
Reinforcement Learning

11-785, Fall 2019
Defining MDPs, Planning

time
un

de
rs

ta
nd

ab
ili

ty

You are here Slide 10

0

The story of Flider and Spy

• Flider the spider is at the far corner of the
room, and Spy the fly is sleeping happily at the
near corner

The story of Flider and Spy

• Flider only walks along edges
• She begins walking along

one of the three edges at random
• She takes one minute to cover the distance

from one corner to the other along any edge
• When she arrives at the new corner, she

randomly chooses one of the three edges and
continues walking (she may even turn back)

The story of Flider and Spy

• What is the life expectancy of Spy?

?

Flider and Spy

• Let be the life expectancy if Flider is at the
ith corner

?
ଵ ଶ

ଷ

ସ

ହ

଼

• is the life expectancy if Flider the Spider begins walking
towards the ith corner
– 1 minute to get to the corner plus the time taken to get from that

corner to Spy the fly

• 8 Equations, 8 unknowns, trivial to solve

?

ଵ

ଶ

ଷ

ସ

ହ

଼

ଵ ଶ ଷ ସ

ଶ ଵ ଼

 ଼ ହ

଼

Flider and Spy

• What if the room has many corners?
– A Fuller’s dome?

Flider and Spy

Alpha Go

• “Learning” to play
– How?

11

Alpha Go: 2016Deep Blue: 1997

Problems?

• How do we write a program to beat Magnus
Carlsson?

• Can’t just make a table of rules
– Too many positions, too many combinations

• How about some general principles?
– Who will enumerate them?
– How many are there in the first place?

• How do humans do it?

12

Learning from experience

• Learn by playing (or observing)
– Problem: The tree of possible moves is

exponentially large

• Learn to generalize
– What do we mean by “generalize”?

– If a particular board position always leads to loss,
avoid any moves that move you into that position

13

Lets draw a diagram..

• Circles are game states
– Exponentially large number of them
– In the beginning we don’t know if they are good or bad

• Each state can move into one of N states depending on the opponent’s
move
– Figure does not show arrows

14

Lets draw a diagram..

• Play a very large number of games
– Each time a board position leads to victory, give it a

little green color
– Each time it leads to a loss give it a little red

15

• Sequence of game states we moved into until the winning state
– Alternates with states arrived at by moves by the opponent

• All of these are “winning” states: color them green
• But things from the distant past are less certain

– Too many possibilities; cant be certain of their “winningness”
– Fade the green with distance

16

A game we won

A game we won

• Sequence of game states we moved into until the winning state
– Alternates with states arrived at by moves by the opponent

• All of these are “winning” states: color them green
• But things from the distant past are less certain

– Too many possibilities; cant be certain of their “winningness”
– Fade the green with distance

17

A game we lost

• Sequence of game states we moved into until the losing state
– Alternates with states arrived at by moves by the opponent

• All of these are “losing” states: color them red
• But things from the distant past are less certain

– Too many possibilities; cant be certain of their “losingness”
– Fade the red with distance

18

Loss: final move is
by opponent

Continue playing games

• Play many many games

• Some of which you will lose..

19

Continue playing games

• Play many many games

• Some of which you will lose..

• And some you’ll win..
20

Continue playing games

• When multiple games visit a state, simply average the colors derived from
all visits
– Some states will get greener
– Some will get redder
– Some, that can lead to both victory and loss will become different shades of

yellow..
• More in the early stages of the game than during the endgame

21

Collecting more games…

• You can also learn colors from your opponent’s moves
– When you win he/she loses and vice versa

• You can learn from others’ games
– Collections of games by amateurs and experts, of which you can find millions

in the books

• To really speed up matters, play with yourself
– A schizophrenic computer can play thousands of games with itself in the time

that it plays with another person 22

Lets draw a diagram..

• Eventually, we’ll get many board positions with different shades of
green (more winning than losing), red (more losing than winning) or
various shades of yellow/green/orange (can go either way)

• We will also get many “blank” positions that were never visited in
all our practice games
– In fact the vast majority of positions will be unvisited!

23

Lets draw a diagram..

• Eventually, we’ll get many board positions with different shades of
green (more winning than losing), red (more losing than winning) or
various shades of yellow/green/orange (can go either way)

• We will also get many “blank” positions that were never visited in
all our practice games
– In fact the vast majority of positions will be unvisited!

24

Lets draw a diagram..

• Generalization: From the coloured nodes, learn some way of colouring the
blank nodes too
– Which will have some colour between red and green

• Different nodes will have different colours

• The magic: some function that assigns color to different board positions
– How do you describe a board position numerically
– What type of function maps a board position to a color between red and green

25

GAME TIME

• Black circle: Current position

• Where do we move?

26

GAME TIME

• Evaluate all our possible moves
– And all of opponents responses
– Can evaluate the graph to any depth (compute and memory bound)

• Identify the move that gives the opponent the least chance to win
– The opponent’s best path leads to a least red state

27

A little terminology

• Markov Process: Does not matter how you
got here, only matters where you are

An interesting class of problems

• Is a move good?
– You will not know until the end of the game

An interesting class of problems

• Is an investment plan good?
– You will not know for a while

An interesting class of problems

• Do I
– Change lane left?
– Change lane right?
– Accelerate?
– Decelerate?

Reward-based problems

• And many others

• Common theme: These are control problems where
– Your actions beget rewards

• Win the game
• Make money
• Get home sooner

– But not deterministically
• A world out there that is not predictable

• From experience of belated rewards, you must learn to
act rationally

General cartoon of the world

• Agent operates in an environment
– Agent may be you..
– Environment is the game, the market, the road..

General cartoon of the world

• Agent takes actions which affect the
environment

action

General cartoon of the world

• Agent takes actions which affect the environment
• Which changes in a somewhat unpredictable way

action

General cartoon of the world

• Agent takes actions which affect the environment
• Which changes in a somewhat unpredictable way
• Which affects the agent’s situation

action

General cartoon of the world

• The agent also receives rewards..
– Which may be apparent immediately
– Or not apparent for a very long time

action

Challenge

• How must the agent behave to maximize its
rewards

What the environment “experiences”

• Responds to some action by the agent
– Changes in response

• Returns some reward (or punishment) to agent

action

What the Agent sees

• The agent may observe something about its environment
– Sensor readings, images of a game board, stock indices..

