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Quick Recap

• Gradient descent, Backprop
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Quick Recap: Training a network

• Define a total “loss” over all training instances
– Quantifies the difference between desired output and the actual 

output, as a function of weights

• Find the weights that minimize the loss

Total loss

Average over all
training instances

Divergence between desired output and 
actual output of net for a given input 

Output of net in 
response to input 

Desired output
in response to input 
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Quick Recap: Training networks by 
gradient descent

• The gradient of the total loss is the average of the gradients of the 
loss for the individual instances

• The total gradient can be plugged into gradient descent update to 
learn the network

Solved through
gradient descent as
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Quick Recap: Training networks by 
gradient descent

• The gradient of the total loss is the average of the gradients of the 
loss for the individual instances

• The gradient can be plugged into gradient descent update to learn 
the network parameters

Solved through
gradient descent as

Computed using
backpropagation
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Quick Recap

• Gradient descent, Backprop
• The issues with backprop and gradient descent

– 1. Minimizes a loss which relates to classification 
accuracy, but is not actually classification accuracy
• The divergence is a continuous valued proxy to 

classification error
• Minimizing the loss is expected to, but not guaranteed to 

minimize classification error

– 2. Simply minimizing the loss is hard enough..
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Quick recap: Problem with gradient descent

• A step size that assures fast convergence for a given eccentricity can result in 
divergence at a higher eccentricity

• .. Or result in extremely slow convergence at lower eccentricity 

ଵ ଶ ଶ

ଵ

ଵ ଶ ଶ

ଵ

𝑊௞ = 𝑊௞ିଵ − 𝜂𝛻௪𝐿 𝑊 𝑇
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Quick recap: Problem with gradient 
descent

• The loss is a function of many weights (and biases)
– Has different eccentricities w.r.t different weights

• A fixed step size for all weights in the network can result in 
the convergence of one weight, while causing a divergence 
of another

ଶ

ଵ

ଶ

ଵ
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Solutions for problem with gradient 
descent

• Try to normalize curvature in all directions
– Second order methods, e.g. Newton’s method
– Too expensive: require inversion of a giant Hessian

• Treat each dimension independently:
– Rprop, quickprop
– Works, but ignores dependence between dimensions

• Can result in unexpected behavior

– Can still be too slow
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Quick Recap

• Gradient descent, Backprop
• The issues with backprop and gradient descent
• Momentum methods..
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Momentum methods: principle

• Ideally:  Have component-specific step size
– Too many independent parameters (maintain a step size for every weight/bias)

• Adaptive solution: Start with a common step size
– Shrink step size in directions where the weight oscillates
– Expand step size in directions where the weight moves consistently in one direction

ଵ

Increase stepsize because 
previous updates consistently 
moved weight right

ଶ

Decrease stepsize because 
previous updates kept
changing direction

ଶ

ଵ

Stepsize shrinks along w2
but increases along w1

k=1

k=2

k=3

𝑊௞ = 𝑊௞ିଵ − 𝜂𝛻௪𝐿 𝑊 𝑇
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Quick recap: Momentum methods

• Momentum: Retain gradient value, but smooth out 
gradients by maintaining a running average
– Cancels out steps in directions where the weight value oscillates
– Adaptively increases step size in directions of consistent change

(௞) (௞ିଵ)  ௐ
(௞ିଵ) ்

Momentum Nestorov

௘௫௧௘௡ௗ
(௞) (௞ିଵ) (௞ିଵ)

(௞) (௞ିଵ)  ௐ ௘௫௧௘௡ௗ
(௞) ்

(௞) (௞ିଵ) (௞)
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Recap

• Neural networks are universal approximators

• We must train them to approximate any 
function

• Networks are trained to minimize total “error” 
on a training set
– We do so through empirical risk minimization

• We use variants of gradient descent to do so
– Gradients are computed through backpropagation
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Recap
• Vanilla gradient descent may be too slow or unstable

