
Neural Networks:
Optimization Part 1

Intro to Deep Learning, Fall 2019

1

Story so far
• Neural networks are universal approximators

– Can model any odd thing
– Provided they have the right architecture

• We must train them to approximate any function
– Specify the architecture
– Learn their weights and biases

• Networks are trained to minimize total “loss” on a training
set
– We do so through empirical risk minimization

• We use variants of gradient descent to do so
• The gradient of the error with respect to network

parameters is computed through backpropagation
2

Recap: Gradient Descent Algorithm

• In order to minimize any function w.r.t.
• Initialize:

–

–

• Do
–

–

• while
3

Training Neural Nets by Gradient Descent

• Gradient descent algorithm:

• Initialize weights for every layer

• Do:
– For every layer compute:

• 𝐖ೖ

ଵ

் 𝐖ೖ

௧ 𝒕 𝒕

• ௞ ௞ 𝐖ೖ
𝑇

• Until has converged
4

Total training error:

Training Neural Nets by Gradient Descent

• Gradient descent algorithm:

• Initialize all weights

• Do:
– For every layer compute:

• 𝐖ೖ

ଵ

் 𝐖ೖ

௧ 𝒕 𝒕

• ௞ ௞ 𝐖ೖ
𝑇

• Until has converged
5

Total training error:

Training by gradient descent

• Initialize all weights ௜௝
(௞)

• Do:

– For all , initialize ௗ௅௢

ௗ௪
೔,ೕ
(ೖ)

– For all
• For every layer 𝑘 for all 𝑖, 𝑗:

– Compute ௗ𝑫𝒊𝒗(𝒀𝒕,𝒅𝒕)
ௗ௪

೔,ೕ
(ೖ)

–
ௗ௅௢௦௦

ௗ௪
೔,ೕ
(ೖ) +=

ௗ𝑫𝒊𝒗(𝒀𝒕,𝒅𝒕)
ௗ௪

೔,ೕ
(ೖ)

– For every layer for all :

𝑤௜,௝
(௞)

= 𝑤௜,௝
(௞)

−
𝜂

𝑇

𝑑𝐿𝑜𝑠𝑠

𝑑𝑤௜,௝
(௞)

• Until has converged
6

BP: Scalar Formulation

• The network again

ଵଵ ௞௞௞ିଵ ேିଵ

ே

ே

Div(Y,d)

1 1 1 1 1

Expanding it out

fN

fN

ேିଵ

y(N)z(N)

y(N-1)z(N-1)

Assuming ଴௝
(௞)

௝
(௞) and ଴

(௞) -- assuming the bias is a weight and extending
the output of every layer by a constant 1, to account for the biases

ଵ

y(1)z(1)

y(0)

ଵ

ଵ

ଵ

1
ଶ

y(2)z(2)

ଶ

ଶ

ଶ

1
ଷ

y(3)z(3)

ଷ

ଷ

ଷ

1

ேିଵ

ேିଵ

ேିଵ

Setting ௜
(଴)

௜ for notational convenience

1

Expanding it out

fN

fN

ேିଵ

y(N)z(N)

y(N-1)z(N-1)

ଵ

y(1)z(1)

y(0)

ଵ

ଵ

ଵ

1
ଶ

y(2)z(2)

ଶ

ଶ

ଶ

1
ଷ

y(3)z(3)

ଷ

ଷ

ଷ

1

ேିଵ

ேିଵ

ேିଵ

1

Expanding it out

fN

fN

ேିଵ

y(N)z(N)

y(N-1)z(N-1)

ଵ

y(1)z(1)

y(0)

ଵ

ଵ

ଵ

1
ଶ

y(2)z(2)

ଶ

ଶ

ଶ

1
ଷ

y(3)z(3)

ଷ

ଷ

ଷ

1

ேିଵ

ேିଵ

ேିଵ

௝
(ଵ)

௜௝
(ଵ)

௜
(଴)

௜

1

fN

fN

ேିଵ

y(N)z(N)

y(N-1)z(N-1)

ଵ

y(1)z(1)

y(0)

ଵ

ଵ

ଵ

1
ଶ

y(2)z(2)

ଶ

ଶ

ଶ

1
ଷ

y(3)z(3)

ଷ

ଷ

ଷ

1

ேିଵ

ேିଵ

ேିଵ

௝
(ଵ)

௜௝
(ଵ)

௜
(଴)

௜

௝
(ଵ)

ଵ ௝
(ଵ)

1

fN

fN

ேିଵ

y(N)z(N)

y(N-1)z(N-1)

ଵ

y(1)z(1)

y(0)

ଵ

ଵ

ଵ

1
ଶ

y(2)z(2)

ଶ

ଶ

ଶ

1
ଷ

y(3)z(3)

ଷ

ଷ

ଷ

1

ேିଵ

ேିଵ

ேିଵ

௝
(ଵ)

ଵ ௝
(ଵ)

௝
(ଶ)

௜௝
(ଶ)

௜
(ଵ)

௜

1

௝
(ଵ)

௜௝
(ଵ)

௜
(଴)

௜

fN

fN

ேିଵ

y(N)z(N)

y(N-1)z(N-1)

ଵ

y(1)z(1)

y(0)

ଵ

ଵ

ଵ

1
ଶ

y(2)z(2)

ଶ

ଶ

ଶ

1
ଷ

y(3)z(3)

ଷ

ଷ

ଷ

1

ேିଵ

ேିଵ

ேିଵ

௝
(ଵ)

ଵ ௝
(ଵ)

௝
(ଶ)

௜௝
(ଶ)

௜
(ଵ)

௜

௝
(ଶ)

ଶ ௝
(ଶ)

1

௝
(ଵ)

௜௝
(ଵ)

௜
(଴)

௜

fN

fN

ேିଵ

y(N)z(N)

y(N-1)z(N-1)

ଵ

y(1)z(1)

y(0)

ଵ

ଵ

ଵ

1
ଶ

y(2)z(2)

ଶ

ଶ

ଶ

1
ଷ

y(3)z(3)

ଷ

ଷ

ଷ

1

ேିଵ

ேିଵ

ேିଵ

௝
(ଵ)

ଵ ௝
(ଵ)

௝
(ଶ)

௜௝
(ଶ)

௜
(ଵ)

௜

௝
(ଶ)

ଶ ௝
(ଶ)

௝
(ଷ)

௜௝
(ଷ)

௜
(ଶ)

௜

1

௝
(ଵ)

௜௝
(ଵ)

௜
(଴)

௜

fN

fN

ேିଵ

y(N)z(N)

y(N-1)z(N-1)

ଵ

y(1)z(1)

y(0)

ଵ

ଵ

ଵ

1
ଶ

y(2)z(2)

ଶ

ଶ

ଶ

1
ଷ

y(3)z(3)

ଷ

ଷ

ଷ

1

ேିଵ

ேିଵ

ேିଵ

௝
(ଵ)

ଵ ௝
(ଵ)

௝
(ଶ)

௜௝
(ଶ)

௜
(ଵ)

௜

௝
(ଶ)

ଶ ௝
(ଶ)

௝
(ଷ)

௜௝
(ଷ)

௜
(ଶ)

௜
௝
(ଷ)

ଷ ௝
(ଷ)

1

௝
(ଵ)

௜௝
(ଵ)

௜
(଴)

௜

fN

fN

ேିଵ

y(N)z(N)

y(N-1)z(N-1)

ଵ

y(1)z(1)

y(0)

ଵ

ଵ

ଵ

1
ଶ

y(2)z(2)

ଶ

ଶ

ଶ

1
ଷ

y(3)z(3)

ଷ

ଷ

ଷ

1

ேିଵ

ேିଵ

ேିଵ

௝
(ே)

௜௝
(ே)

௜
(ேିଵ)

௜
௝
(ேିଵ)

ேିଵ ௝
(ேିଵ) (ே)

ே
(ே)

1

Forward Computation

ITERATE FOR k = 1:N for j = 1:layer-width

fN

fN

ேିଵ

y(N)z(N)

y(N-1)z(N-1)

ଵ

y(1)z(1)

y(0)

ଵ

ଵ

ଵ

1
ଶ

y(2)z(2)

ଶ

ଶ

ଶ

1
ଷ

y(3)z(3)

ଷ

ଷ

ଷ

1

ேିଵ

ேିଵ

ேିଵ

1

Forward “Pass”
• Input: dimensional vector
• Set:

– , is the width of the 0th (input) layer

– ;

• For layer
– For

• ௝
(௞)

௜,௝
(௞)

௜
(௞ିଵ)஽ೖషభ

௜ୀ଴

• ௝
(௞)

௞ ௝
(௞)

• Output:

–
18

Dk is the size of the kth layer

fN

fN

ேିଵ

y(N)z(N)

y(N-1)z(N-1)

ଵ

y(1)z(1)

y(0)

ଵ

ଵ

ଵ

1

y(N-2)

z(N-2)

1

ேିଵ

ேିଵ

ேିଵ

1

Computing derivatives

We have computed all these intermediate values in the
forward computation

We must remember them – we will need them to compute
the derivatives

ேିଶ

ேିଶ

ேିଶ

ேିଶ

fN

fN

ேିଵ

y(N)z(N)

y(N-1)z(N-1)

ଵ

y(1)z(1)

y(0)

ଵ

ଵ

ଵ

1

y(N-2)

z(N-2)

1

ேିଵ

ேିଵ

ேିଵ

1

Div(Y,d)

Computing derivatives

First, we compute the divergence between the output of the net y = y(N) and the
desired output

ேିଶ

ேିଶ

ேିଶ

ேିଶ

fN

fN

ேିଵ

y(N)z(N)

y(N-1)z(N-1)

ଵ

y(1)z(1)

y(0)

ଵ

ଵ

ଵ

1

y(N-2)

z(N-2)

1

ேିଵ

ேିଵ

ேିଵ

1

Div(Y,d)

Computing derivatives

We then compute ௒(ಿ) the derivative of the divergence w.r.t. the final output of the
network y(N)

ேିଶ

ேିଶ

ேିଶ

ேିଶ

fN

fN

ேିଵ

y(N)z(N)

y(N-1)z(N-1)

ଵ

y(1)z(1)

y(0)

ଵ

ଵ

ଵ

1

y(N-2)

z(N-2)

1

ேିଵ

ேିଵ

ேିଵ

1

Div(Y,d)

Computing derivatives

We then compute ௒(ಿ) the derivative of the divergence w.r.t. the final output of the
network y(N)

We then compute ௭(ಿ) the derivative of the divergence w.r.t. the pre-activation affine
combination z(N) using the chain rule

ேିଶ

ேିଶ

ேିଶ

ேିଶ

fN

fN

ேିଵ

y(N)z(N)

y(N-1)z(N-1)

ଵ

y(1)z(1)

y(0)

ଵ

ଵ

ଵ

1

y(N-2)

z(N-2)

1

ேିଵ

ேିଵ

ேିଵ

1

Div(Y,d)