• The agent takes actions
• The agent receives rewards

• This is the agent’s world; it must make sense of it
• Again: Agent’s objective to take the actions that maximize

rewards

actionObservations

Lets formalize the problem
• These can be cast as problems of reinforcement learning

• There is no supervisor, only a reward signal
– Did you get home sooner
– Did you win the game
– Did you make money?

• i.e. nobody telling the agent “you did well”

• Reward is a scalar – a single number, may be negative
– Game was won/lost (binary)
– Time taken to arrive
– Amount of money made

• Reward may be delayed
– Wait till the end of the game!

• Agents actions affect its current and future rewards
– Must optimize actions for maximum reward

௧௧

௧

To Maximize Reward

• We can represent the environment as a process
– A mathematical characterization with a true value for its

parameters representing the actual environment

• The agent must model this environment process
– Formulate its own model for the environment, which must

ideally match the true values as closely as possible
• Based only on what it observes

• Agent must formulate winning strategy based on model of
environment

Lets formalize the system

• At each time the agent:
– Makes an observation of

the environment
– Receives a reward
– Performs an action

• At each time the environment:
– Receives an action
– Emits a reward
– Changes and produces an observation

௧௧

௧

௧

௧ାଵ

௧ାଵ

Lets formalize the system

• At each time the agent:
– Makes an observation of

the environment
– Receives a reward
– Performs an action

• At each time the environment:
– Receives an action
– Emits a reward
– Changes and produces an observation

௧௧

௧

௧

௧ାଵ

௧ାଵ

From the perspective of the Agent
• What the agent perceives..

• The following History:

•

• The total history at any time is the sequence of
observations, rewards and actions

• We need to model this sequence such that at any time t,
the best can be chosen
– The Strategy that maximizes total reward

Lets formalize the system

• At each time the agent:
– Makes an observation of

the environment
– Receives a reward
– Performs an action

• At each time the environment:
– Receives an action
– Emits a reward
– Changes and produces an observation

௧௧

௧

௧

௧ାଵ

௧ାଵ

Can define a “state”

• Fully captures the “status” of the system
– E.g., in an automobile: [position, velocity, acceleration]

– In traffic: the position, velocity, acceleration of every
vehicle on the road

– In Chess: the state of the board + whose turn it is next

The state of the environment

• The environment’s state!
– This is what will finally decide the rewards

• May be a complex combination of many things
• Generally assumed to be dynamic – keeps changing
• The agent’s actions can affect the way in which it responds

– But agent may not be able to observe all of it

௧

Markov property

• Markov Property: A well-defined state fully captures all
information needed to predict the future
– No additional information from the past required

• The environment’s future only depends on its present

௧

A brief trip to Nostalgia..

• Glider, Flider’s brother, never turns around during his wanderings
– On arriving at any corner, he chooses one of the two “forward” paths

randomly.
• The future possibilities depend on the edge he arrived from

– Is he Markovian?

Glider is a Markov dude!

• Any causal system can be viewed as Markov, with appropriately
defined state
– The Information state ௧ may differ from the apparent state ௧

– Defining ௧ ଵ ଶ ௧

– ௧ାଵ ଵ ௧ ௧ାଵ ௧

Markov property

• Assumption: The true environment state is
Markov

• The environment’s future only depends on its
present

௧

Markov property

• To be able to maximize his reward, the agent must ideally
know all about the environment state and its dynamics..

௧

To Maximize Reward

• We can represent the environment as a process
– A mathematical characterization with a true value for its

parameters representing the actual environment

• The agent must model this environment process
– Formulate its own model for the environment, which must

ideally match the true values as closely as possible
• Based only on what it observes

• Agent must formulate winning strategy based on
model of environment

The Agent’s Side of the Story

• Agent has an internal representation of the
environment state
– May not match the true one at all

• May be defined in any manner
– Formally the agent state is some function

of the history
– The closer the agent’s model is to the true

environment state, the better the agent will be able to
strategize

Defining Agent State

• What is the outcome?

Image lifted from David Silver

Defining Agent State

• Different definitions of state result in different
predictions

• True environment state not really known
– Would greatly improve prediction if known

Markov property and observability

• Environment state is Markov
– An assumption that is generally valid for a properly defined true

environment (information) state

௧ାଵ ଵ ௧ ௧ାଵ ௧

• In theory, if the agent doesn’t observe the environment’s internals,
he cannot model what he observes of the environment as Markov!
– Amazing, but trivial result
– E.g. the observations generated by an HMM are not Markov

• In practice, the agent may assume anything
– The agent may only have a local model of the true state of the system

• But can still assume that the states in its model behave in the same Markovian
way that the environment’s actual states do

Markov property and observability

• Observability
– The agent’s observations inform it about the environment state
– The agent may observe the entire environment state

• Now the agents state is isomorphic to the environment state

• Note – observing the state is not the same as knowing the state’s true dynamics 𝑃൫𝑆௧ାଵ =

𝑠|𝑆௧ = 𝑠൯

– Markov Decision Process

– Or only part of it
• E.g. only seeing some stock prices, or only the traffic immediately in front of you
• Partially Observable Markov Decision Process

Chess: environment state
fully observable to agent Poker: environment state only partially and indirectly

observable to agent

Markov property and observability

• Observability
– The agent’s observations inform it about the environment state
– The agent may observe the entire environment state

• Now the agents state is isomorphic to the environment state

• Note – observing the state is not the same as knowing the state’s true dynamics 𝑃൫𝑆௧ାଵ =

𝑠|𝑆௧ = 𝑠൯

– Markov Decision Process

– Or only part of it
• E.g. only seeing some stock prices, or only the traffic immediately in front of you
• Partially Observable Markov Decision Process