• Better convergence can be obtained through
– Second order methods that normalize the variation across 

dimensions

– Adaptive or decaying learning rates that can improve 
convergence

– Methods like Rprop that decouple the dimensions can 
improve convergence

– Momentum methods which emphasize directions of 
steady improvement and deemphasize unstable directions
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Moving on: Topics for the day

• Incremental updates
• Revisiting “trend” algorithms
• Generalization
• Tricks of the trade

– Divergences..
– Activations
– Normalizations
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The training formulation

• Given input output pairs at a number of 
locations, estimate the entire function

Input (X)

output (y)
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Gradient descent

• Start with an initial function
• Adjust its value at all points to make the outputs closer to the required 

value
– Gradient descent adjusts parameters to adjust the function value at all points
– Repeat this iteratively until we get arbitrarily close to the target function at the 

training points
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Gradient descent

• Start with an initial function
• Adjust its value at all points to make the outputs closer to the required 

value
– Gradient descent adjusts parameters to adjust the function value at all points
– Repeat this iteratively until we get arbitrarily close to the target function at the 

training points
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Effect of number of samples

• Problem with conventional gradient descent: we try to 
simultaneously adjust the function at all training points
– We must process all training points before making a single 

adjustment
– “Batch” update
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Alternative: Incremental update

• Alternative: adjust the function at one training point at a time
– Keep adjustments small
– Eventually, when we have processed all the training points, we will 

have adjusted the entire function
• With greater overall adjustment than we would if we made a single “Batch” 

update
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Incremental Update: Stochastic 
Gradient Descent

• Given , ,…, 

• Initialize all weights

• Do:
– For all 

• For every layer :

– Compute  ௐೖ 𝒕 𝒕

– Update

ೖ

• Until has converged
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Stochastic Gradient Descent

• The iterations can make multiple passes over 
the data

• A single pass through the entire training data 
is called an “epoch”
– An epoch over a training set with samples 

results in updates of parameters
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Incremental Update: Stochastic 
Gradient Descent

• Given , ,…, 

• Initialize all weights

• Do:
– For all 

• For every layer :

– Compute  ௐೖ 𝒕 𝒕

– Update

ೖ

• Until has converged
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Caveats: order of presentation

• If we loop through the samples in the same 
order, we may get cyclic behavior
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Incremental Update: Stochastic 
Gradient Descent

• Given , ,…, 

• Initialize all weights

• Do:
– Randomly permute , ,…, 

– For all 
• For every layer :

– Compute  ௐೖ 𝒕 𝒕

– Update

௞ ௞ ௐೖ 𝒕 𝒕
்

• Until has converged
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Story so far

• In any gradient descent optimization problem, 
presenting training instances incrementally 
can be more effective than presenting them 
all at once
– Provided training instances are provided in 

random order
– “Stochastic Gradient Descent”

• This also holds for training neural networks
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Explanations and restrictions

• So why does this process of incremental 
updates work?

• Under what conditions?

• For “why”: first consider a simplistic 
explanation that’s often given
– Look at an extreme example
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The expected behavior of the gradient

• The individual training instances contribute different directions to the 
overall gradient
– The final gradient points is the average of individual gradients
– It points towards the net direction
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𝑑𝐸(𝑾(ଵ), 𝑾(ଶ), … , 𝑾 ௄ )

𝒅𝑤௜,௝
(௞)

=
𝟏

𝑻
෍

𝒅𝑫𝒊𝒗(𝒀(𝑿𝒊), 𝒅𝒊; 𝑾(ଵ), 𝑾(ଶ), … , 𝑾(௄))

𝒅𝑤௜,௝
(௞)

 

𝒊



Extreme example

• Extreme instance of data clotting:  all the 
training instances are exactly the same
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The expected behavior of the gradient

• The individual training instance contribute identical 
directions to the overall gradient
– The final gradient points is simply the gradient for an individual 

instance
47
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Batch vs SGD

• Batch gradient descent operates over T training instances 
to get a single update

• SGD gets T updates for the same computation
48

Batch SGD



Clumpy data..