Computing derivatives

Continuing on, we will compute ௐ(ಿ) the derivative of the divergence with respect
to the weights of the connections to the output layer

ேିଶ

ேିଶ

ேିଶ

ேିଶ

fN

fN

ேିଵ

y(N)z(N)

y(N-1)z(N-1)

ଵ

y(1)z(1)

y(0)

ଵ

ଵ

ଵ

1

y(N-2)

z(N-2)

1

ேିଵ

ேିଵ

ேିଵ

1

Div(Y,d)

Computing derivatives

Continuing on, we will compute ௐ(ಿ) the derivative of the divergence with respect
to the weights of the connections to the output layer

Then continue with the chain rule to compute ௒(ಿషభ) the derivative of the
divergence w.r.t. the output of the N-1th layer

ேିଶ

ேିଶ

ேିଶ

ேିଶ

fN

fN

ேିଵ

y(N)z(N)

y(N-1)z(N-1)

ଵ

y(1)z(1)

y(0)

ଵ

ଵ

ଵ

1

y(N-2)

z(N-2)

1

ேିଵ

ேିଵ

ேିଵ

1

Div(Y,d)

Computing derivatives

We continue our way backwards in the order shown

ேିଶ

ேିଶ

ேିଶ

ேିଶ

fN

fN

ேିଵ

y(N)z(N)

y(N-1)z(N-1)

ଵ

y(1)z(1)

y(0)

ଵ

ଵ

ଵ

1

y(N-2)

z(N-2)

1

ேିଵ

ேିଵ

ேିଵ

1

Div(Y,d)

We continue our way backwards in the order shown

ேିଶ

ேିଶ

ேିଶ

ேିଶ

fN

fN

ேିଵ

y(N)z(N)

y(N-1)z(N-1)

ଵ

y(1)z(1)

y(0)

ଵ

ଵ

ଵ

1

y(N-2)

z(N-2)

1

ேିଵ

ேିଵ

ேିଵ

1

Div(Y,d)

We continue our way backwards in the order shown

ேିଶ

ேିଶ

ேିଶ

ேିଶ

fN

fN

ேିଵ

y(N)z(N)

y(N-1)z(N-1)

ଵ

y(1)z(1)

y(0)

ଵ

ଵ

ଵ

1

y(N-2)

z(N-2)

1

ேିଵ

ேିଵ

ேିଵ

1

Div(Y,d)

We continue our way backwards in the order shown

ேିଶ

ேିଶ

ேିଶ

ேିଶ

fN

fN

ேିଵ

y(N)z(N)

y(N-1)z(N-1)

ଵ

y(1)z(1)

y(0)

ଵ

ଵ

ଵ

1

y(N-2)

z(N-2)

1

ேିଵ

ேିଵ

ேିଵ

1

Div(Y,d)

We continue our way backwards in the order shown

ேିଶ

ேିଶ

ேିଶ

ேିଶ

fN

fN

ேିଵ

y(N)z(N)

y(N-1)z(N-1)

ଵ

y(1)z(1)

y(0)

ଵ

ଵ

ଵ

1

y(N-2)

z(N-2)

1

ேିଵ

ேିଵ

ேିଵ

1

Div(Y,d)

We continue our way backwards in the order shown

ேିଶ

ேିଶ

ேିଶ

ேିଶ

fN

fN

ேିଵ

y(N)z(N)

y(N-1)z(N-1)

ଵ

y(1)z(1)

y(0)

ଵ

ଵ

ଵ

1

y(N-2)

z(N-2)

1

ேିଵ

ேିଵ

ேିଵ

1

Div(Y,d)

We continue our way backwards in the order shown

ேିଶ

ேିଶ

ேିଶ

ேିଶ

Backward Gradient Computation

• Lets actually see the math..

32

fN

fN

ேିଵ

y(N)z(N)

y(N-1)z(N-1)

ଵ

y(1)z(1)

y(0)

ଵ

ଵ

ଵ

1

y(N-2)

z(N-2)

1

ேିଵ

ேିଵ

ேିଵ

1

Div(Y,d)

Computing derivatives

ேିଶ

ேିଶ

ேିଶ

ேିଶ

fN

fN

ேିଵ

y(N)z(N)

y(N-1)z(N-1)

ଵ

y(1)z(1)

y(0)

ଵ

ଵ

ଵ

1

y(N-2)

z(N-2)

1

ேିଵ

ேିଵ

ேିଵ

1

Div(Y,d)

Computing derivatives

The derivative w.r.t the actual output of the
network is simply the derivative w.r.t to the
output of the final layer of the network

ேିଶ

ேିଶ

ேିଶ

ேିଶ

fN

fN

ேିଵ

y(N)z(N)

y(N-1)z(N-1)

ଵ

y(1)z(1)

y(0)

ଵ

ଵ

ଵ

1

y(N-2)

z(N-2)

1

ேିଵ

ேିଵ

ேିଵ

1

Div(Y,d)

Computing derivatives

ேିଶ

ேିଶ

ேିଶ

ேିଶ

fN

fN

ேିଵ

y(N)z(N)

y(N-1)z(N-1)

ଵ

y(1)z(1)

y(0)

ଵ

ଵ

ଵ

1

y(N-2)

z(N-2)

1

ேିଵ

ேିଵ

ேିଵ

1

Div(Y,d)

Computing derivatives

Already computed

ேିଶ

ேିଶ

ேିଶ

ேିଶ

fN

fN

ேିଵ

y(N)z(N)

y(N-1)z(N-1)

ଵ

y(1)z(1)

y(0)

ଵ

ଵ

ଵ

1

y(N-2)

z(N-2)

1

ேିଵ

ேିଵ

ேିଵ

1

Div(Y,d)

Computing derivatives

ே
ᇱ

ଵ
(ே)

Derivative of
activation function

ேିଶ

ேିଶ

ேିଶ

ேିଶ

fN

fN

ேିଵ

y(N)z(N)

y(N-1)z(N-1)

ଵ

y(1)z(1)

y(0)

ଵ

ଵ

ଵ

1

y(N-2)

z(N-2)

1

ேିଵ

ேିଵ

ேିଵ

1

Div(Y,d)

Computing derivatives

ே
ᇱ

ଵ
(ே)

Derivative of
activation function

Computed in forward
pass

ேିଶ

ேିଶ

ேିଶ

ேିଶ

fN

fN

ேିଵ

y(N)z(N)

y(N-1)z(N-1)

ଵ

y(1)z(1)

y(0)

ଵ

ଵ

ଵ

1

y(N-2)

z(N-2)

1

ேିଵ

ேିଵ

ேିଵ

1

Div(Y,d)

Computing derivatives

ேିଶ

ேିଶ

ேିଶ

ேିଶ

fN

fN

ேିଵ

y(N)z(N)

y(N-1)z(N-1)

ଵ

y(1)z(1)

y(0)

ଵ

ଵ

ଵ

1

y(N-2)

z(N-2)

1

ேିଵ

ேିଵ

ேିଵ

1

Div(Y,d)

Computing derivatives

ேିଶ

ேିଶ

ேିଶ

ேିଶ

fN

fN

ேିଵ

y(N)z(N)

y(N-1)z(N-1)

ଵ

y(1)z(1)

y(0)

ଵ

ଵ

ଵ

1

y(N-2)

z(N-2)

1

ேିଵ

ேିଵ

ேିଵ

1

Div(Y,d)

Computing derivatives

ଵଵ
(ே)

ଵ
(ே)

ଵଵ
(ே)

ଵ
(ே)

ேିଶ

ேିଶ

ேିଶ

ேିଶ

fN

fN

ேିଵ

y(N)z(N)

y(N-1)z(N-1)

ଵ

y(1)z(1)

y(0)

ଵ

ଵ

ଵ

1

y(N-2)

z(N-2)

1

ேିଵ

ேିଵ

ேିଵ

1

Div(Y,d)

Computing derivatives

ଵଵ
(ே)

ଵ
(ே)

ଵଵ
(ே)

ଵ
(ே) Just computed

ேିଶ

ேିଶ

ேିଶ

ேିଶ

fN

fN

ேିଵ

y(N)z(N)

y(N-1)z(N-1)

ଵ

y(1)z(1)

y(0)

ଵ

ଵ

ଵ

1

y(N-2)

z(N-2)

1

ேିଵ

ேିଵ

ேିଵ

1

Div(Y,d)

Computing derivatives

ଵଵ
(ே)

ଵ
(ே)

ଵଵ
(ே)

ଵ
(ே)

ଵ
(ேିଵ)

Because

ଵ
(ே)

ଵଵ
(ே)

ଵ
(ேିଵ)

ேିଶ

ேିଶ

ேିଶ

ேିଶ

fN

fN

ேିଵ

y(N)z(N)

y(N-1)z(N-1)

ଵ

y(1)z(1)

y(0)

ଵ

ଵ

ଵ

1

y(N-2)

z(N-2)

1

ேିଵ

ேିଵ

ேିଵ

1

Div(Y,d)

Computing derivatives

ଵଵ
(ே)

ଵ
(ே)

ଵଵ
(ே)

ଵ
(ே)

ଵ
(ேିଵ)

Because

ଵ
(ே)

ଵଵ
(ே)

ଵ
(ேିଵ)

Computed in forward pass

ேିଶ

ேିଶ

ேିଶ

ேିଶ

fN

fN

ேିଵ

y(N)z(N)

y(N-1)z(N-1)

ଵ

y(1)z(1)

y(0)

ଵ

ଵ

ଵ

1

y(N-2)

z(N-2)

1

ேିଵ

ேିଵ

ேିଵ

1

Div(Y,d)

Computing derivatives

ଵଵ
(ே) ଵ

(ேିଵ)

ଵ
(ே)

ேିଶ

ேିଶ

ேିଶ

ேିଶ

fN

fN

ேିଵ

y(N)z(N)

y(N-1)z(N-1)

ଵ

y(1)z(1)

y(0)

ଵ

ଵ

ଵ

1

y(N-2)

z(N-2)

1

ேିଵ

ேିଵ

ேିଵ

1

Div(Y,d)

Computing derivatives

௜௝
(ே) ௜

(ேିଵ)

௝
(ே)

For the bias term ଴
(ேିଵ)

ேିଶ

ேିଶ

ேିଶ

ேିଶ

fN

fN

ேିଵ

y(N)z(N)

y(N-1)z(N-1)

ଵ

y(1)z(1)

y(0)

ଵ

ଵ

ଵ

1

y(N-2)

z(N-2)

1

ேିଵ

ேିଵ

ேିଵ

1

Div(Y,d)

Computing derivatives

ଵ
(ேିଵ)

௝
(ே)

ଵ
(ேିଵ)

௝ ௝
(ே)

ேିଶ

ேିଶ

ேିଶ

ேିଶ

fN

fN

ேିଵ

y(N)z(N)

y(N-1)z(N-1)

ଵ

y(1)z(1)

y(0)