Chess: environment state
fully observable to agent Poker: environment state only partially and indirectly

observable to agent

We focus on this in our lectures

The World as we model It

• Definition of Markov property:
– The state of the system has a Markov property if the

future only depends on the present

• States can be defined to have this property

Where the spider can go next
only depends on where she is

A Markov Process

• A Markov process is a random process where the future is
only determined by the present
– Memoryless

• Is fully defined by the set of states , and the state
transition probabilities
– Formally, the tuple
– is the (possibly finite) set of states
– is the complete set of transition probabilities
– Note stands for at any time
– Will use the shorthand

The transition probability

• For processes with a discrete, finite set of states, is
generally arranged as transition probability matrix

భ భ మ భ ಿ భ

భ మ మ మ ಿ మ

భ ಿ మ ಿ ಿ ಿ

• More generally (for continuous-state processes, e.g. the
state of an automobile), it is modelled as a parametric
distribution

State Transition Probabilities

• What is the transition probability matrix?

Where the spider can go next
only depends on where she is

From any corner, she is equally
likely to wander off in any
direction

The World as we model It

This spider does not like to
turn back

Is this a Markov process?

The World as we model It

This spider does not like to
turn back

Is this a Markov process?

How many states?
What is the transition matrix?

A Markov Reward Process

• A Markov Reward Process (MRP) is a Markov
Process where states give you rewards

• At each state , upon arriving at that state,
you obtain a reward , drawn from a
distribution

Markov Reward Process

• Flider and the Markov reward process!

Reward: Upon arriving at any corner,
the spider may catch a fly from the
swarm hovering there

Rewards are corner specific and
probabilistic: Different corners have
different sized swarms with flies of
different sizes. The spider only has a
probability of catching a fly, but may
not always catch one.

Is This an MRP?

• Is this a Markov Reward Process?

Markov Reward Process

• Formally, a Markov Reward Process is the tuple

– is the (possibly finite) set of states

– is the complete set of transition probabilities

– is a reward function, consisting of the distributions

• Or alternately, the expected value ௦

– is a discount factor

Markov Reward Process

• Formally, a Markov Reward Process is the tuple

– is the (possibly finite) set of states

– is the complete set of transition probabilities

– is a reward function, consisting of the distributions

• Or alternately, the expected value ௦

– is a discount factor What on earth is this?

Rewards and Expected rewards

• One step expected reward:
– Will this be greater if the spider heads to corner 2 or to corner 3?

1
2

3 4

5

6
7

8

No route to corner 4
except from corner 3

Rewards and Expected Rewards

• One step expected reward:
– Will this greater if the spider heads to corner 2 or to corner 3?

1
2

3 4

5

6
7

8

No route to corner 4
except from corner 3

Note: Distinction between expected reward and sample reward
Sample reward is what we actually get. Will represent by
Expected reward is what we may expect to get. Will represent by

Where should the spider be?

• Flider has the option of landing on corner 1, 2 or 3 before
she begins wandering the room
– Which is the better corner to land on?

1 2

3 4

5

6
7

8

Where should the spider be?

• Flider has the option of landing on corner 1, 2 or 3 before
she begins wandering the room
– Which is the better corner to land on?

1 2

3 4

5

6
7

8

Need to know
the long-term
consequences
of landing in the
two corners

Where can she
expect to get
more food in
the long term?

Where should the spider be?

• Assume she is allowed to “practice” once from each
corner
– To plan her future strategy

1 2

3 4

5

6
7

8

1 2

3 4

5

6
7

8

1 2

3 4

5

6
7

8

1 2

3 4

5

6
7

8

Practice

Where should the spider be?

• Must use her “practice” turn to assign a “value” to
each of the corners
– Guess how much food she would get in the long term

from that corner

1 2

3 4

5

6
7

8

1 2

3 4

5

6
7

8

1 2

3 4

5

6
7

8

Practice

Flider practices

• Starting from 3, she gets r1, r2, r3….

• Is r1 + r2 +r3 … a realistic representation of what
she’d get if she did it again?

1
2

3 4

5

6

7

8

r1

r2

r7

r8 r9

r10

r11

r12

r3 r4

r5

r6

r13

r14

r15

r16

Flider practices

• Starting from 3, she gets r1, r2, r3….

• Is r1 + r2 +r3 … a realistic representation of what
she’d get if she did it again?

1
2

3 4

5

6

7

8

r1

r1 is somewhat realistic – it is obtained from corner 3

r2: she had a choice of 3 corners for her next stop and chose one randomly during
practice. Unlikely she’ll go to the same corner in the next run (less representative)

r3: she had 9 possible corners to choose from in 2 steps. r3 is even less representative of
future runs

And so on…

Flider practices

• Starting from 3, she gets r1, r2, r3….

• Is r1 + r2 +r3 … a realistic representation of what
she’d get if she did it again?

1
2

3 4

5

6

7

8

r1

A better guess for how good it is to land at “3”:
𝟏 𝟏 𝟐 𝟐 𝟑 𝟑 𝟒

Where 𝒊

(you “trust” the readings from farther in the future less)

r1 is somewhat realistic – it is obtained from corner 3

r2: she had a choice of 3 corners for her next stop and chose one randomly during
practice. Unlikely she’ll go to the same corner in the next run (less representative)

r3: she had 9 possible corners to choose from in 2 steps. r3 is even less representative of
future runs

And so on…

Flider practices

• Starting from 3, she gets r1, r2, r3….

• Is r1 + r2 +r3 … a realistic representation of what
she’d get if she did it again?