• Also holds if all the data are not identical, but 
are tightly clumped together
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Clumpy data..

• As data get increasingly diverse, the benefits of incremental 
updates decrease, but do not entirely vanish
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When does it work

• What are the considerations?

• And how well does it work?
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Caveats: learning rate

• Except in the case of a perfect fit, even an optimal overall 
fit will look incorrect to individual instances
– Correcting the function for individual instances will lead to 

never-ending, non-convergent updates
– We must shrink the learning rate with iterations to prevent this

• Correction for individual instances with the eventual miniscule 
learning rates will not modify the function

Input (X)

output (y)

52



Incremental Update: Stochastic 
Gradient Descent

• Given , ,…, 
• Initialize all weights ;   

• Do:
– Randomly permute , ,…, 
– For all 

•

• For every layer :
– Compute  ௐೖ 𝒕 𝒕

– Update

௞ ௞ ௝ ௐೖ 𝒕 𝒕
்

• Until has converged
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• Do:
– Randomly permute , ,…, 
– For all 

•

• For every layer :
– Compute  ௐೖ 𝒕 𝒕

– Update

௞ ௞ ௝ ௐೖ 𝒕 𝒕
்

• Until has converged
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SGD convergence
• SGD converges “almost surely” to a global or local minimum for most 

functions
– Sufficient condition: step sizes follow the following conditions

෍ 𝜂௞ = ∞

 

௞

• Eventually the entire parameter space can be searched

෍ 𝜂௞
ଶ < ∞

 

௞

• The steps shrink

– The fastest converging series that satisfies both above requirements is 

𝜂௞ ∝
1

𝑘
• This is the optimal rate of shrinking the step size for strongly convex functions

– More generally, the learning rates are heuristically determined 

• If the loss is convex, SGD converges to the optimal solution
• For non-convex losses SGD converges to a local minimum
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SGD convergence
• We will define convergence in terms of the number of iterations taken to 

get within of the optimal solution

– (௞) ∗

– Note: here is the error on the entire training data, although SGD itself 
updates after every training instance

• Using the optimal learning rate , for strongly convex functions, 

(௞) ∗ (଴) ∗

– Strongly convex  Can be placed inside a quadratic bowl, touching at any point

– Giving us the iterations to convergence as ଵ

ఢ

• For generically convex (but not strongly convex) function, various proofs 
report an convergence of  ଵ

௞
  using a learning rate of ଵ

௞
  .
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Batch gradient convergence
• In contrast, using the batch update method, for strongly 

convex functions, 

– Giving us the iterations to convergence as 

• For generic convex functions, iterations to convergence 
is 

• Batch gradients converge “faster”
– But SGD performs updates for every batch update
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SGD Convergence: Loss value

If:
• is -strongly convex, and 
• at step we have a noisy estimate of the 

subgradient with for all , 
• and we use step size 
Then for any :
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SGD Convergence

• We can bound the expected difference between the 
loss over our data using the optimal weights and 
the weights at any single iteration to for 

strongly convex loss or   for convex loss

• Averaging schemes can improve the bound to 

and  

• Smoothness of the loss is not required
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SGD Convergence and weight 
averaging

Polynomial Decay Averaging:

With some small positive constant, e.g. 

Achieves (strongly convex) and 
(convex) convergence
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SGD example

• A simpler problem: K-means
• Note: SGD converges slower
• Also note the rather large variation between runs

– Lets try to understand these results.. 61



Recall: Modelling a function

• To learn a network to model a function we 
minimize the expected divergence
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Recall: The Empirical risk

• In practice, we minimize the empirical risk (or loss)