ଵ

ଵ

ଵ

1

y(N-2)

z(N-2)

1

ேିଵ

ேିଵ

ேିଵ

1

Div(Y,d)

Computing derivatives

ଵ
(ேିଵ)

௝
(ே)

ଵ
(ேିଵ)

௝ ௝
(ே) Already computed

ேିଶ

ேିଶ

ேିଶ

ேିଶ

fN

fN

ேିଵ

y(N)z(N)

y(N-1)z(N-1)

ଵ

y(1)z(1)

y(0)

ଵ

ଵ

ଵ

1

y(N-2)

z(N-2)

1

ேିଵ

ேିଵ

ேିଵ

1

Div(Y,d)

Computing derivatives

ଵ
(ேିଵ)

௝
(ே)

ଵ
(ேିଵ)

௝ ௝
(ே)

ଵ௝
(ேିଵ)

Because

௝
(ே)

ଵ௝
(ே)

ଵ
(ேିଵ)

ேିଶ

ேିଶ

ேିଶ

ேିଶ

fN

fN

ேିଵ

y(N)z(N)

y(N-1)z(N-1)

ଵ

y(1)z(1)

y(0)

ଵ

ଵ

ଵ

1

y(N-2)

z(N-2)

1

ேିଵ

ேିଵ

ேିଵ

1

Div(Y,d)

Computing derivatives

ଵ
(ேିଵ) ଵ௝

(ே)

௝ ௝
(ே)

ேିଶ

ேିଶ

ேିଶ

ேିଶ

fN

fN

ேିଵ

y(N)z(N)

y(N-1)z(N-1)

ଵ

y(1)z(1)

y(0)

ଵ

ଵ

ଵ

1

y(N-2)

z(N-2)

1

ேିଵ

ேିଵ

ேିଵ

1

Div(Y,d)

Computing derivatives

௜
(ேିଵ) ௜௝

(ே)

௝ ௝
(ே)

ேିଶ

ேିଶ

ேିଶ

ேିଶ

fN

fN

ேିଵ

y(N)z(N)

y(N-1)z(N-1)

ଵ

y(1)z(1)

y(0)

ଵ

ଵ

ଵ

1

y(N-2)

z(N-2)

1

ேିଵ

ேିଵ

ேିଵ

1

Div(Y,d)

Computing derivatives

We continue our way backwards in the order shown

௜
(ேିଵ) ேିଵ

ᇱ
௜
(ேିଵ)

௜
(ேିଵ)

ேିଶ

ேିଶ

ேିଶ

ேିଶ

fN

fN

ேିଵ

y(N)z(N)

y(N-1)z(N-1)

ଵ

y(1)z(1)

y(0)

ଵ

ଵ

ଵ

1

y(N-2)

z(N-2)

1

ேିଵ

ேିଵ

ேିଵ

1

Div(Y,d)

We continue our way backwards in the order shown

௜௝
(ேିଵ) ௜

(ேିଶ)

௝
(ேିଵ)

For the bias term ଴
(ேିଶ)

ேିଶ

ேିଶ

ேିଶ

ேିଶ

fN

fN

ேିଵ

y(N)z(N)

y(N-1)z(N-1)

ଵ

y(1)z(1)

y(0)

ଵ

ଵ

ଵ

1

y(N-2)

z(N-2)

1

ேିଵ

ேିଵ

ேିଵ

1

Div(Y,d)

We continue our way backwards in the order shown

௜
(ேିଶ) ௜௝

(ேିଵ)

௝ ௝
(ேିଵ)

ேିଶ

ேିଶ

ேିଶ

ேିଶ

fN

fN

ேିଵ

y(N)z(N)

y(N-1)z(N-1)

ଵ

y(1)z(1)

y(0)

ଵ

ଵ

ଵ

1
ேିଶ

y(N-2)

z(N-2)

ேିଶ

ேିଶ

ேିଶ

1

ேିଵ

ேିଵ

ேିଵ

1

Div(Y,d)

We continue our way backwards in the order shown

௜
(ேିଶ) ேିଶ

ᇱ
௜
(ேିଶ)

௜
(ேିଶ)

fN

fN

ேିଵ

y(N)z(N)

y(N-1)z(N-1)

ଵ

y(1)z(1)

y(0)

ଵ

ଵ

ଵ

1

y(N-2)

z(N-2)

1

ேିଵ

ேିଵ

ேିଵ

1

Div(Y,d)

We continue our way backwards in the order shown

ேିଶ

ேିଶ

ேିଶ

ேିଶ

ଵ
(ଵ) ௜௝

(ଶ)

௝ ௝
(ଶ)

fN

fN

ேିଵ

y(N)z(N)

y(N-1)z(N-1)

ଵ

y(1)z(1)

y(0)

ଵ

ଵ

ଵ

1

y(N-2)

z(N-2)

1

ேିଵ

ேିଵ

ேିଵ

1

Div(Y,d)

We continue our way backwards in the order shown

ேିଶ

ேିଶ

ேିଶ

ேିଶ

௜
(ଵ) ଵ

ᇱ
௜
(ଵ)

௜
(ଵ)

y(0)

1

We continue our way backwards in the order shown

fN

fN

ேିଵ

y(N)z(N)

y(N-1)z(N-1)

ଵ

y(1)z(1)

ଵ

ଵ

ଵ

y(N-2)

z(N-2)

1

ேିଵ

ேିଵ

ேିଵ

1

Div(Y,d)

ேିଶ

ேିଶ

ேିଶ

ேିଶ

௜௝
(ଵ) ௜

(ଵ)

௝
(ଵ)

Gradients: Backward Computation

Div(Y,d)

fN

fN

Initialize: Gradient
w.r.t network output

y(N)z(N)

y(N-1)z(N-1)y(k)z(k)y(k-1)z(k-1)

௜
(௞) ௞

ᇱ
௜
(௞)

௜
(௞)

௜
(௞) ௜௝

(௞ାଵ)

௝ ௝
(௞ାଵ)

௜௝
(௞ାଵ) ௜

(௞)

௝
(௞ାଵ)

Div(Y,d)

௜
௜
(ே)

Figure assumes, but does not show
the “1” bias nodes

௜
(ே) ௞

ᇱ
௜
(ே)

௜
(ே)

Backward Pass
• Output layer (N) :

– For ே

•
డ஽௜௩

డ௬೔

డ஽௜௩(௒,ௗ)

డ௬
೔
(ಿ)

•
డ஽௜

డ௭
೔
(ಿ)

డ஽௜௩

డ௬
೔
(ಿ)

డ௬೔
(ಿ)

డ௭
೔
(ಿ)

• For layer
– For ௞

•
డ஽௜௩

డ௬
೔
(ೖ) ௜௝

(௞ାଵ)
௝

డ஽௜௩

డ௭
ೕ
(ೖశభ)

•
డ஽௜௩

డ௭
೔
(ೖ)

డ஽௜௩

డ௬
೔
(ೖ) ௞

ᇱ
௜
(௞)

•
డ஽௜

డ௪
ೕ೔
(ೖశభ) ௝

(௞) డ஽௜௩

డ௭
೔
(ೖశభ) for ௞ାଵ

60

Backward Pass
• Output layer (N) :

– For ே

•
డ஽௜௩

డ௬೔

డ஽௜௩(௒,ௗ)

డ௬
೔
(ಿ)

•
డ஽௜௩

డ௭
೔
(ಿ)

డ஽௜௩

డ௬
೔
(ಿ)

డ௬೔
(ಿ)

డ௭
೔
(ಿ)

• For layer
– For ௞

•
డ஽௜௩

డ௬
೔
(ೖ) ௜௝

(௞ାଵ)
௝

డ஽௜௩

డ௭
ೕ
(ೖశభ)

•
డ஽௜௩

డ௭
೔
(ೖ)

డ஽௜௩

డ௬
೔
(ೖ) ௞

ᇱ
௜
(௞)

•
డ஽௜௩

డ௪
ೕ೔
(ೖశభ) ௝

(௞) డ஽௜௩

డ௭
೔
(ೖశభ) for ௞ାଵ

61

Called “Backpropagation” because
the derivative of the loss is
propagated “backwards” through
the network

Backward weighted combination
of next layer

Backward equivalent of activation

Very analogous to the forward pass:

For comparison: the forward pass
again

• Input: dimensional vector
• Set:

– , is the width of the 0th (input) layer

– ;

• For layer
– For

• ௝
(௞)

௜,௝
(௞)

௜
(௞ିଵ)ேೖ

௜ୀ଴

• ௝
(௞)

௞ ௝
(௞)

• Output:

–
62

Special cases

• Have assumed so far that
1. The computation of the output of one neuron does not directly affect

computation of other neurons in the same (or previous) layers
2. Outputs of neurons only combine through weighted addition
3. Activations are actually differentiable
– All of these conditions are frequently not applicable

• Will not dwell on the topic in class, but explained in slides
– Will appear in quiz. Please read the slides

63

Special Case 1. Vector activations

• Vector activations: all outputs are functions of
all inputs

64

z(k)y(k-1) y(k) z(k)y(k-1) y(k)

Special Case 1. Vector activations

65

z(k)y(k-1)

y(k)

Scalar activation: Modifying a
only changes corresponding

Vector activation: Modifying a
potentially changes all,

z(k)y(k-1)

y(k)

“Influence” diagram

66

z(k)y(k-1)
y(k) z(k) y(k)

Scalar activation: Each
influences one

Vector activation: Each
influences all,

y(k-1)

Scalar Activation: Derivative rule

• In the case of scalar activation functions, the
derivative of the error w.r.t to the input to the
unit is a simple product of derivatives

67

z(k)y(k-1) y(k)

Derivatives of vector activation

• For vector activations the derivative of the error w.r.t.
to any input is a sum of partial derivatives

– Regardless of the number of outputs
68

z(k)y(k-1) y(k)

Div
Note: derivatives of scalar activations
are just a special case of vector

activations:
డ௬ೕ

(ೖ)

డ௭
೔
(ೖ)

Special cases

• Examples of vector activations and other
special cases on slides
– Please look up
– Will appear in quiz!