1
2

3 4

5

6

7

8

r1

A better guess for how good it is to land at “3”:
𝟏 𝟏 𝟐 𝟐 𝟑 𝟑 𝟒

Where 𝒊

(you “trust” the readings from farther in the future less)

A “mathematically good” choice: where

r1 is somewhat realistic – it is obtained from corner 3

r2: she had a choice of 3 corners for her next stop and chose one randomly during
practice. Unlikely she’ll go to the same corner in the next run (less representative)

r3: she had 9 possible corners to choose from in 2 steps. r3 is even less representative of
future runs

And so on…

The discounted return

௧ ௧ାଵ ௧ାଶ
ଶ

௧ାଷ

௧ାାଵ

ஶ

ୀ

• The return is the total future reward all the way to the end
• But each future step is slightly less “believable” and is hence

discounted
– We trust our own observations of the future less and less

• The future is a fuzzy place

• The discount factor is our belief in the predictability of the future
– : The future is totally unpredictable, only trust what you see

immediately ahead of you (myopic)
– : The future is clear; consider all of it (far sighted)

• Part of the Markov Reward Process model

The discounted return

௧ ௧ାଵ ௧ାଶ
ଶ

௧ାଷ

௧ାାଵ

ஶ

ୀ

• The return is the total future reward all the way to the end
• But each future step is slightly less “believable” and is hence

discounted
– We trust our own observations of the future less and less

• The future is a fuzzy place

• The discount factor is our belief in the predictability of the future
– : The future is totally unpredictable, only trust what you see

immediately ahead of you (myopic)
– : The future is clear; consider all of it (far sighted)

• Part of the Markov Reward Process model

Caveat: Weird notation. rt+1 is actually associated with
the state at time t

Rewards

• Our spider goes wandering..

• Are these sample rewards or expected
rewards?

time

1
2

0.7 1.2
0.5

1 2 3 4 5 6 7 8 9

3

1.2
2

1

Rewards

• Our spider goes wandering..

• Are these sample rewards or expected rewards?
• What are the expected rewards at t=1,2,…

time

1
2

0.7 1.2
0.5

1 2 3 4 5 6 7 8 9

3

1.2
2

1

Rewards

• Our spider goes wandering..

• Are these sample rewards or expected rewards?
• What are the expected rewards at t=1,2,…
• Under what condition would both be the same?

time

1
2

0.7 1.2
0.5

1 2 3 4 5 6 7 8 9

3

1.2
2

1

Returns

• Our spider goes wandering..
ଵ ଶ ଷ ସ ହ

• We decide the discounting factor
– Really trusting the future

• What is the return ௧ at ?
• What is the return at t=7?
• Are these sample returns or expected returns?

time

1
2

0.7 1.2
0.5

1 2 3 4 5 6 7 8 9

3

1.2
2

1

Returns

• Our spider goes wandering..
ଵ ଶ ଷ ସ ହ

• We decide the discounting factor
– Really trusting the future

• What is the return ௧ at ?
• What is the return ௧ at ?
• Are these sample returns or expected returns?

time

1
2

0.7 1.2
0.5

1 2 3 4 5 6 7 8 9

3

1.2
2

1

Returns

• Our spider goes wandering..
ଵ ଶ ଷ ସ ହ

• We decide the discounting factor
– Really trusting the future

• What is the return ௧ at ?
• What is the return ௧ at ?
• Are these sample returns or expected returns?

time

1
2

0.7 1.2
0.5

1 2 3 4 5 6 7 8 9

3

1.2
2

1

Returns

• Our spider goes wandering..

• What is the return at with

time

1
2

0.7 1.2
0.5

1 2 3 4 5 6 7 8 9

3

1.2
2

1

Returns

• Discounted sample returns by themselves
carry a fuzzy meaning
– Why should we discount something we already

observed?

• However, they make sense as samples of the
possible future when you are at any state
– If you are at any state, what is the expected return

Introducing the “Value” function

• The “Value” of a state is the expected total discounted
return, when the process begins in that state

• Or, since the process is Markov and the future only
depends on the present and not the past

• Or more generally

The spider again

• The spider gains a reward of value 1 if she consumes the fly
• The spider has infinite patience
• What is the value of starting at each corner?

The spider again

• Regardless of which corner the spider starts at, she will
eventually, randomly, nab the fly

• The expected return from any corner is 1!

c1 c2

c3

c4

c5
c6

c7

c8

The spider

• The value of being at any corner is 1 for all
corners
– She can expect to get a fly from anywhere

c1 c2

c3

c4

c5
c6

c7

c8

The hungry spider

• The spider is hungry
• She gets a negative reward of -1 for every minute spent finding food
• What is the expected return if she starts at c1

c1 c2

c3

c4

c5
c6

c7

c8

The hungry spider

• Posing the problem: There is a total reward/penalty associated with each
corner
– if the corner has no fly

• Will definitely spend at least one more minute hunting

– 1 at the corner that has the fly (satisfied!)

• Thus ೣ
for ଵ

• ఴ

• Note: We could also assign costs/rewards to edges in addition to nodes, if
we want more detail, but wont do so for our lectures

c1

c2

c3

c4

c5 c6

c7

c8

The hungry spider
c1 c2

c3

c4

c5
c6

c7

c8

• A familiar solution
• Assuming

– A natural fit in this problem

భ మ య ర

మ భ ళ ఴ

ఴ

The gluttonous spider
• There are flies at every corner
• The expected reward after

arriving at any corner is
ೣ

– The average size of the fly there
minus the travel penalty

• Immediate rewards matter
– Ideally
– Give more importance to

immediate rewards than future
ones

The gluttonous spider

• A familiar solution
• What happens if ?

భ భ మ య ర

మ మ భ ళ ఴ

ఴ ఴ మ య ల

c1 c2

c3

c4

c5
c6

c7

c8

The Bellman Expectation Equation

• The value function of a state is the expected discounted
return, when the process begins at that state

• The Bellman Expectation Equation:

ᇲ

Why discounted return?

