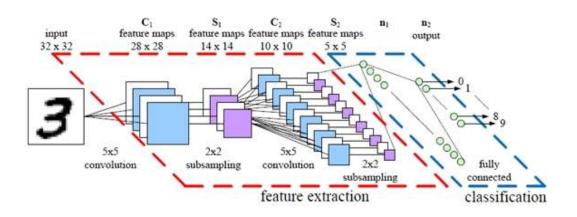
Convolutional neural nets

- One of the most frequently used nnet formalism today
- Used everywhere
 - Not just for image classification
 - Used in speech and audio processing
 - Convnets on spectrograms

Digit classification



Le-net 5

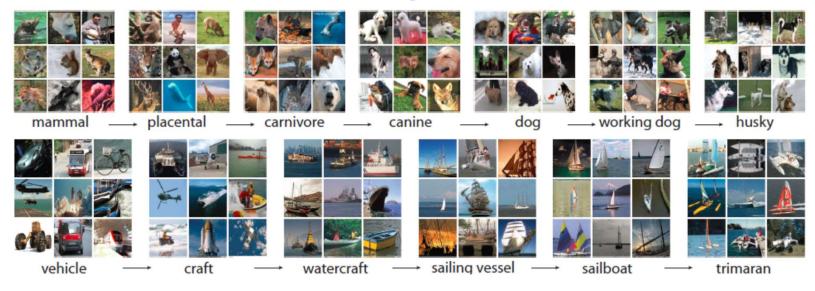


- Digit recognition on MNIST (32x32 images)
 - Conv1: 6 5x5 filters in first conv layer (no zero pad), stride 1
 - Result: 6 28x28 maps
 - Pool1: 2x2 max pooling, stride 2
 - Result: 6 14x14 maps
 - Conv2: 16 5x5 filters in second conv layer, stride 1, no zero pad
 - Result: 16 10x10 maps
 - Pool2: 2x2 max pooling with stride 2 for second conv layer
 - Result 16 5x5 maps (400 values in all)
 - FC: Final MLP: 3 layers
 - 120 neurons, 84 neurons, and finally 10 output neurons

Nice visual example

 http://cs.stanford.edu/people/karpathy/convn etjs/demo/cifar10.html

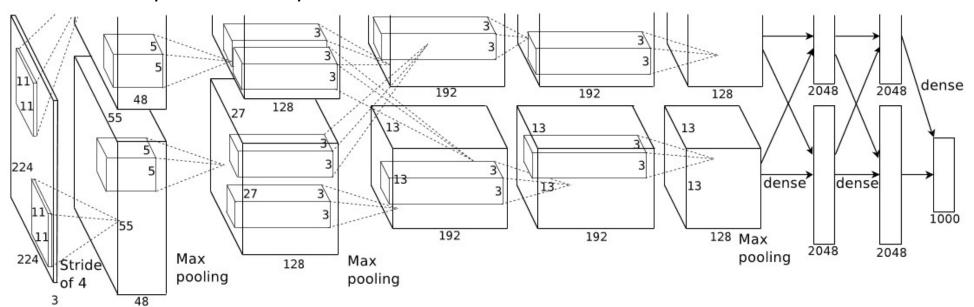
The imagenet task



- Imagenet Large Scale Visual Recognition Challenge (ILSVRC)
- http://www.image-net.org/challenges/LSVRC/
- Actual dataset: Many million images, thousands of categories
- For the evaluations that follow:
 - 1.2 million pictures
 - 1000 categories

AlexNet

- 1.2 million high-resolution images from ImageNet LSVRC-2010 contest
- 1000 different classes (softmax layer)
- NN configuration
 - NN contains 60 million parameters and 650,000 neurons,
 - 5 convolutional layers, some of which are followed by max-pooling layers
 - 3 fully-connected layers



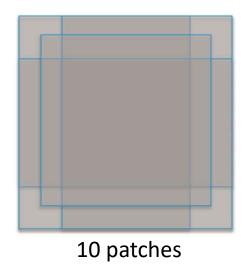
Krizhevsky, A., Sutskever, I. and Hinton, G. E. "ImageNet Classification with Deep Convolutional Neural Networks" NIPS 2012: Neural Information Processing Systems, Lake Tahoe, Nevada

Krizhevsky et. al.