69

Example Vector Activation: Softmax

70

z(k)y(k-1) y(k)

௜
(௞) ௜

(௞)

௝
(௞)

௝

Div

Example Vector Activation: Softmax

71

z(k)y(k-1) y(k)

௜
(௞) ௜

(௞)

௝
(௞)

௝

௜
(௞)

௝
(௞)

௝
(௞)

௜
(௞)

௝Div

Example Vector Activation: Softmax

72

z(k)y(k-1) y(k)

௜
(௞) ௜

(௞)

௝
(௞)

௝

௜
(௞)

௝
(௞)

௝
(௞)

௜
(௞)

௝

௝
(௞)

௜
(௞)

௜
(௞)

௜
(௞)

௜
௞

௝
௞

Div

Example Vector Activation: Softmax

• For future reference

• is the Kronecker delta: 73

z(k)y(k-1) y(k)

௜
(௞) ௜

(௞)

௝
(௞)

௝

௜
(௞)

௝
(௞)

௝
(௞)

௜
(௞)

௝

௝
(௞)

௜
(௞)

௜
(௞)

௜
(௞)

௜
௞

௝
௞

௜
(௞)

௝
(௞) ௜

(௞)
௜௝ ௝

(௞)

௝

Div

Subgradients and the Max

• Multiple outputs, each selecting the max of a different subset of
inputs
– Will be seen in convolutional networks

• Gradient for any output:
– 1 for the specific component that is maximum in corresponding input

subset
– 0 otherwise 74

ೕ

ೕ

z1 y1

z2

zN

y2

y3

yM

Backward Pass: Recap
• Output layer (N) :

– For ே

•
డ஽௜௩

డ௒೔

డ஽௜௩(௒,ௗ)

డ௬
೔
(ಿ)

•
డ஽௜௩

డ௭
೔
(ಿ)

డ஽௜௩

డ௬
೔
(ಿ)

డ௬೔
(ಿ)

డ௭
೔
(ಿ)

డ஽௜௩

డ௬
ೕ
(ಿ)

డ௬ೕ
(ಿ)

డ௭
೔
(ಿ)

௝ (vector activation)

• For layer
– For ௞

•
డ஽௜

డ௬
೔
(ೖ) ௜௝

(௞ାଵ)
௝

డ஽௜௩

డ௭
ೕ
(ೖశభ)

•
డ஽௜௩

డ௭
೔
(ೖ)

డ஽௜௩

డ௬
೔
(ೖ)

డ௬೔
(ೖ)

డ௭
೔
(ೖ)

డ஽௜௩

డ௬
ೕ
(ೖ)

డ௬ೕ
(ೖ)

డ௭
೔
(ೖ)

௝ (vector activation)

•
డ஽௜௩

డ௪
ೕ೔
(ೖశభ) ௝

(௞) డ஽௜௩

డ௭
೔
(ೖశభ) for ௞ାଵ

75

T

Overall Approach
• For each data instance

– Forward pass: Pass instance forward through the net. Store all
intermediate outputs of all computation

– Backward pass: Sweep backward through the net, iteratively compute
all derivatives w.r.t weights

• Actual loss is the sum of the divergence over all training instances

• Actual gradient is the sum or average of the derivatives computed
for each training instance

–

Training by BackProp
• Initialize weights ௞ for all layers
• Do:

– Initialize ; For all , initialize ௗா௥௥

ௗ௪
೔,ೕ
(ೖ)

– For all (Loop over training instances)
• Forward pass: Compute

– Output 𝒀𝒕

– 𝐸𝑟𝑟 += 𝑫𝒊𝒗(𝒀𝒕, 𝒅𝒕)

• Backward pass: For all 𝑖, 𝑗, 𝑘:

– Compute ௗ𝑫𝒊𝒗(𝒀𝒕,𝒅𝒕)

ௗ௪
೔,ೕ
(ೖ)

– Compute
ௗா௥௥

ௗ௪
೔,ೕ
(ೖ) +=

ௗ𝑫𝒊𝒗(𝒀𝒕,𝒅𝒕)

ௗ௪
೔,ೕ
(ೖ)

– For all update:

𝑤௜,௝
(௞)

= 𝑤௜,௝
(௞)

−
𝜂

𝑇

𝑑𝐸𝑟𝑟

𝑑𝑤௜,௝
(௞)

• Until has converged 77

Vector formulation

• For layered networks it is generally simpler to
think of the process in terms of vector
operations
– Simpler arithmetic
– Fast matrix libraries make operations much faster

• We can restate the entire process in vector
terms
– This is what is actually used in any real system

78

Vector formulation

• Arrange all inputs to the network in a vector
• Arrange the inputs to neurons of the kth layer as a vector 𝒌

• Arrange the outputs of neurons in the kth layer as a vector 𝒌

• Arrange the weights to any layer as a matrix ௞

– Similarly with biases
79

ଵ

ଶ

஽

ଵଵ
(ଵ)

஽భ஽
(ଵ)

஽ଵ
(ଵ)

𝒌

ଵ
(௞)

ଶ
(௞)

஽ೖ

(௞)

ଵ
(ଵ)

ଶ
(ଵ)

஽భ

(ଵ)

ଵ
(ଵ)

ଶ
(ଵ)

஽భ

(ଵ)

𝒌

ଵ
(௞)

ଶ
(௞)

஽ೖ

(௞)

ଵ

ଶ

஽

𝒌

ଵ
(௞)

ଶ
(௞)

஽ೖశభ

(௞)
௞

ଵଵ
(௞) ଶଵ

(௞) ஽ೖషభଵ
(௞)

ଵଶ
(௞)

ଶଶ
(௞)

஽ೖషభଶ
(௞)

ଵ஽ೖ

(௞)
ଶ஽ೖ

(௞)
஽ೖషభ஽ೖ

(௞)

Vector formulation

• The computation of a single layer is easily expressed in matrix
notation as (setting 𝟎):

80

ଵ

ଶ

஽

ଵଵ
(ଵ)

஽஽
(ଵ)

஽ଵ
(ଵ)

𝒌

ଵ
(௞)

ଶ
(௞)

஽ೖ

(௞)

ଵ
(ଵ)

ଶ
(ଵ)

஽భ

(ଵ)

ଵ
(ଵ)

ଶ
(ଵ)

஽భ

(ଵ)

𝒌

ଵ
(௞)

ଶ
(௞)

஽ೖ

(௞)

ଵ

ଶ

஽

𝒌

ଵ
(௞)

ଶ
(௞)

஽ೖశభ

(௞)

𝒌 𝒌 𝒌ି𝟏 𝒌 𝒌 ௞ 𝒌

௞

ଵଵ
(௞) ଶଵ

(௞) ஽ೖషభଵ
(௞)

ଵଶ
(௞)

ଶଶ
(௞)

஽ೖషభଶ
(௞)

ଵ஽ೖ

(௞)
ଶ஽ೖ

(௞)
஽ೖషభ஽ೖ

(௞)

The forward pass: Evaluating the
network

81

𝟎

The forward pass

82

𝟏 𝟏 ଵ

𝟏
ଵ ଵ

83

ଵ ଵ 1

𝟏 𝟏

The forward pass
ଵ ଵ

ଵ ଵ ଵ ଵ

The Complete computation

The forward pass

84

ଶ 2 ଵ ଶ

𝟏 𝟏 𝟐
ଵ ଵ ଶ ଶ

ଵ ଵ ଵ ଵ

The Complete computation

The forward pass

85

𝟏 𝟐
ଵ ଵ ଶ ଶ

𝟐

ଶ ଶ 2

ଶ ଶ ଶ ଵ ଵ ଵ ଶ

The Complete computation

𝟏

The forward pass

86

𝟏
ଵ ଵ ଶ ଶ

𝟐 ேିଵ

N

ே ே

ே N ேିଵ ே

ଶ ଶ ଶ ଵ ଵ ଵ ଶ

The Complete computation

𝟐𝟏

The forward pass

87

𝟏
ଵ ଵ

𝟐 ேିଵ

N

ே ே

ே 𝑁

ே ே ேିଵ ଶ ଶ ଵ ଵ ଵ ଶ ே

The Complete computation

𝟐𝟏
ଶ ଶ

Forward pass

Div(Y,d)

Forward pass:

For k = 1 to N:

Initialize

Output

The Forward Pass
• Set

• Recursion through layers
– For layer k = 1 to N:

• Output:

89

The backward pass

• The network is a nested function

ே ே ேିଵ ଶ ଶ ଵ ଵ ଵ ଶ ே

ଵ ଵ ଶ ଶ

ே ே

ே ே ேିଵ ଶ ଶ ଵ ଵ ଵ ଶ ே

• The error for any is also a nested function

Calculus recap: The Jacobian

91

Using vector notation

Check:

• The derivative of a vector function w.r.t. vector input is called
a Jacobian

• It is the matrix of partial derivatives given below

Jacobians can describe the derivatives
of neural activations w.r.t their input

• For Scalar activations
– Number of outputs is identical to the number of inputs

• Jacobian is a diagonal matrix
– Diagonal entries are individual derivatives of outputs w.r.t inputs
– Not showing the superscript “(k)” in equations for brevity 92

z y

• For scalar activations (shorthand notation):
– Jacobian is a diagonal matrix
– Diagonal entries are individual derivatives of outputs w.r.t inputs

93

z y

Jacobians can describe the derivatives
of neural activations w.r.t their input

For Vector activations

• Jacobian is a full matrix
– Entries are partial derivatives of individual outputs

w.r.t individual inputs
94

z y

Special case: Affine functions

• Matrix and bias operating on vector to
produce vector

• The Jacobian of w.r.t is simply the matrix
95

Vector derivatives: Chain rule
• We can define a chain rule for Jacobians
• For vector functions of vector inputs:

96

Check

Note the order: The derivative of the outer function comes first

Vector derivatives: Chain rule
• The chain rule can combine Jacobians and Gradients
• For scalar functions of vector inputs (is vector):

97

Check

Note the order: The derivative of the outer function comes first

Special Case

• Scalar functions of Affine functions

98

Note reversal of order. This is in fact a simplification
of a product of tensor terms that occur in the right order

Derivatives w.r.t
parameters

The backward pass
ଵ ଵ

ே ே

ேିଵ ேିଵ

In the following slides we will also be using the notation 𝐳 to represent
the Jacobian 𝐘 to explicitly illustrate the chain rule

In general 𝐚 represents a derivative of w.r.t. and could be a gradient (for scalar)
Or a Jacobian (for vector)

The backward pass
ଵ ଵ

ே ே

ேିଵ ேିଵ

First compute the gradient of the divergence w.r.t. .
The actual gradient depends on the divergence function.