• In processes with infinite horizon, which can go on for ever,
the total undiscounted return will be infinite for every path

will be infinite for every path
– For finite horizon processes, a discount factor is good. It

lets us talk in terms of actual total return
– For infinite horizon processes, discounting is required for

meaningful mathematical analysis :
௧ାାଵ

ஶ
ୀ

The Bellman Expectation Equation

• Bellman expectation equation in matrix form

௦ ௦ ௦ᇱ,௦ ௦ᇱ

௦ᇱ

భ

మ

ಿ

భ

మ

ಿ

భ భ మ భ ಿ భ

భ మ మ మ ಿ మ

భ ಿ మ ಿ ಿ ಿ

భ

మ

ಿ

The Bellman Expectation Equation

• Given the MRP
• I.e. the expected rewards at every state, and the transition probability matrix,

– the value functions for all states can be easily computed through matrix
inversion

ିଵ

• Finding the values of states is a key problem in planning and
reinforcement learning

• Unfortunately, for very large state spaces, the above matrix inversion is
not tractable
– Also not invertible for small state spaces if

• Inversion cannot be used to find 𝒱 even when it is finite (e.g. our fly problem), if 𝛾 = 1

• Much of what we will deal with is how to tackle this problem

Moving on..

• Up next … Markov Decision Processes

MDP

• We have assumed so far that the agent behaves randomly
– The agent has no agency
– Lets make the agent more intelligent..

c1 c2

c3

c4

c5
c6

c7

c8

A more realistic problem
• The spider actively chooses

which way to move
– The agent takes action
– Ideally, it would move in the

general direction of the fly

• However, each time the
spider moves, the fly jumps
up and settles at another
corner
– The agent’s action changes

the environment!

c2

c3

c4

c5
c6

c7

c8

Full set of possible actions

A more realistic problem
• The spider actively chooses

which way to move
– The agent takes action
– Ideally, it would move in the

general direction of the fly

• However, each time the
spider moves, the fly jumps
up and settles at another
corner
– The agent’s action changes

the environment!

c2

c3

c4

c5
c6

c7

c8

How do we model this
system?

Redefining the problem

• Each time the spider moves in any direction, the fly randomly jumps
• The fly arrives at a new state but ..

– The state it arrives in depends on where the fly jumped
– Which depends on which direction the Spider moved

• The spider’s action modifies the state transition probabilities!!

Full set of possible actions

What is

• Each time the spider moves in any direction, the fly randomly jumps
• The fly arrives at a new state but ..

– The state it arrives in depends on where the fly jumped
– Which depends on which direction the Spider moved

• The spider’s action modifies the state transition probabilities!!

Full set of possible actions

ଵ

ଶ

ଷ

ସ
ହ

What is

• Each time the spider moves in any direction, the fly randomly jumps
• The fly arrives at a new state but ..

– The state it arrives in depends on where the fly jumped
– Which depends on which direction the Spider moved

• The spider’s action modifies the state transition probabilities!!

Full set of possible actions

ଵ

ଶ

ଷ

ସ
ହ

Trick question.
Must modify our notion of states and actions,
and define the behavior of the fly, to characterize.

Trick Question: Redefining the States

• There are, in fact, only four states, not eight
– Manhattan distance between fly and spider = 0 (s0)
– Distance between fly and spider = 1 (s1)
– Distance between fly and spider = 2 (s2)
– Distance between fly and spider = 3 (s3)

• Can, in fact, redefine the MRP entirely in terms of these 4 states
• There are two actions a+ and a-
• Need an idea of the behavior of the fly

The Fly Markov Reward Process

• There are, in fact, only four states, not eight
– Manhattan distance between fly and spider = 0 (s0)
– Distance between fly and spider = 1 (s1)
– Distance between fly and spider = 2 (s2)
– Distance between fly and spider = 3 (s3)

• Can, in fact, redefine the MRP entirely in terms of these 4 states

s3 s2 s1 s0

1.0

1.0

1/3 2/3

1/3
2/3

R=0R=-1R=-1R=-1

The Markov Decision Process:
Defining Actions

• Two types of actions:
– : Increases distance to fly by 1

– : Decreases distance to fly by 1

The Fly Markov Decision Process

• The behavior of the fly:
– If the spider is moving away from it, it does nothing
– If the spider is moving towards it, it randomly hops to a

different adjacent corner
• 2/3 of the time, it increases the distance to the fly by 1
• 1/3 of the time, it decreases the distance to the fly by 1

The Fly Markov Decision Process
s0

Process
ends

s1

s2 s1

1

a+

s1

a-

s2
a+ a-

s0 s2

1/3

2/3

s3 s2

1

s3
a-

s1 s3

2/3

1/3

1.0

Redefining the problem

• Each time the spider moves in any direction, the fly randomly jumps
• The fly arrives at a new state but ..

– The state it arrives in depends on where the fly jumped
– Which depends on which direction the spider moved

• The spider’s action modifies the state transition probabilities!!

Note: This is a simile for many problems in life, e.g. driving, stock market,
advertising, etc.
The agents actions modifies how the environment behaves

Full set of possible actions

The Markov Decision Process

• A Markov Decision Process is a Markov Reward
Process, where the agent has the ability to decide its
actions!
– We will represent individual actions as
– We will represent the action at time t as

• The agent’s actions affect the environment’s behavior
– The transitions made by the environment are functions of

the action
– The rewards returned are functions of the action

The Markov Decision Process
• Formally, a Markov Decision Process is the tuple

– is a (possibly finite) set of states :

– is a (possibly finite) set of actions :

– is the set of action conditioned transition
probabilities

– is an action conditioned reward function

– is a discount factor

Introducing: Policy
• The policy is the probability

distribution over actions that
the agent may take at any state

– What are the preferred actions of the spider at
any state

• The policy may be deterministic, i.e.