𝐿𝑜𝑠𝑠 𝑓 𝑋; 𝑊 , 𝑔 𝑋 =
1

𝑁
෍ 𝑑𝑖𝑣 𝑓 𝑋௜; 𝑊 , 𝑑௜

ே

௜ୀଵ

𝑾෢ = argmin
ௐ

 𝐿𝑜𝑠𝑠 𝑓 𝑋; 𝑊 , 𝑔 𝑋

• The expected value of the empirical risk is actually the expected divergence
𝐸 𝐿𝑜𝑠𝑠 𝑓 𝑋; 𝑊 , 𝑔 𝑋 = 𝐸 𝑑𝑖𝑣 𝑓 𝑋; 𝑊 , 𝑔 𝑋
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The empirical risk is an unbiased estimate of the expected loss
Though there is no guarantee that minimizing it will minimize the 
expected loss
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The empirical risk is an unbiased estimate of the expected loss
Though there is no guarantee that minimizing it will minimize the 
expected loss

The variance of the empirical risk: var(Loss) = 1/N var(div)
The variance of the estimator is proportional to 1/N

The larger this variance, the greater the likelihood that the W that 
minimizes the empirical risk will differ significantly from the W that 
minimizes the expected loss



SGD

• At each iteration, SGD focuses on the divergence 
of a single sample 

• The expected value of the sample error is still the 
expected divergence 66
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SGD

• At each iteration, SGD focuses on the divergence 
of a single sample 

• The expected value of the sample error is still the 
expected divergence 68

Xi

di

The variance of the sample error is the variance of the divergence itself: var(div)
This is N times the variance of the empirical average minimized by batch update

The sample error is also an unbiased estimate of the expected error



Explaining the variance

• The blue curve is the function being approximated
• The red curve is the approximation by the model at a given 
• The heights of the shaded regions represent the point-by-point error

– The divergence is a function of the error
– We want to find the that minimizes the average divergence
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Explaining the variance

• Sample estimate approximates the shaded area with the 
average length of the lines of these curves is the red curve 
itself

• Variance: The spread between the different curves is the 
variance
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Explaining the variance

• Sample estimate approximates the shaded area 
with the average length of the lines

• This average length will change with position of 
the samples

71



Explaining the variance

• Sample estimate approximates the shaded area 
with the average length of the lines

• This average length will change with position of 
the samples

72



Explaining the variance

• Having more samples makes the estimate more 
robust to changes in the position of samples
– The variance of the estimate is smaller
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Explaining the variance

• Having very few samples makes the estimate 
swing wildly with the sample position
– Since our estimator learns the to minimize this 

estimate, the learned too can swing wildly

With only one sample
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SGD example

• A simpler problem: K-means
• Note: SGD converges slower
• Also has large variation between runs 77



SGD vs batch

• SGD uses the gradient from only one sample 
at a time, and is consequently high variance

• But also provides significantly quicker updates 
than batch

• Is there a good medium?
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Alternative: Mini-batch update

• Alternative: adjust the function at a small, randomly chosen subset of 
points
– Keep adjustments small
– If the subsets cover the training set, we will have adjusted the entire function

• As before, vary the subsets randomly in different passes through the 
training data
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Incremental Update: Mini-batch 
update

• Given ଵ ଵ , ଶ ଶ ,…, ் ்

• Initialize all weights ଵ ଶ ௄;   

• Do:
– Randomly permute ଵ ଵ , ଶ ଶ ,…, ் ்

– For 
• 𝑗 = 𝑗 + 1

• For every layer k:
– ∆𝑊௞ = 0

• For t’ = t : t+b-1
– For every layer 𝑘:

» Compute  𝛻ௐೖ
𝐷𝑖𝑣(𝑌௧, 𝑑௧)

» ∆𝑊௞ = ∆𝑊௞ +
ଵ

௕
𝛻ௐೖ

𝐷𝑖𝑣(𝑌௧, 𝑑௧)்

• Update
– For every layer k:

𝑊௞ = 𝑊௞ − 𝜂௝∆𝑊௞

• Until has converged 80
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Mini Batches

• Mini-batch updates compute and minimize a batch loss

௜ ௜

௕

௜ୀଵ

• The expected value of the batch loss is also the expected divergence
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Mini Batches

• Mini-batch updates compute and minimize a batch loss

௜ ௜

௕

௜ୀଵ

• The expected value of the batch loss is also the expected divergence
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Xi

di

The variance of the batch loss: var(BatchLoss) = 1/b var(div)
This will be much smaller than the variance of the sample error in SGD

The batch loss is also an unbiased estimate of the expected error



Minibatch convergence
• For convex functions, convergence rate for SGD is   .   