The backward pass
ଵ ଵ

ே ே

ேିଵ ேିଵ

ಿ

ಿ ಿ

The backward pass
ଵ ଵ

ே ே

ேିଵ ேିଵ

ಿ

ಿ

The backward pass
ଵ ଵ

ே ே

ேିଵ ேିଵ

ಿషభ

ே

ಿషభ ಿ ಿషభ

The backward pass
ଵ ଵ

ே ே

ேିଵ ேିଵ

ಿషభಿషభ ಿ

ே

The backward pass
ଵ ଵ

ே ே

ேିଵ ேିଵ

ಿషభ

ಿషభ ಿ
ಿ ಿ

ಿ ಿ

ே

The backward pass
ଵ ଵ

ே ே

ேିଵ ேିଵ

ಿషభ

ே

ேିଵ

ಿషభ ಿషభ ಿషభ

The backward pass
ଵ ଵ

ே ே

ேିଵ ேିଵ

ಿషభ

ಿషభ ಿషభ ಿషభ

ே

ேିଵ

The Jacobian will be a diagonal
matrix for scalar activations

The backward pass
ଵ ଵ

ே ே

ேିଵ ேିଵ

ಿషమ

ಿషమ ಿషభ ಿషమ

ே

ேିଵேିଵ

The backward pass
ଵ ଵ

ே ே

ேିଵ ேିଵ

ಿషమ

ಿషమ ಿషభ

ே

ேିଵேିଵ

The backward pass
ଵ ଵ

ே ே

ேିଵ ேିଵ

ಿషమ

ಿషమ ಿషభ

ே

ಿషభ ಿషభ

ಿషభ ಿషభ

ேିଵேିଵ

The backward pass
ଵ ଵ

ே ே

ேିଵ ேିଵ

భ భ భ

ே

ேିଵேିଵ

The backward pass
ଵ ଵ

ே ே

ேିଵ ேିଵ

ே

ேିଵேିଵ

భ భ

భ భ

In some problems we will also want to compute
the derivative w.r.t. the input

ଵ

The Backward Pass
• Set ,
• Initialize: Compute

ಿ

• For layer k = N downto 1:
– Compute

ೖ

• Will require intermediate values computed in the forward pass

– Recursion:

ೖ ೖ ೖ

ೖషభ ೖ

– Gradient computation:

ೖ ೖ

ೖ ೖ

113

The Backward Pass
• Set ,
• Initialize: Compute

ಿ

• For layer k = N downto 1:
– Compute

ೖ

• Will require intermediate values computed in the forward pass

– Recursion:

ೖ ೖ ೖ

ೖషభ ೖ

– Gradient computation:

ೖ ೖ

ೖ ೖ

114

Note analogy to forward pass

For comparison: The Forward Pass
• Set

• For layer k = 1 to N:
– Recursion:

• Output:

115

Neural network training algorithm
• Initialize all weights and biases ଵ ଵ ଶ ଶ ே ே

• Do:
–

– For all , initialize 𝐖ೖ
, 𝐛ೖ

– For all
• Forward pass : Compute

– Output 𝒀(𝑿𝒕)

– Divergence 𝑫𝒊𝒗(𝒀𝒕, 𝒅𝒕)

– 𝐿𝑜𝑠𝑠 += 𝑫𝒊𝒗(𝒀𝒕, 𝒅𝒕)

• Backward pass: For all 𝑘 compute:
– 𝛻𝐲ೖ

𝐷𝑖𝑣 = 𝛻𝐳ೖାଵ𝐷𝑖𝑣 𝐖௞

– 𝛻𝐳ೖ
𝐷𝑖𝑣 = 𝛻𝐲ೖ

𝐷𝑖𝑣 𝐽𝐲ೖ
𝐳௞

– 𝛻𝐖ೖ
𝑫𝒊𝒗(𝒀𝒕, 𝒅𝒕); 𝛻𝐛ೖ

𝑫𝒊𝒗(𝒀𝒕, 𝒅𝒕)

– 𝛻𝐖ೖ
𝐿𝑜𝑠𝑠 += 𝛻𝐖ೖ

𝑫𝒊𝒗(𝒀𝒕, 𝒅𝒕); 𝛻𝐛ೖ
𝐿𝑜𝑠𝑠 += 𝛻𝐛ೖ

𝑫𝒊𝒗(𝒀𝒕, 𝒅𝒕)

– For all update:

𝐖௞ = 𝐖௞ −
ఎ

்
𝛻𝐖ೖ

𝐿𝑜𝑠𝑠
்

; 𝐛௞ = 𝐛௞ −
ఎ

்
𝛻𝐖ೖ

𝐸𝑟𝑟
்

• Until has converged
116

Setting up for digit recognition

• Simple Problem: Recognizing “2” or “not 2”
• Single output with sigmoid activation

–

–

• Use KL divergence
• Backpropagation to learn network parameters 117

(, 0)
(, 1)
(, 0)

(, 1)
(, 0)
(, 1)

Training data

Sigmoid output
neuron

Recognizing the digit

• More complex problem: Recognizing digit
• Network with 10 (or 11) outputs

– First ten outputs correspond to the ten digits
• Optional 11th is for none of the above

• Softmax output layer:
– Ideal output: One of the outputs goes to 1, the others go to 0

• Backpropagation with KL divergence to learn network 118

(, 0)
(, 1)
(, 0)

(, 1)
(, 0)
(, 1)

Training data

Y1 Y2 Y3 Y4 Y0

Issues

• Convergence: How well does it learn
– And how can we improve it

• How well will it generalize (outside training
data)

• What does the output really mean?
• Etc..

119

Onward

120

Onward

• Does backprop always work?
• Convergence of gradient descent

– Rates, restrictions,
– Hessians
– Acceleration and Nestorov
– Alternate approaches

• Modifying the approach: Stochastic gradients
• Speedup extensions: RMSprop, Adagrad

121

Does backprop do the right thing?

• Is backprop always right?
– Assuming it actually find the global minimum of

the divergence function?

122

Does backprop do the right thing?

• Is backprop always right?
– Assuming it actually find the global minimum of the

divergence function?

• In classification problems, the classification error is a
non-differentiable function of weights

• The divergence function minimized is only a proxy for
classification error

• Minimizing divergence may not minimize classification
error

123

Backprop fails to separate where
perceptron succeeds

• Brady, Raghavan, Slawny, ’89

• Simple problem, 3 training instances, single neuron

• Perceptron training rule trivially find a perfect solution

(1,0), +1

(0,1), +1

(-1,0), -1

124

Backprop vs. Perceptron

• Back propagation using logistic function and
divergence

• Unique minimum trivially proved to exist, Preceptron
rule finds it

(1,0), +1

(0,1), +1

(-1,0), -1

125

Unique solution exists

• Let ିଵ

– E.g. 𝑢 = 𝑓ିଵ 0.99 representing a 99% confidence in the class

• From the three points we get three independent equations:

௫ ௬

௫ ௬

௫ ௬

• Unique solution ௫ ௫ exists
– represents a unique line regardless of the value of 𝑢

(1,0), +1

(0,1), +1

(-1,0), -1

126

Backprop vs. Perceptron

• Now add a fourth point
• is very large (point near)
• Perceptron trivially finds a solution (may take t2

iterations)

(1,0), +1

(0,1), +1

(-1,0), -1

(0,-t), +1

127

Backprop

• Consider backprop:
• Contribution of fourth point

to derivative of L2 error:

(1,0), +1

(0,1), +1

(-1,0), -1

(0,-t), +1

ସ ௬
2

Notation:
= logistic activation

ସ

௬
௬ ௬

ସ
௬ ௬

128

1-e is the actual
achievable value

Backprop

ସ ௬
2

Notation:
= logistic activation

ସ

௬
௬ ௬

ସ
௬ ௬

• For very large positive , (where)

• as

• exponentially as
• Therefore, for very large positive

129

Backprop

• The fourth point at does not change the gradient of the L2
divergence near the optimal solution for 3 points

• The optimum solution for 3 points is also a broad local minimum (0
gradient) for the 4-point problem!
– Will be trivially found by backprop nearly all the time

• Although the global minimum will separate for unbounded weights

(1,0), +1

(0,1), +1

(-1,0), -1

(0,-t), +1

130

Backprop

• Local optimum solution found by backprop

• Does not separate the points even though the
points are linearly separable!

(1,0), +1

(0,1), +1

(-1,0), -1

(0,-t), +1

131

Backprop

• Solution found by backprop
• Does not separate the points even though the points are linearly

separable!
• Compare to the perceptron: Backpropagation fails to separate

where the perceptron succeeds

(1,0), +1

(0,1), +1

(-1,0), -1

(0,-t), +1

132

Backprop fails to separate where
perceptron succeeds

• Brady, Raghavan, Slawny, ’89
• Several linearly separable training examples
• Simple setup: both backprop and perceptron

algorithms find solutions 133

A more complex problem

• Adding a “spoiler” (or a small number of spoilers)
– Perceptron finds the linear separator,
– Backprop does not find a separator

• A single additional input does not change the loss function
significantly 134

A more complex problem

• Adding a “spoiler” (or a small number of spoilers)
– Perceptron finds the linear separator,
– Backprop does not find a separator

• A single additional input does not change the loss function
significantly

– Assuming weights are constrained to be bounded 135

A more complex problem

• Adding a “spoiler” (or a small number of spoilers)
– Perceptron finds the linear separator,
– For bounded , backprop does not find a separator

• A single additional input does not change the loss function
significantly 136

A more complex problem

• Adding a “spoiler” (or a small number of spoilers)
– Perceptron finds the linear separator,
– For bounded , backprop does not find a separator

• A single additional input does not change the loss function
significantly 137

A more complex problem

• Adding a “spoiler” (or a small number of spoilers)
– Perceptron finds the linear separator,
– For bounded , Backprop does not find a separator

• A single additional input does not change the loss function
significantly 138

So what is happening here?
• The perceptron may change greatly upon adding just a

single new training instance
– But it fits the training data well
– The perceptron rule has low bias

• Makes no errors if possible

– But high variance
• Swings wildly in response to small changes to input

• Backprop is minimally changed by new training
instances
– Prefers consistency over perfection
– It is a low-variance estimator, at the potential cost of bias

139

Backprop fails to separate even when
possible

• This is not restricted to single perceptrons

• In an MLP the lower layers “learn a representation”
that enables linear separation by higher layers
– More on this later

• Adding a few “spoilers” will not change their behavior
140

Backprop fails to separate even when
possible

• This is not restricted to single perceptrons

• In an MLP the lower layers “learn a representation”
that enables linear separation by higher layers
– More on this later

• Adding a few “spoilers” will not change their behavior
141

Backpropagation
• Backpropagation will often not find a separating

solution even though the solution is within the
class of functions learnable by the network

• This is because the separating solution is not a
feasible optimum for the loss function

• One resulting benefit is that a backprop-trained
neural network classifier has lower variance than
an optimal classifier for the training data

142

Variance and Depth

• Dark figures show desired decision boundary (2D)
– 1000 training points, 660 hidden neurons
– Network heavily overdesigned even for shallow nets

• Anecdotal: Variance decreases with
– Depth
– Data

143

6 layers 11 layers

3 layers 4 layers

6 layers 11 layers

3 layers 4 layers

10000 training instances

The Loss Surface

• The example (and statements)
earlier assumed the loss
objective had a single global
optimum that could be found
– Statement about variance is

assuming global optimum

• What about local optima

144

The Loss Surface
• Popular hypothesis:

– In large networks, saddle points are far more
common than local minima
• Frequency exponential in network size

– Most local minima are equivalent
• And close to global minimum

– This is not true for small networks

• Saddle point: A point where
– The slope is zero
– The surface increases in some directions, but

decreases in others
• Some of the Eigenvalues of the Hessian are positive;

others are negative

– Gradient descent algorithms often get “stuck” in
saddle points

145

The Controversial Loss Surface
• Baldi and Hornik (89), “Neural Networks and Principal Component

Analysis: Learning from Examples Without Local Minima” : An MLP with a
single hidden layer has only saddle points and no local Minima

• Dauphin et. al (2015), “Identifying and attacking the saddle point problem
in high-dimensional non-convex optimization” : An exponential number of
saddle points in large networks

• Chomoranksa et. al (2015), “The loss surface of multilayer networks” : For
large networks, most local minima lie in a band and are equivalent
– Based on analysis of spin glass models

• Swirscz et. al. (2016), “Local minima in training of deep networks”, In
networks of finite size, trained on finite data, you can have horrible local
minima

• Watch this space…
146

Story so far
• Neural nets can be trained via gradient descent that minimizes a

loss function

• Backpropagation can be used to derive the derivatives of the loss

• Backprop is not guaranteed to find a “true” solution, even if it
exists, and lies within the capacity of the network to model
– The optimum for the loss function may not be the “true” solution

• For large networks, the loss function may have a large number of
unpleasant saddle points
– Which backpropagation may find

147

Convergence

• In the discussion so far we have assumed the
training arrives at a local minimum

• Does it always converge?
• How long does it take?