- Input: 227x227x3 images
- Conv1: 96 11x11 filters, stride 4, no zeropad
- Pool1: 3x3 filters, stride 2
- "Normalization" layer [Unnecessary]
- Conv2: 256 5x5 filters, stride 2, zero pad
- Pool2: 3x3, stride 2
- Normalization layer [Unnecessary]
- Conv3: 384 3x3, stride 1, zeropad
- Conv4: 384 3x3, stride 1, zeropad
- Conv5: 256 3x3, stride 1, zeropad
- Pool3: 3x3, stride 2
- FC: 3 layers,
 - 4096 neurons, 4096 neurons, 1000 output neurons

Alexnet: Total parameters

- 650K neurons
- 60M parameters
- 630M connections



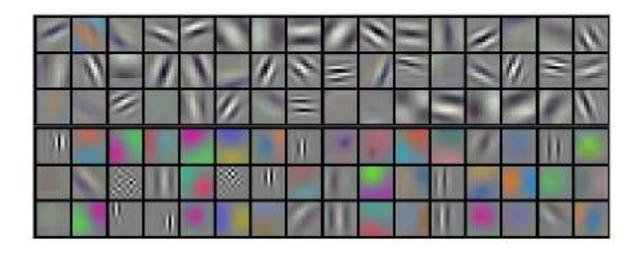
- Testing: Multi-crop
 - Classify different shifts of the image and vote over the lot!

Learning magic in Alexnet

- Activations were RELU
 - Made a large difference in convergence
- "Dropout" 0.5 (in FC layers only)
- Large amount of data augmentation
- SGD with mini batch size 128
- Momentum, with momentum factor 0.9
- L2 weight decay 5e-4
- Learning rate: 0.01, decreased by 10 every time validation accuracy plateaus
- Evaluated using: Validation accuracy
- Final top-5 error: 18.2% with a single net, 15.4% using an ensemble of 7 networks
 - Lowest prior error using conventional classifiers: > 25%

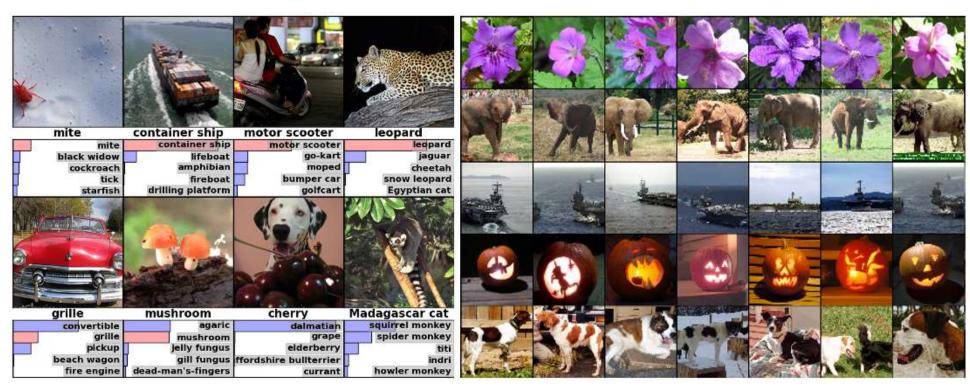
ImageNet

Figure 3: 96 convolutional kernels of size 11×11×3 learned by the first convolutional layer on the 224×224×3 input images. The top 48 kernels were learned on GPU 1 while the bottom 48 kernels were learned on GPU 2. See Section 6.1 for details.



Krizhevsky, A., Sutskever, I. and Hinton, G. E. "ImageNet Classification with Deep Convolutional Neural Networks" NIPS 2012: Neural Information Processing Systems, Lake Tahoe, Nevada

The net actually learns features!

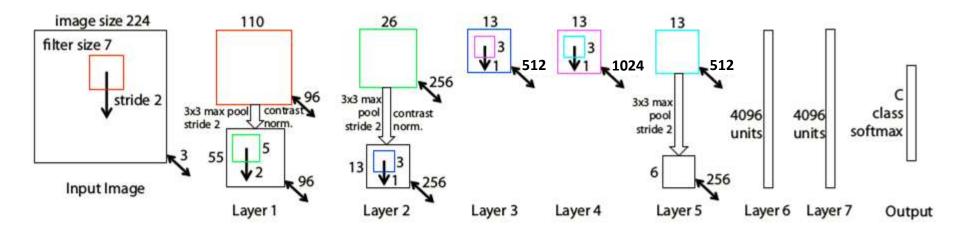


Eight ILSVRC-2010 test images and the five labels considered most probable by our model. The correct label is written under each image, and the probability assigned to the correct label is also shown with a red bar (if it happens to be in the top 5).