• For mini-batch updates with batches of size , the 
convergence rate is  

– Apparently an improvement of   over SGD
– But since the batch size is , we perform times as many 

computations per iteration as SGD

– We actually get a degradation of  

• However, in practice
– The objectives are generally not convex; mini-batches are more 

effective with the right learning rates
– We also get additional benefits of vector processing
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SGD example

• Mini-batch performs comparably to batch 
training on this simple problem
– But converges orders of magnitude faster
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Measuring Loss
• Convergence is generally

defined in terms of the
overall training loss
– Not sample or batch loss

• Infeasible to actually measure the overall training loss 
after each iteration

• More typically, we estimate is as
– Divergence or classification error on a held-out set
– Average sample/batch loss over the past 

samples/batches
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Training and minibatches

• In practice, training is usually performed using mini-
batches
– The mini-batch size is a hyper parameter to be optimized

• Convergence depends on learning rate
– Simple technique:  fix learning rate until the error plateaus, 

then reduce learning rate by a fixed factor (e.g. 10)

– Advanced methods:  Adaptive updates, where the learning 
rate is itself determined as part of the estimation
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Story so far
• SGD: Presenting training instances one-at-a-time can be more effective 

than full-batch training
– Provided they are provided in random order

• For SGD to converge, the learning rate must shrink sufficiently rapidly with 
iterations
– Otherwise the learning will continuously “chase” the latest sample

• SGD estimates have higher variance than batch estimates

• Minibatch updates operate on batches of instances at a time
– Estimates have lower variance than SGD
– Convergence rate is theoretically worse than SGD
– But we compensate by being able to perform batch processing
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Training and minibatches

• Convergence depends on learning rate
– Simple technique:  fix learning rate until the error 

plateaus, then reduce learning rate by a fixed 
factor (e.g. 10)

– Advanced methods:  Adaptive updates, where the 
learning rate is itself determined as part of the 
estimation
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Moving on: Topics for the day

• Incremental updates
• Revisiting “trend” algorithms
• Generalization
• Tricks of the trade

– Divergences..
– Activations
– Normalizations
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Recall: Momentum

• The momentum method

 

• Updates using a running average of the gradient
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Momentum and incremental updates

• The momentum method

 

• Incremental SGD and mini-batch gradients tend to have 
high variance

• Momentum smooths out the variations
– Smoother and faster convergence
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Incremental Update: Mini-batch 
update

• Given ଵ ଵ , ଶ ଶ ,…, ் ்

• Initialize all weights ଵ ଶ ௄;   , ௞

• Do:
– Randomly permute ଵ ଵ , ଶ ଶ ,…, ் ்

– For 
• 𝑗 = 𝑗 + 1

• For every layer k:
– 𝛻ௐೖ

𝐿𝑜𝑠𝑠 = 0

• For t’ = t : t+b-1
– For every layer 𝑘:

» Compute  𝛻ௐೖ
𝐷𝑖𝑣(𝑌௧, 𝑑௧)

» 𝛻ௐೖ
𝐿𝑜𝑠𝑠 +=

ଵ

௕
𝛻ௐೖ

𝑫𝒊𝒗(𝑌௧, 𝑑௧)

• Update
– For every layer k:

Δ𝑊௞ = 𝛽Δ𝑊௞ − 𝜂௝(𝛻ௐೖ
𝐿𝑜𝑠𝑠)்

𝑊௞ = 𝑊௞ + ∆𝑊௞

• Until has converged
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Nestorov’s Accelerated Gradient