• Hard to analyze for an MLP, but we can look at
the problem through the lens of convex
optimization

148

A quick tour of (convex) optimization

149

Convex Loss Functions

• A surface is “convex” if it is
continuously curving upward
– We can connect any two points

above the surface without
intersecting it

– Many mathematical definitions
that are equivalent

• Caveat: Neural network loss
surface is generally not convex
– Streetlight effect

Contour plot of convex function

150

Convergence of gradient descent

• An iterative algorithm is said to
converge to a solution if the value
updates arrive at a fixed point
– Where the gradient is 0 and further

updates do not change the estimate

• The algorithm may not actually
converge
– It may jitter around the local

minimum
– It may even diverge

• Conditions for convergence?

converging

jittering

diverging

151

Convergence and convergence rate
• Convergence rate: How fast the

iterations arrive at the solution
• Generally quantified as

(௞ାଵ) ∗

(௞) ∗

– (௞ାଵ)is the k-th iteration
– ∗is the optimal value of

• If is a constant (or upper bounded),
the convergence is linear
– In reality, its arriving at the solution

exponentially fast
(௞) ∗ ௞ (଴) ∗

converging

152

Convergence for quadratic surfaces

• Gradient descent to find the
optimum of a quadratic,
starting from

• Assuming fixed step size
• What is the optimal step size

to get there fastest?

Gradient descent with fixed step size
to estimate scalar parameter

(௞)

ଶ

153

Convergence for quadratic surfaces
• Any quadratic objective can be written as

(௞) ᇱ ௞ (௞)

ଵ

ଶ
(௞) (௞)

ଶ

– Taylor expansion

• Minimizing w.r.t , we get (Newton’s method)

௠௜௡
௞ ௞ ିଵ ௞

• Note:
(௞)

(௞)

• Comparing to the gradient descent rule, we see
that we can arrive at the optimum in a single step
using the optimum step size

௢௣௧
௞ ିଵ ି𝟏

(௞ାଵ) (௞)
(௞)

154

With non-optimal step size

• For the algorithm
will converge monotonically

• For we
have oscillating
convergence

• For we get
divergence

Gradient descent with fixed step size
to estimate scalar parameter

155

For generic differentiable convex
objectives

• Any differentiable convex objective can be approximated as

(௞) (௞)
(௞)

(௞)
ଶ ଶ (௞)

ଶ

– Taylor expansion

• Using the same logic as before, we get (Newton’s method)

௢௣௧

ଶ (௞)

ଶ

ିଵ

• We can get divergence if ௢௣௧

approx

156

For functions of multivariate inputs

• Consider a simple quadratic convex (paraboloid) function

் ்

– Since ் (is scalar), can always be made symmetric
• For convex 𝐸, 𝐀 is always positive definite, and has positive eigenvalues

• When is diagonal:

௜௜ ௜
ଶ

௜ ௜

௜

– The ௜s are uncoupled
– For convex (paraboloid) , the ௜௜ values are all positive
– Just an sum of independent quadratic functions

, is a vector

157

Multivariate Quadratic with Diagonal

• Equal-value contours will be parallel to the
axis

158

Multivariate Quadratic with Diagonal

• Equal-value contours will be parallel to the axis
– All “slices” parallel to an axis are shifted versions of one another

௜௜ ௜
ଶ

௜ ௜ ௜
159

Multivariate Quadratic with Diagonal

• Equal-value contours will be parallel to the axis
– All “slices” parallel to an axis are shifted versions of one another

௜௜ ௜
ଶ

௜ ௜ ௜
160

“Descents” are uncoupled

• The optimum of each coordinate is not affected by the other coordinates
– I.e. we could optimize each coordinate independently

• Note: Optimal learning rate is different for the different coordinates

ଵଵ ଵ
ଶ

ଵ ଵ ଵ ଶଶ ଶ
ଶ

ଶ ଶ ଶ

ଵ,௢௣௧ ଵଵ
ିଵ

ଶ,௢௣௧ ଶଶ
ିଵ

161

Vector update rule

• Conventional vector update rules for gradient descent:
update entire vector against direction of gradient
– Note : Gradient is perpendicular to equal value contour

– The same learning rate is applied to all components

(௞ାଵ)
(௞)

162

Problem with vector update rule

• The learning rate must be lower than twice the smallest
optimal learning rate for any component

– Otherwise the learning will diverge

• This, however, makes the learning very slow
– And will oscillate in all directions where ௜,௢௣௧ ௜,௢௣௧

𝑇

163

Dependence on learning rate

• ଵ,௢௣௧ ଶ,௢௣௧

• ଶ,௢௣௧

• ଶ,௢௣௧

• ଶ,௢௣௧

• ଶ,௢௣௧

• ଶ,௢௣௧

164

Dependence on learning rate

•
165

Convergence
• Convergence behaviors become increasingly

unpredictable as dimensions increase

• For the fastest convergence, ideally, the learning rate
must be close to both, the largest and the
smallest
– To ensure convergence in every direction
– Generally infeasible

• Convergence is particularly slow if ೔
೔,೚೛೟

೔
೔,೚೛೟

is large

– The “condition” number is small
166

Comments on the quadratic
• Why are we talking about quadratics?

– Quadratic functions form some kind of benchmark
– Convergence of gradient descent is linear

• Meaning it converges to solution exponentially fast

• The convergence for other kinds of functions can be viewed against this
benchmark

• Actual losses will not be quadratic, but may locally have other structure
– Local between current location and nearest local minimum

• Some examples in the following slides..
– Strong convexity
– Lifschitz continuity
– Lifschitz smoothness

– ..and how they affect convergence of gradient descent

167

Quadratic convexity

• A quadratic function has the form ଵ
ଶ

் ்

– Every “slice” is a quadratic bowl

• In some sense, the “standard” for gradient-descent based optimization
– Others convex functions will be steeper in some regions, but flatter in others

• Gradient descent solution will have linear convergence
– Take steps to get within of the optimal solution

168

Strong convexity

• A strongly convex function is at least quadratic in its convexity
– Has a lower bound to its second derivative

• The function sits within a quadratic bowl
– At any location, you can draw a quadratic bowl of fixed convexity (quadratic constant equal to

lower bound of 2nd derivative) touching the function at that point, which contains it

• Convergence of gradient descent algorithms at least as good as that of the enclosing
quadratic

169

Strong convexity

170

• A strongly convex function is at least quadratic in its convexity
– Has a lower bound to its second derivative

• The function sits within a quadratic bowl
– At any location, you can draw a quadratic bowl of fixed convexity (quadratic constant equal to

lower bound of 2nd derivative) touching the function at that point, which contains it

• Convergence of gradient descent algorithms at least as good as that of the enclosing
quadratic

Types of continuity

• Most functions are not strongly convex (if they are convex)
• Instead we will talk in terms of Lifschitz smoothness
• But first : a definition
• Lifschitz continuous: The function always lies outside a cone

– The slope of the outer surface is the Lifschitz constant

–
171

From wikipedia

Lifschitz smoothness

• Lifschitz smooth: The function’s derivative is Lifschitz continuous
– Need not be convex (or even differentiable)
– Has an upper bound on second derivative (if it exists)

• Can always place a quadratic bowl of a fixed curvature within the function
– Minimum curvature of quadratic must be >= upper bound of second

derivative of function (if it exists)
172

Lifschitz smoothness

173

• Lifschitz smooth: The function’s derivative is Lifschitz continuous
– Need not be convex (or even differentiable)
– Has an upper bound on second derivative (if it exists)

• Can always place a quadratic bowl of a fixed curvature within the function
– Minimum curvature of quadratic must be >= upper bound of second

derivative of function (if it exists)

Types of smoothness

174

• A function can be both strongly convex and Lipschitz smooth
– Second derivative has upper and lower bounds
– Convergence depends on curvature of strong convexity (at least linear)

• A function can be convex and Lifschitz smooth, but not strongly convex
– Convex, but upper bound on second derivative
– Weaker convergence guarantees, if any (at best linear)
– This is often a reasonable assumption for the local structure of your loss function

Types of smoothness

175

• A function can be both strongly convex and Lipschitz smooth
– Second derivative has upper and lower bounds
– Convergence depends on curvature of strong convexity (at least linear)

• A function can be convex and Lifschitz smooth, but not strongly convex
– Convex, but upper bound on second derivative
– Weaker convergence guarantees, if any (at best linear)
– This is often a reasonable assumption for the local structure of your loss function

Convergence Problems
• For quadratic (strongly) convex functions, gradient descent is exponentially

fast
– Linear convergence

• Assuming learning rate is non-divergent

• For generic (Lifschitz Smooth) convex functions however, it is very slow

(௞) ∗ (଴) ∗

– And inversely proportional to learning rate

(௞) ∗ (଴) ∗

– Takes iterations to get to within of the solution

– An inappropriate learning rate will destroy your happiness

• Second order methods will locally convert the loss function to quadratic
– Convergence behavior will still depend on the nature of the original function

• Continuing with the quadratic-based explanation…
176

Convergence
• Convergence behaviors become increasingly

unpredictable as dimensions increase

• For the fastest convergence, ideally, the learning rate
must be close to both, the largest and the
smallest
– To ensure convergence in every direction
– Generally infeasible

• Convergence is particularly slow if ೔
೔,೚೛೟

೔
೔,೚೛೟

is large

– The “condition” number is small
177

One reason for the problem

178

• The objective function has different eccentricities in different directions
– Resulting in different optimal learning rates for different directions
– The problem is more difficult when the ellipsoid is not axis aligned: the steps along the two

directions are coupled! Moving in one direction changes the gradient along the other

• Solution: Normalize the objective to have identical eccentricity in all directions
– Then all of them will have identical optimal learning rates
– Easier to find a working learning rate

Solution: Scale the axes

• Scale (and rotate) the axes, such that all of them have identical (identity) “spread”
– Equal-value contours are circular
– Movement along the coordinate axes become independent

• Note: equation of a quadratic surface with circular equal-value contours can be
written as

் ்

ଵ

ଶ

ଵ

ଶ

ଵ ଵ ଵ

ଶ ଶ ଶ

ଵ

ଶ

ଵ

ଶ

ଵ

ଶ

179

Scaling the axes
• Original equation:

• We want to find a (diagonal) scaling matrix such that

• And

180

Scaling the axes
• Original equation:

• We want to find a (diagonal) scaling matrix such that

• And

181

By inspection:

Scaling the axes
• We have

• Equating linear and quadratic coefficients, we get

• Solving: ,
182

Scaling the axes

• We have

• Solving for we get

,

183

Scaling the axes

• We have

• Solving for we get

,

184

The Inverse Square Root of A

• For any positive definite , we can write

– Eigen decomposition
– is an orthogonal matrix
– is a diagonal matrix of non-zero diagonal entries

• Defining
– Check

• Defining
– Check:

185

Returning to our problem

•

• Computing the gradient, and noting that is
symmetric, we can relate and :

186

Returning to our problem

•

• Gradient descent rule:

–

– Learning rate is now independent of direction

• Using , and

187

Modified update rule

•

• Leads to the modified gradient descent rule

188

଴.ହ

் ் ் ்

For non-axis-aligned quadratics..