– where is the preferred action in state

An example of a policy

• Assuming the fly does not move
– This example is not a particularly good policy for

the spider

c2

c3

c4

c5
c6

c7

c8

c1

An example of a policy

• What are the (action dependent) transition
probabilities of the states here?

c2

c3

c4

c5
c6

c7

c8

c1

Full set of possible actions

An example of a policy

• What are the (action dependent) transition
probabilities of the states here?

c2

c3

c4

c5
c6

c7

c8

c1

Full set of possible actions

The transition probabilities depend on actions, but not on policy

An example of a policy

• Assuming the fly does not move
– This is a different optimal policy

c2

c3

c4

c5
c6

c7

c8

c1

An example of a policy

• Assuming the fly does not move
– This is a different optimal policy
– What are the transition probabilities here?

c2

c3

c4

c5
c6

c7

c8

c1

The value function of an MDP
• The expected return from any state depends

on the policy you follow

The Fly MDP: Policy 1
s1

s2 s1

1

a+

s1

a-

s2
a+ a-

s0 s2

1/3

2/3

s3 s2

1

s3
a-

s1 s3

2/3

1/3

௦భ ௦భ ௦భ

1.0

௦య ௦య ௦భ ௦య௦మ ௦మ ௦బ ௦మ

The Fly MDP: Policy 2 (optimal)
s1

s2 s1

1

a+

s1

a-

s2
a+ a-

s0 s2

1/3

2/3

s3 s2

1

s3
a-

s1 s3

2/3

1/3

1.0

௦య ௦య ௦భ ௦య௦మ ௦మ ௦బ ௦మ

௦భ ௦భ ௦మ

The Fly MDP: Stochastic Policy
s1

s2 s1

1

a+

s1

a-

s2
a+ a-

s0 s2

1/3

2/3

s3 s2

1

s3
a-

s1 s3

2/3

1/3

1.02/3 1/3

2/3 1/3

1

The Fly MDP: Stochastic Policy
s1

s2 s1

1

a+

s1

a-

s2
a+ a-

s0 s2

1/3

2/3

s3 s2

1

s3
a-

s1 s3

2/3

1/3

1.0

௦య ௦య ௦భ ௦య௦మ ௦మ ௦య ௦మ ௦బ ௦మ

௦భ ௦భ ௦మ
 ௦భ ௦భ

2/3 1/3

1/3 2/3

1

The state value function of an MDP
• The expected return from any state depends

on the policy you follow

• We will index the value of any state by the
policy to indicate this

Bellman Expectation Equation for State Value Functions of an MDP

Note: Although reward was not dependent on action for the fly example,
more generally it will be

The action value function of an MDP

• There are different value equations associated with different
actions

• So we can actually associate value to state action pairs
• Note: The LHS in the equation is the action-specific value at the

source state, but the RHS is the overall value of the target states

s1

s2 s11

a+

s1

a-

1.0

௦భ ௦భ ௦మ ௦భ ௦భ ௦భ

The action value function of an MDP
• The expected return from any state under a

given policy, when you follow a specific action

Bellman Expectation Equation for Action Value Functions of an MDP

All together now
• The Bellman expectation equation for state value function

గ ௦

௦,௦ᇱ

గ

௦ᇱ

∈𝒜

• For action value function

గ ௦

௦,௦ᇱ

గ

௦ᇱ

• Giving you (obviously)

గ గ

∈𝒜

• And

గ ௦

௦,௦ᇱ

గ

ᇱ∈𝒜

௦ᇱ

The Bellman Expectation Equations

• The Bellman expectation equation for state value
function

• The Bellman expectation equation for action value
function

“Computing” the MDP

• Finding the state and/or action value functions for the MDP:
– Given complete MDP (all transition probabilities , expected

rewards , and discount)

– and a policy

– find all value terms and/or

• The Bellman expectation equations are simultaneous
equations that can be solved for the value functions
– Although this will be computationally intractable for very large

state spaces

Computing the MDP

• Given the expected rewards at every state, the
transition probability matrix, the discount
factor and the policy:

• Matrix inversion O(N3); intractable for large
state spaces

Optimal Policies
• Different policies can result in different value functions
• What is the optimal policy?

• The optimal policy is the policy that will maximize the
expected total discounted reward at every state:

• Why do we consider the discounted return, rather than
the actual return ?

Optimal Policies
• Different policies can result in different value functions

• What is the optimal policy?

• The optimal policy is the policy that will maximize the
expected total discounted reward at every state:

– Recall: why do we consider the discounted return, rather
than the actual return ?

Policy Ordering Definition

• A policy is “better” than a policy if the value
function under is greater than or equal to the
value function under at all states

• Under the better policy, you will expect better
overall outcome no matter what the current state

The optimal policy theorem

• Theorem: For any MDP there exists an optimal policy
that is better than or equal to every other policy:

• Corollary: If there are multiple optimal policies
all of them achieve the same value function

• All optimal policies achieve the same action value function

How to find the optimal policy

• For the optimal policy:

• Easy to prove
– For any other policy ,

• Knowing the optimal action value function
is sufficient to find the optimal policy

The optimal value function

• Which gives us

Pictorially

• Blank circles are states, filled dots are state-
action pairs

Figures from Sutton

∗ 1 ∗ 2 ∗ 3

Backup Diagram

The optimal value function

• Which gives us

• But, for the optimal policy we also have

Backup Diagram

Figures from Sutton

∗

Backup Diagram

Figures from Sutton

∗

Backup Diagram

Figures from Sutton
∗

Backup Diagram

Figures from Sutton
∗

∗

Backup Diagram

Figures from Sutton
∗

∗

Bellman Optimality Equations

• Optimal value function equation

• Optimal action value equation

Optimality Relationships
• Given the MDP:
• Given the optimal action value functions, the optimal value function can

be found

∗

∗

• Given the optimal value function, the optimal action value function can be
found

∗ ௦

௦,௦ᇱ

∗

௦ᇱ

• Given the optimal action value function, the optimal policy can be found

∗ ᇱ
∗

“Solving” the MDP

• Solving the MDP equates to finding the optimal policy

• Which is equivalent to finding the optimal value function

• Or finding the optimal action value function

• Various solutions will estimate one or the other
– Value based solutions solve for and and derive

the optimal policy from them
– Policy based solutions directly estimate

Solving the Bellman Optimality
Equation

• No closed form solutions

• Solutions are iterative
• Given the MDP (Planning):

– Value iterations
– Policy iterations

• Not given the MDP (Reinforcement Learning):
– Q-learning
– SARSA..

QUESTIONS before we dive?