Five ILSVRC-2010 test images in the first column. The remaining columns show the six training images that produce feature vectors in the last hidden layer with the smallest Euclidean distance from the feature vector for the test image.

Krizhevsky, A., Sutskever, I. and Hinton, G. E. "ImageNet Classification with Deep Convolutional Neural Networks" NIPS 2012: Neural Information Processing Systems, Lake Tahoe, Nevada

ZFNet



ZF Net Architecture

- Zeiler and Fergus 2013
- Same as Alexnet except:
 - 7x7 input-layer filters with stride 2
 - 3 conv layers are 512, 1024, 512
 - Error went down from 15.4% \rightarrow 14.8%
 - Combining multiple models as before

VGGNet

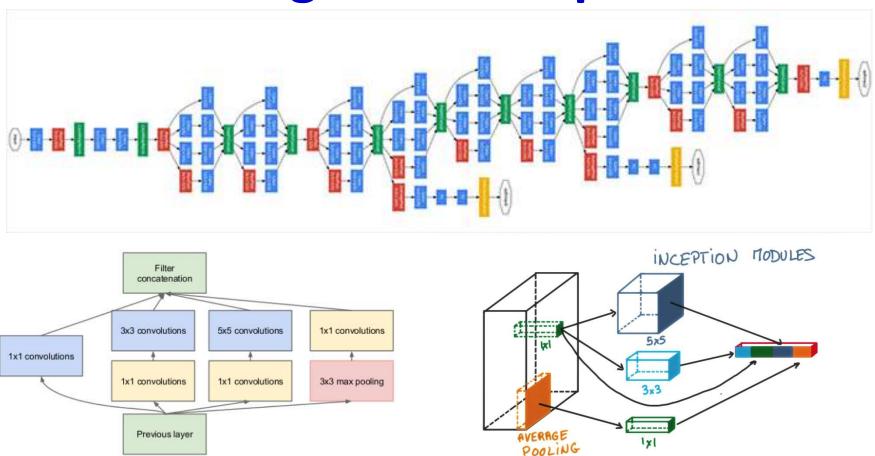
- Simonyan and Zisserman, 2014
- Only used 3x3 filters, stride 1, pad 1
- Only used 2x2 pooling filters, stride 2
- Tried a large number of architectures.
- Finally obtained 7.3% top-5 error using 13 conv layers and 3 FC layers
 - Combining 7 classifiers
 - Subsequent to paper, reduced error to
 6.8% using only two classifiers
- Final arch: 64 conv, 64 conv, 64 pool, 128 conv, 128 conv, 128 pool, 256 conv, 256 conv, 256 pool, 512 conv, 512 conv, 512 pool, 512 conv, 512 conv, 512 pool, FC with 4096, 4096, 1000

		ConvNet C	onfiguration		
A	A-LRN	В	C	D	E
11 weight	11 weight	13 weight	16 weight	16 weight	19 weight
layers	layers	layers	layers	layers	layers
	i		24 RGB image		
conv3-64	conv3-64	conv3-64	conv3-64	conv3-64	conv3-64
	LRN	conv3-64	conv3-64	conv3-64	conv3-64
			pool		
conv3-128	conv3-128	conv3-128	conv3-128	conv3-128	conv3-128
		conv3-128	conv3-128	conv3-128	conv3-128
			pool		
conv3-256	conv3-256	conv3-256	conv3-256	conv3-256	conv3-256
conv3-256	conv3-256	conv3-256	conv3-256	conv3-256	conv3-256
			conv1-256	conv3-256	conv3-256
					conv3-256
			pool		
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512
			conv1-512	conv3-512	conv3-512
					conv3-512
			pool		
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512
			conv1-512	conv3-512	conv3-512
					conv3-512
			pool		
			4096		
			4096		
			1000		
		soft	-max		

~140 million parameters in all!

Madness!