• If is not diagonal, the contours are not axis-aligned
– Because of the cross-terms 𝑎௜௝𝑤௜𝑤௝

– The major axes of the ellipsoids are the Eigenvectors of 𝐀, and their diameters are
proportional to the Eigen values of 𝐀

• But this does not affect the discussion
– This is merely a rotation of the space from the axis-aligned case
– The component-wise optimal learning rates along the major and minor axes of the equal-

contour ellipsoids will be different, causing problems
• The optimal rates along the axes are Inversely proportional to the eigenvalues of 𝐀

் ்

௜௜ ௜
ଶ

௜

௜௝ ௜ ௝

௜ஷ௝

௜ ௜

௜

189

For non-axis-aligned quadratics..

• The component-wise optimal learning rates along the major and
minor axes of the contour ellipsoids will differ, causing problems
– Inversely proportional to the eigenvalues of

• This can be fixed as before by rotating and resizing the different
directions to obtain the same normalized update rule as before:

(௞ାଵ) (௞) ିଵ
190

Generic differentiable multivariate
convex functions

• Taylor expansion
(𝒌)

𝐰
(𝒌) (𝒌) (𝒌) 𝑻

𝑬
(𝒌) (𝒌)

191

Generic differentiable multivariate
convex functions

• Taylor expansion

(𝒌)
𝐰

(𝒌) (𝒌) (𝒌) 𝑻
𝑬

(𝒌) (𝒌)

• Note that this has the form ଵ
ଶ

் ்

• Using the same logic as before, we get the normalized update rule
(௞ାଵ) (௞)

ா
(௞) ିଵ

𝐰
(௞) 𝑇

• For a quadratic function, the optimal is 1 (which is exactly Newton’s method)
– And should not be greater than 2!

192

Minimization by Newton’s method

• Iterated localized optimization with quadratic approximations
𝑇

–

Fit a quadratic at each
point and find the
minimum of that
quadratic

193

• Iterated localized optimization with quadratic approximations
𝑇

–

Minimization by Newton’s method

194

• Iterated localized optimization with quadratic approximations
𝑇

–

Minimization by Newton’s method

195

• Iterated localized optimization with quadratic approximations
𝑇

–

Minimization by Newton’s method

196

Minimization by Newton’s method

• Iterated localized optimization with quadratic approximations
𝑇

–
197

Minimization by Newton’s method

• Iterated localized optimization with quadratic approximations
𝑇

–
198

Minimization by Newton’s method

• Iterated localized optimization with quadratic approximations
𝑇

–
199

Minimization by Newton’s method

• Iterated localized optimization with quadratic approximations
𝑇

–
200

Minimization by Newton’s method

• Iterated localized optimization with quadratic approximations
𝑇

–
201

Minimization by Newton’s method

• Iterated localized optimization with quadratic approximations
𝑇

–
202

Minimization by Newton’s method

• Iterated localized optimization with quadratic approximations
𝑇

–
203

Issues: 1. The Hessian
• Normalized update rule

• For complex models such as neural networks, with a
very large number of parameters, the Hessian

is extremely difficult to compute
– For a network with only 100,000 parameters, the Hessian

will have 1010 cross-derivative terms

– And its even harder to invert, since it will be enormous

204

Issues: 1. The Hessian

• For non-convex functions, the Hessian may not be
positive semi-definite, in which case the algorithm can
diverge
– Goes away from, rather than towards the minimum
– Now requires additional checks to avoid movement in

directions corresponding to –ve Eigenvalues of the Hessian

205

Issues: 1. The Hessian

• For non-convex functions, the Hessian may not be
positive semi-definite, in which case the algorithm can
diverge
– Goes away from, rather than towards the minimum
– Now requires additional checks to avoid movement in

directions corresponding to –ve Eigenvalues of the Hessian

206

Issues: 1 – contd.
• A great many approaches have been proposed in the

literature to approximate the Hessian in a number of ways
and improve its positive definiteness
– Boyden-Fletcher-Goldfarb-Shanno (BFGS)

• And “low-memory” BFGS (L-BFGS)
• Estimate Hessian from finite differences

– Levenberg-Marquardt
• Estimate Hessian from Jacobians
• Diagonal load it to ensure positive definiteness

– Other “Quasi-newton” methods

• Hessian estimates may even be local to a set of variables

• Not particularly popular anymore for large neural networks..

207

Issues: 2. The learning rate

• Much of the analysis we just saw was based on trying
to ensure that the step size was not so large as to cause
divergence within a convex region

–

208

Issues: 2. The learning rate

• For complex models such as neural networks the loss
function is often not convex
– Having can actually help escape local optima

• However always having will ensure that you
never ever actually find a solution

209

Decaying learning rate

• Start with a large learning rate
– Greater than 2 (assuming Hessian normalization)
– Gradually reduce it with iterations

Note: this is actually a
reduced step size

210

Decaying learning rate
• Typical decay schedules

– Linear decay: ௞
ఎబ

௞ାଵ

– Quadratic decay: ௞
ఎబ

௞ାଵ మ

– Exponential decay: ௞ ଴
ିఉ௞, where

• A common approach (for nnets):
1. Train with a fixed learning rate until loss (or performance on

a held-out data set) stagnates
2. , where (typically 0.1)
3. Return to step 1 and continue training from where we left off

211

Story so far : Convergence
• Gradient descent can miss obvious answers

– And this may be a good thing

• Convergence issues abound
– The loss surface has many saddle points

• Although, perhaps, not so many bad local minima
• Gradient descent can stagnate on saddle points

– Vanilla gradient descent may not converge, or may
converge toooooo slowly
• The optimal learning rate for one component may be too

high or too low for others

212

Story so far : Second-order methods

• Second-order methods “normalize” the variation
along the components to mitigate the problem of
different optimal learning rates for different
components
– But this requires computation of inverses of second-

order derivative matrices

– Computationally infeasible

– Not stable in non-convex regions of the loss surface

– Approximate methods address these issues, but
simpler solutions may be better

213

Story so far : Learning rate

• Divergence-causing learning rates may not be a
bad thing
– Particularly for ugly loss functions

• Decaying learning rates provide good
compromise between escaping poor local minima
and convergence

• Many of the convergence issues arise because we
force the same learning rate on all parameters

214

Lets take a step back

• Problems arise because of requiring a fixed
step size across all dimensions
– Because step are “tied” to the gradient

• Lets try releasing this requirement

𝑇(௞ାଵ)
(௞)

215

Derivative-inspired algorithms

• Algorithms that use derivative information for
trends, but do not follow them absolutely

• Rprop
• Quick prop

216

RProp

• Resilient propagation
• Simple algorithm, to be followed independently for each

component
– I.e. steps in different directions are not coupled

• At each time
– If the derivative at the current location recommends continuing in the

same direction as before (i.e. has not changed sign from earlier):
• increase the step, and continue in the same direction

– If the derivative has changed sign (i.e. we’ve overshot a minimum)
• reduce the step and reverse direction

217

Rprop

• Select an initial value and compute the derivative
– Take an initial step against the derivative

• In the direction that reduces the function

– ∆𝑤 = 𝑠𝑖𝑔𝑛
ௗா(௪ෝ)

ௗ௪
∆𝑤

– 𝑤ෝ = 𝑤ෝ − ∆𝑤

଴

଴

Orange arrow shows
direction of derivative, i.e.
direction of increasing E(w)

218

Rprop

• Compute the derivative in the new location
– If the derivative has not changed sign from the previous

location, increase the step size and take a longer step
• =

•

଴ ଵ

଴

a > 1

଴

Orange arrow shows
direction of derivative, i.e.
direction of increasing E(w)

219

Rprop

• Compute the derivative in the new location
– If the derivative has not changed sign from the previous

location, increase the step size and take a step
• =

•

଴ ଵ

଴

ଶ

ଶ
଴

a > 1

଴

Orange arrow shows
direction of derivative, i.e.
direction of increasing E(w)

220

Rprop

• Compute the derivative in the new location
– If the derivative has changed sign
– Return to the previous location

• 𝑤ෝ = 𝑤ෝ + ∆𝑤

– Shrink the step
• ∆𝑤 = 𝛽∆𝑤

– Take the smaller step forward
• 𝑤ෝ = 𝑤ෝ − ∆𝑤

଴ ଵ

଴

ଶ

ଶ
଴

଴

ଷ

Orange arrow shows
direction of derivative, i.e.
direction of increasing E(w)

221

Rprop

• Compute the derivative in the new location
– If the derivative has changed sign
– Return to the previous location

• 𝑤ෝ = 𝑤ෝ + ∆𝑤

– Shrink the step
• ∆𝑤 = 𝛽∆𝑤

– Take the smaller step forward
• 𝑤ෝ = 𝑤ෝ − ∆𝑤

଴ ଵ

଴

ଶ

ଶ
଴

଴

ଷ

Orange arrow shows
direction of derivative, i.e.
direction of increasing E(w)

222

Rprop

• Compute the derivative in the new location
– If the derivative has changed sign
– Return to the previous location

• 𝑤ෝ = 𝑤ෝ + ∆𝑤

– Shrink the step
• ∆𝑤 = 𝛽∆𝑤

– Take the smaller step forward
• 𝑤ෝ = 𝑤ෝ − ∆𝑤

଴ ଵ

଴

ଶ

ଶ
଴

଴

b < 1

Orange arrow shows
direction of derivative, i.e.
direction of increasing E(w)

223

Rprop

• Compute the derivative in the new location
– If the derivative has changed sign
– Return to the previous location

• 𝑤ෝ = 𝑤ෝ + ∆𝑤

– Shrink the step
• ∆𝑤 = 𝛽∆𝑤

– Take the smaller step forward
• 𝑤ෝ = 𝑤ෝ − ∆𝑤

଴ ଵ

଴

ଶ

ଶ
଴

଴

b < 1

Orange arrow shows
direction of derivative, i.e.
direction of increasing E(w)