Planning with an MDP

• Problem:
– Given: an MDP

– Find: Optimal policy

• Can either
– Value-based Solution: Find optimal value (or action

value) function, and derive policy from it OR

– Policy-based Solution: Find optimal policy directly

Value-based Planning

• “Value”-based solution

• Breakdown:
– Prediction: Given any policy find value function

– Control: Find the optimal policy

Value-based Planning

• “Value”-based solution

• Breakdown:
– Prediction: Given any policy find value function

– Control: Find the optimal policy

Preliminaries
• How do we represent the value function?
• Table:

– Value function
• గ

• For a process with discrete states, must store/compute
unique values

– Action value functions
• గ

• For a process with discrete states and discrete actions, must
store/compute unique values

• Later we will see how to represent these when the
number of states/actions is too large or continuous

The Bellman Expectation Equation for
the value function

గ ௦

௦,௦ᇱ

గ

௦ᇱ

∈𝒜

• In vector form

గ ଵ

గ ଶ

గ ே

௦భ

௦మ

௦ಿ

௦భ,௦భ ௦మ,௦భ ௦ಿ,௦భ

௦భ,௦మ ௦మ,௦మ ௦ಿ,௦మ

௦భ,௦ಿ ௦మ,௦ಿ ௦ಿ,௦ಿ

గ ଵ

గ ଶ

గ ே

• Where
– ௦ ௦

∈𝒜

– ௦ᇱ,௦ ௦ᇱ,௦

∈𝒜

The Bellman Expectation Equation for
the value function

గ ௦

௦,௦ᇱ

గ

௦ᇱ

∈𝒜

• In vector form

గ ଵ

గ ଶ

గ ே

௦భ

௦మ

௦ಿ

௦భ,௦భ ௦మ,௦భ ௦ಿ,௦భ

௦భ,௦మ ௦మ,௦మ ௦ಿ,௦మ

௦భ,௦ಿ ௦మ,௦ಿ ௦ಿ,௦ಿ

గ ଵ

గ ଶ

గ ே

• Where
– ௦ ௦

∈𝒜

– ௦,௦ᇱ ௦,௦ᇱ

௦ᇱ

∈𝒜

Solving the MDP

• Given the expected rewards at every state, the
transition probability matrix, the discount factor
and the policy:

• Easy for processes with a small number of states

• Matrix inversion O(N3); intractable for large state
spaces

What about the action value
function?

• The Bellman expectation equation for action
value function

Even worse!!

So how do we solve these

• The equations are too large, how do we solve
them?

• First, a little lesson – from middle school…

What they never taught you in school

• Consider the following equation:

• Where

• Trivial solution:

• But my CPU does not permit division..
– How do I solve this?

What they never taught you in school

• Must solve the following without division

– where

• Rewrite as follows

• The following iteration solves the problem:

• Can start with any
• Proof??

What they never taught you in school

• Must solve the following without division

– where

• Rewrite as follows

• The following iteration solves the problem:

• Can start with any
• Proof?? Hint:

What they never taught you in school

• Consider any vector equation

– Where all Eigen values
• And some extra criteria…

– The square submatrix of corresponding to non-zero
entries of is full rank

– The square submatrix of corresponding to zero entries of
is an identity matrix

• The following iteration solves the problem:

Eigen values of a probability matrix

• For any Markov transition probability matrix
, all Eigenvalues have magnitude less than or

equal to 1

Solving for the value function

• This can be solved by following iteration starting from
any initial vector

Solving for the value function

• This can be solved by following iteration starting from
any initial vector

• But how did that help if we need infinite iterations to
converge?
– Solution: Stop when the changes becomes small

గ
(ାଵ)

గ
(ାଵ)

Solving for the value function

• This can be solved by following iteration starting from
any initial vector

• But how did that help if we need infinite iterations to
converge?
– Solution: Stop when the changes becomes small

గ
(ାଵ)

గ
(ାଵ)

Actual Implementation
• Initialize గ

() for all states

• Update

గ
(ାଵ)

௦

௦,௦ᇱ

గ
()

௦ᇱ

∈𝒜

• Update may be in batch mode
– Keep sweep through all states to compute గ

(ାଵ)

– Update
• Or incremental

– Sweep through all the states performing

గ ௦

௦,௦ᇱ

గ

௦ᇱ

∈𝒜

Actual Implementation
• Initialize గ

() for all states

• Update

గ
(ାଵ)

௦

௦,௦ᇱ

గ
()

௦ᇱ

∈𝒜

• Update may be in batch mode
– Keep sweep through all states to compute గ

(ାଵ)

– Update
• Or incremental

– Sweep through all the states performing

గ ௦

௦,௦ᇱ

గ

௦ᇱ

∈𝒜

This is an instance of dynamic programming:

dynamic programming (also known as dynamic optimization) is a method
for solving a complex problem by breaking it down into a collection of
simpler subproblems, solving each of those subproblems just once, and
storing their solutions. The next time the same subproblem occurs, instead
of recomputing its solution, one simply looks up the previously computed
solution, thereby saving computation time at the expense of a (hopefully)
modest expenditure in storage space. (Each of the subproblem solutions is
indexed in some way, typically based on the values of its input parameters,
so as to facilitate its lookup.) (from wikipedia)

An Example

• All squares, except shaded square have reward -1,
shaded square has reward 0

• Policy: Random – can step in any of the four directions
with equal probability
– If you run into a wall, you just return to the square

• Find the value of being in each square

Example from Sutton

The Gridworld Example

• Actual iterations use random policy
• Right column shows greedy policy according to current value function

The Gridworld Example

• Iterations use random policy
• Greedy policy converges to optimal long before value function of random

policy converges!

Value-based Planning

• “Value”-based solution

• Breakdown:
– Prediction: Given any policy find value function

– Control: Find the optimal policy

Revisit the gridworld

Example from Sutton

Revisit the gridworld

• Actual iterations use random policy
• Right column shows greedy policy according to current value function

Revisit the gridworld

• Iterations use random policy
• Greedy policy converges to optimal long before value function of random

policy converges!