Googlenet: Inception



- Multiple filter sizes simultaneously
- Details irrelevant; error → 6.7%
 - Using only 5 million parameters, thanks to average pooling

Imagenet

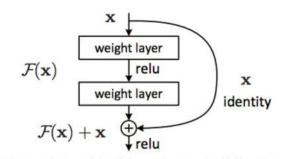
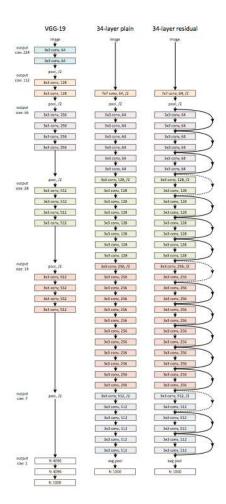


Figure 2. Residual learning: a building block.



- Resnet: 2015
 - Current top-5 error: < 3.5%</p>
 - Over 150 layers, with "skip" connections...

Resnet details for the curious...

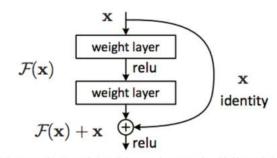
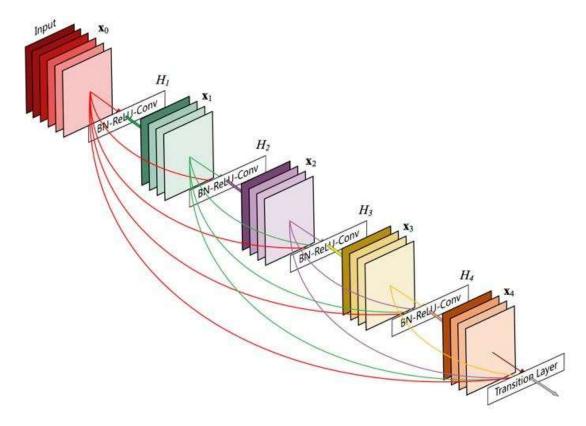


Figure 2. Residual learning: a building block.

- Last layer before addition must have the same number of filters as the input to the module
- Batch normalization after each convolution
- SGD + momentum (0.9)
- Learning rate 0.1, divide by 10 (batch norm lets you use larger learning rate)
- Mini batch 256
- Weight decay 1e-5

Densenet



- All convolutional
- Each layer looks at the <u>union</u> of maps from all previous layers
 - Instead of just the set of maps from the immediately previous layer
- Was state of the art before I went for coffee one day
 - Wasn't when I got back..

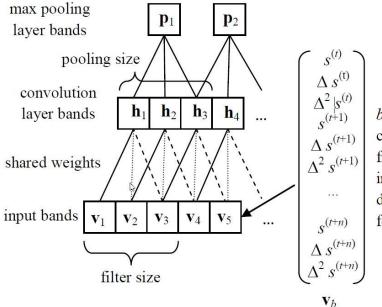
Many many more architectures

Daily updates on arxiv...

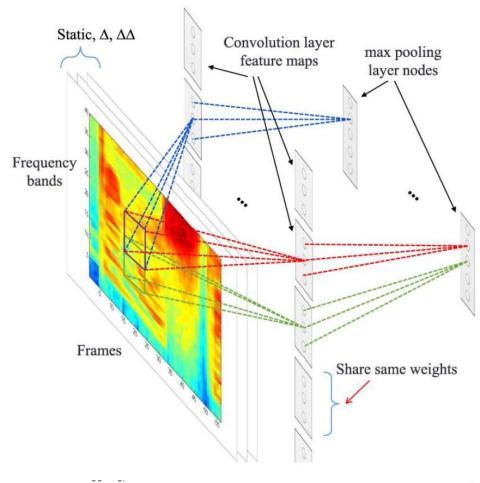
- Many more applications
 - CNNs for speech recognition
 - CNNs for language processing!
 - More on these later...

CNN for Automatic Speech Recognition

- Convolution over frequencies
- Convolution over time



bth band of n consecutive frames including dynamic features



Deep Networks	Phone Error Rate	
DNN (fully connected)	22.3%	
CNN-DNN; P=1	21.8%	
CNN-DNN; P=12	20.8%	
CNN-DNN; P=6 (fixed P, optimal)	20.4%	
CNN-DNN; P=6 (add dropout)	19.9%	
CNN-DNN; P=1:m (HP, m=12)	19.3%	
CNN-DNN; above (add dropout)	18.7%	

Table 1: TIMIT core test set phone recognition error rate comparisons.

CNN-Recap

- Neural network with specialized connectivity structure
- Feed-forward:
 - Convolve input
 - Non-linearity (rectified linear)
 - Pooling (local max)
- Supervised training
- Train convolutional filters by back-propagating error
- Convolution over time