224

Rprop (simplified)
• Set ,

• For each layer , for each :
– Initialize ௟,௜,௝, ௟,௜,௝ ,

–
ௗா௥௥(௪೗,೔,ೕ)

ௗ௪೗,೔,ೕ

– ௟,௜,௝ ௟,௜,௝

– While not converged:
• 𝑤௟,௜,௝ = 𝑤௟,௜,௝ − ∆𝑤௟,௜,௝

• 𝐷 𝑙, 𝑖, 𝑗 =
ௗா௥௥(௪೗,೔,ೕ)

ௗ௪೗,೔,ೕ

• If sign 𝑝𝑟𝑒𝑣𝐷 𝑙, 𝑖, 𝑗 == sign 𝐷 𝑙, 𝑖, 𝑗 :

– ∆𝑤௟,௜,௝ = min (𝛼∆𝑤௟,௜,௝, ∆௠௔௫)

– 𝑝𝑟𝑒𝑣𝐷 𝑙, 𝑖, 𝑗 = 𝐷 𝑙, 𝑖, 𝑗

• else:
– 𝑤௟,௜,௝ = 𝑤௟,௜,௝ + ∆𝑤௟,௜,௝

– ∆𝑤௟,௜,௝ = max (𝛽∆𝑤௟,௜,௝ , ∆௠௜௡)

Ceiling and floor on step

225

Rprop (simplified)
• Set ,

• For each layer , for each :
– Initialize ௟,௜,௝, ௟,௜,௝ ,

–
ௗா௥௥(௪೗,೔,ೕ)

ௗ௪೗,೔,ೕ

– ௟,௜,௝ ௟,௜,௝

– While not converged:
• 𝑤௟,௜,௝ = 𝑤௟,௜,௝ − ∆𝑤௟,௜,௝

• 𝐷 𝑙, 𝑖, 𝑗 =
ௗா௥௥(௪೗,೔,ೕ)

ௗ௪೗,೔,ೕ

• If sign 𝑝𝑟𝑒𝑣𝐷 𝑙, 𝑖, 𝑗 == sign 𝐷 𝑙, 𝑖, 𝑗 :

– ∆𝑤௟,௜,௝ = 𝛼∆𝑤௟,௜,௝

– 𝑝𝑟𝑒𝑣𝐷 𝑙, 𝑖, 𝑗 = 𝐷 𝑙, 𝑖, 𝑗

• else:
– 𝑤௟,௜,௝ = 𝑤௟,௜,௝ + ∆𝑤௟,௜,௝

– ∆𝑤௟,௜,௝ = 𝛽∆𝑤௟,௜,௝

Obtained via backprop

Note: Different parameters updated
independently

226

RProp
• A remarkably simple first-order algorithm,

that is frequently much more efficient than
gradient descent.
– And can even be competitive against some of the

more advanced second-order methods

• Only makes minimal assumptions about the
loss function
– No convexity assumption

227

QuickProp

• Quickprop employs the Newton updates with two modifications
(௞ାଵ) (௞)

ா
(௞) ିଵ

𝐰
(௞) 𝑇

• But with two modifications

228

QuickProp: Modification 1

• It treats each dimension independently
• For

௜
௞ାଵ

௜
௞ ᇱᇱ

௜
௞

௝
௞ ିଵ

௜
௞

௝
௞

• This eliminates the need to compute and invert expensive Hessians

𝑤

𝐸(𝑤)

𝑤𝑘𝑤௞ାଵ

Within each component

229

QuickProp: Modification 2

• It approximates the second derivative through finite differences
• For

௜
௞ାଵ

௜
௞

௜
௞

௜
௞ିଵ ିଵ

௜
௞

௝
௞

• This eliminates the need to compute expensive double derivatives

𝑤

𝐸(𝑤)

𝑤𝑘𝑤௞ାଵ

Within each component

230

QuickProp

• Updates are independent for every parameter
• For every layer , for every connection from node in the th

layer to node in the th layer:

(௞ାଵ) (௞)
ᇱ ௞ (௞ିଵ)

(௞ିଵ)

ିଵ

(௞)

Finite-difference approximation to double derivative
obtained assuming a quadratic

௟,௜௝
(௞ାଵ)

௟,௜௝
(௞)

௟,௜௝
(௞)

௟,௜௝
(௞) ௟,௜௝

(௞ିଵ)

ᇱ
௟,௜௝
(௞) ᇱ

௟,௜௝
(௞ିଵ)

ᇱ
௟,௜௝
(௞)

231

QuickProp

• Updates are independent for every parameter
• For every layer , for every connection from node in the th

layer to node in the th layer:

(௞ାଵ) (௞)
ᇱ ௞ (௞ିଵ)

(௞ିଵ)

ିଵ

(௞)

Finite-difference approximation to double derivative
obtained assuming a quadratic

௟,௜௝
(௞ାଵ)

௟,௜௝
(௞)

௟,௜௝
(௞)

௟,௜௝
(௞) ௟,௜௝

(௞ିଵ)

ᇱ
௟,௜௝
(௞) ᇱ

௟,௜௝
(௞ିଵ)

ᇱ
௟,௜௝
(௞)

Computed using
backprop

232

Quickprop

• Prone to some instability for non-convex
objective functions

• But is still one of the fastest training
algorithms for many problems

233

Story so far : Convergence
• Gradient descent can miss obvious answers

– And this may be a good thing

• Vanilla gradient descent may be too slow or unstable due to
the differences between the dimensions

• Second order methods can normalize the variation across
dimensions, but are complex

• Adaptive or decaying learning rates can improve convergence

• Methods that decouple the dimensions can improve
convergence

234

A closer look at the convergence
problem

• With dimension-independent learning rates, the solution will converge
smoothly in some directions, but oscillate or diverge in others

• Proposal:
– Keep track of oscillations
– Emphasize steps in directions that converge smoothly
– Shrink steps in directions that bounce around..

235

A closer look at the convergence
problem

• With dimension-independent learning rates, the solution will converge
smoothly in some directions, but oscillate or diverge in others

• Proposal:
– Keep track of oscillations
– Emphasize steps in directions that converge smoothly
– Shrink steps in directions that bounce around..

236

The momentum methods
• Maintain a running average of all

past steps
– In directions in which the

convergence is smooth, the
average will have a large value

– In directions in which the
estimate swings, the positive and
negative swings will cancel out in
the average

• Update with the running
average, rather than the current
gradient

237

Momentum Update

• The momentum method maintains a running average of all gradients until
the current step

(௞) (௞ିଵ) ௐ
(௞ିଵ) 𝑇

(௞) (௞ିଵ) (௞)

– Typical value is 0.9

• The running average steps
– Get longer in directions where gradient stays in the same sign
– Become shorter in directions where the sign keeps flipping

Plain gradient update With momentum

238

Training by gradient descent

• Initialize all weights

• Do:
– For all , initialize

ೖ

– For all
• For every layer :

– Compute ௐೖ ௧ ௧

– Compute ௐೖ

ଵ

் ௐೖ ௧ ௧

– For every layer :
௞ ௞ ௐೖ

𝑇

• Until has converged
239

Training with momentum

• Initialize all weights
• Do:

– For all layers , initialize
ೖ

,

– For all
• For every layer :

– Compute gradient ௐೖ ௧ ௧

– ௐೖ

ଵ

் ௐೖ ௧ ௧

– For every layer
௞ ௞ ௐೖ

𝑇

௞ ௞ ௞

• Until has converged
240

Momentum Update

• The momentum method

• At any iteration, to compute the current step:
– First computes the gradient step at the current location

– Then adds in the historical average step

241

Momentum Update

• The momentum method

• At any iteration, to compute the current step:
– First computes the gradient step at the current location

– Then adds in the historical average step

242

Momentum Update

• The momentum method

• At any iteration, to compute the current step:
– First computes the gradient step at the current location

– Then adds in the scaled previous step
• Which is actually a running average

243

Momentum Update

• The momentum method
 𝑇

• At any iteration, to compute the current step:
– First computes the gradient step at the current location
– Then adds in the scaled previous step

• Which is actually a running average

– To get the final step
244

Momentum update

• Takes a step along the past running average
after walking along the gradient

• The procedure can be made more optimal by
reversing the order of operations..

245

Nestorov’s Accelerated Gradient

• Change the order of operations

• At any iteration, to compute the current step:
– First extend by the (scaled) historical average

– Then compute the gradient at the resultant position

– Add the two to obtain the final step
246

Nestorov’s Accelerated Gradient

• Change the order of operations

• At any iteration, to compute the current step:
– First extend the previous step

– Then compute the gradient at the resultant position

– Add the two to obtain the final step
247

Nestorov’s Accelerated Gradient

• Change the order of operations
• At any iteration, to compute the current step:

– First extend the previous step
– Then compute the gradient step at the resultant

position
– Add the two to obtain the final step

248

Nestorov’s Accelerated Gradient

• Change the order of operations
• At any iteration, to compute the current step:

– First extend the previous step
– Then compute the gradient step at the resultant

position
– Add the two to obtain the final step

249

Nestorov’s Accelerated Gradient

• Nestorov’s method

250

Nestorov’s Accelerated Gradient

• Comparison with momentum (example from
Hinton)

• Converges much faster

251

Training with Nestorov
• Initialize all weights
• Do:

– For all layers , initialize ௐೖ
, ௞

– For every layer
𝑊௞ = 𝑊௞ + 𝛽Δ𝑊௞

– For all
• For every layer :

– Compute gradient 𝛻ௐೖ
𝑫𝒊𝒗(𝑌௧, 𝑑௧)

– 𝛻ௐೖ
𝐿𝑜𝑠𝑠 +=

ଵ

்
𝛻ௐೖ

𝑫𝒊𝒗(𝑌௧, 𝑑௧)

– For every layer
𝑊௞ = 𝑊௞ − 𝜂(𝛻ௐೖ

𝐿𝑜𝑠𝑠)𝑇

Δ𝑊௞ = 𝛽Δ𝑊௞ − 𝜂(𝛻ௐೖ
𝐿𝑜𝑠𝑠)𝑇

• Until has converged
252

Momentum and trend-based
methods..

• We will return to this topic again, very soon..

253

Story so far : Convergence
• Gradient descent can miss obvious answers

– And this may be a good thing

• Vanilla gradient descent may be too slow or unstable due to the
differences between the dimensions

• Second order methods can normalize the variation across
dimensions, but are complex

• Adaptive or decaying learning rates can improve convergence

• Methods that decouple the dimensions can improve convergence

• Momentum methods which emphasize directions of steady
improvement are demonstrably superior to other methods

254

Coming up

• Incremental updates
• Revisiting “trend” algorithms
• Generalization
• Tricks of the trade

– Divergences..
– Activations
– Normalizations

255