Finding an optimal policy

• Start with any policy, e.g. random policy
• Iterate (… convergence):

– Use prediction DP to find the value function (ೖ)

– Compute action value function :

(ೖ) (ೖ)

– Find the greedy policy

(ೖ)

Finding an optimal policy: Compact

• Start with any policy
• Iterate (… convergence):

– Use prediction DP to find the value function (ೖ)

– Find the greedy policy

(ೖ)

Finding an optimal policy: Shorthand

• Start with any policy
• Iterate (… convergence):

– Use prediction DP to find the value function (ೖ)

– Find the greedy policy

(ೖ)

THIS IS KNOWN AS POLICY ITERATION
In each iteration, we find a policy, and then find its value

Policy Iteration
• Start with any policy

• Iterate (… convergence):
– Use prediction DP to find the value function గ(ೖ)

– Find the greedy policy
ାଵ

గ(ೖ)

• This will provably converge to the optimal policy
• In the Gridworld example this converged in one iteration
• More generally, it will take several iterations

– Convergence when policy no longer changes

Generalized Policy Iteration
• Start with any policy

• Iterate (… convergence):
– Use any algorithm to find the value function (ೖ)

– Use any algorithm to find an update policy

(ೖ)

Such that

• Guaranteed to converge to the optimal policy

Generalized Policy Iteration

• Start with any policy

• Guaranteed to converge to the optimal policy

Evaluation (anyhow)

Improvement (anyhow)

Optimality theorem

• All states will hit their optimal value together

• Theorem:
A policy has optimal value

in any state if and only if for every state
reachable from ,

Policy Iteration
• Start with any policy

• Iterate (… convergence):
– Use prediction DP to find the value function గ(ೖ)

– Find the greedy policy
ାଵ

గ(ೖ)

• This will provably converge to the optimal policy
• In the Gridworld example this converged in one iteration
• More generally, it will take several iterations

– Convergence when policy no longer changes

Policy Iteration
• Start with any policy

• Iterate (… convergence):
– Use prediction DP to find the value function గ(ೖ)

– Find the greedy policy
ାଵ

గ(ೖ)

• This will provably converge to the optimal policy
• In the Gridworld example this converged in one iteration
• More generally, it will take several iterations

– Convergence when policy no longer changes

In the gridworld example we didn’t even need to run this to convergence

The optimal policy was found long before the actual value function converged
even in the first upper iteration

Revisit the gridworld

• Iterations use random policy
• Greedy policy converges to optimal long before value function of random

policy converges!

Policy Iteration
• Start with any policy

• Iterate (… convergence):
– Use prediction DP to find the value function గ(ೖ)

– Find the greedy policy
ାଵ

గ(ೖ)

• This will provably converge to the optimal policy
• In the Gridworld example this converged in one iteration
• More generally, it will take several iterations

– Convergence when policy no longer changes

In the gridworld example we didn’t even need to run this to convergence

The optimal policy was found long before the actual value function converged
even in the first upper iteration

Do we even need the prediction DP to converge?

Optimal policy estimation
• Start with any policy

• Iterate (… convergence):
– Use iterations of prediction DP to find the value function

(ೖ)

– Find the greedy policy

(ೖ)

• This will provably converge to the optimal policy

Optimal policy estimation

• Start with any policy

• Iterate (… convergence):
– Use iterations of prediction DP to find the value

function (ೖ)

– Find the greedy policy

(ೖ)

Optimal policy estimation
• Start with any policy

• Iterate (… convergence):
– Use iterations of prediction DP to find the value function

గ(ೖ)

గ ೖ

௦

௦,௦ᇱ

గ ೖ

௦ᇱ

∈𝒜

– Find the greedy policy

ାଵ

௦

௦,௦ᇱ

గ(ೖ)

௦ᇱ

Optimal policy estimation
• Start with any policy

• Iterate (… convergence):
– Use iterations of prediction DP to find the value function

గ(ೖ)

గ ೖ

௦

௦,௦ᇱ

గ ೖ

௦ᇱ

∈𝒜

– Find the greedy policy

ାଵ

௦

௦,௦ᇱ

గ(ೖ)

௦ᇱ

BUG

Reordering and writing carefully
• Start with any initial value function గ బ

• Iterate (… convergence):
– Find the greedy policy

ᇱ

௦
ᇱ

௦,௦ᇱ
ᇱ

గ(ೖషభ)

௦ᇱ

– Use iterations of prediction DP to find the value function గ(ೖ)

గ ೖ

௦

௦,௦ᇱ

గ ೖషభ

௦ᇱ

∈𝒜

Merging
• Start with any initial value function గ బ

• Iterate (… convergence):
– Update the value function

గ ೖ

௦

௦,௦ᇱ

గ ೖషభ

௦ᇱ

• Note: no explicit policy estimation
– Directly learns value
– The subscript is a misnomer

Value Iteration
• Start with any initial value function ∗

()

• Iterate (… convergence):
– Update the value function

∗
()

௦

௦,௦ᇱ

∗
(ିଵ)

௦ᇱ

• Note: no explicit policy estimation
• Directly learning optimal value function
• Guaranteed to give you optimal value function at convergence

– But intermediate value function estimates may not represent any
policy

Value iteration

• Each state simply inherits the cost of its best
neighbour state
– Cost of neighbor is the value of the neighbour plus

cost of getting there

Value Iteration Example

• Target: Find the shortest path
• Every step costs -1

Practical Issues

• Updates can be batch mode

– Explicitly compute from for all states
– Set k = k+1

• Or asynchronous
– Compute in place while we sweep over states
–

Recap

• Learned about prediction
– Estimating value function given MDP and policy

• Learned Policy iteration
– Iterate prediction and policy estimation

• Learned about Value iteration
– Directly estimate optimal value function

Alternate strategy

• Worked with Value function
– For N states, estimates N terms

• Could alternately work with action-value
function
– For M actions, must estimate MN terms

• Much more expensive
• But more useful in some scenarios

Next Up

• We’ve worked so far with planning
– Someone gave us the MDP

• Next: Reinforcement Learning
– MDP unknown..