• At any iteration, to compute the current step:
– First extend the previous step
– Then compute the gradient at the resultant position
– Add the two to obtain the final step

• This also applies directly to incremental update methods
– The accelerated gradient smooths out the variance in the 

gradients
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Nestorov’s Accelerated Gradient

• Nestorov’s method
 ( )
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Incremental Update: Mini-batch 
update

• Given ଵ ଵ , ଶ ଶ ,…, ் ்

• Initialize all weights ଵ ଶ ௄ ;   𝑗 = 0, ∆𝑊௞ = 0

• Do:
– Randomly permute 𝑋ଵ, 𝑑ଵ , 𝑋ଶ, 𝑑ଶ ,…, 𝑋், 𝑑்

– For 𝑡 =  1: 𝑏: 𝑇

• 𝑗 = 𝑗 + 1

• For every layer k:
– 𝑊௞ = 𝑊௞ + 𝛽Δ𝑊௞

– 𝛻ௐೖ
𝐿𝑜𝑠𝑠 = 0

• For t’ = t : t+b-1
– For every layer 𝑘:

» Compute  𝛻ௐೖ
𝐷𝑖𝑣(𝑌௧, 𝑑௧)

» 𝛻ௐೖ
𝐿𝑜𝑠𝑠 +=

ଵ

௕
𝛻ௐೖ

𝑫𝒊𝒗(𝑌௧, 𝑑௧)

• Update
– For every layer k:

𝑊௞ = 𝑊௞ − 𝜂௝𝛻ௐೖ
𝐿𝑜𝑠𝑠𝑇

Δ𝑊௞ = 𝛽Δ𝑊௞ − 𝜂௝𝛻ௐೖ
𝐿𝑜𝑠𝑠𝑇

• Until has converged
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More recent methods

• Several newer methods have been proposed that 
follow the general pattern of enhancing long-
term trends to smooth out the variations of the 
mini-batch gradient
– RMS Prop
– Adagrad
– AdaDelta
– ADAM: very popular in practice
– …

• All roughly equivalent in performance
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Smoothing the trajectory

• Simple gradient and acceleration methods still demonstrate oscillatory 
behavior in some directions

• Observation:  Steps in “oscillatory” directions show large total movement
– In the example, total motion in the vertical direction is much greater than in 

the horizontal direction

• Improvement:  Dampen step size in directions with high motion
– Second order term
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1 2
3

4
5

Step X component Y component

1 1 +2.5

2 1 -3

3 3 +2.5

4 1 -2

5 2 1.5



Variance-normalized step

• In recent past
– Total movement in Y component of updates is high
– Movement in X components is lower

• Current update, modify usual gradient-based update:
– Scale down Y component
– Scale up X component
– According to their variation (and not just their average)

• A variety of algorithms have been proposed on this premise
– We will see a popular example
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RMS Prop
• Notation:

– Updates are by parameter

– Sum derivative of divergence w.r.t any individual parameter is 
shown as ௪

– The squared derivative is ௪
ଶ

௪
ଶ

• Short-hand notation represents the squared derivative, not the 
second derivative

– The mean squared derivative is a running estimate of the 
average squared derivative. We will show this as ௪

ଶ

• Modified update rule:  We want to 
– scale down updates with large mean squared derivatives
– scale up updates with small mean squared derivatives
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RMS Prop
• This is a variant on the basic mini-batch SGD algorithm

• Procedure:
– Maintain a running estimate of the mean squared value of 

derivatives for each parameter
– Scale update of the parameter by the inverse of the root mean 

squared derivative

௞ାଵ ௞
௪
ଶ

௞
  ௪
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RMS Prop
• This is a variant on the basic mini-batch SGD algorithm

• Procedure:
– Maintain a running estimate of the mean squared value of 

derivatives for each parameter
– Scale update of the parameter by the inverse of the root mean 

squared derivative

௞ାଵ ௞
௪
ଶ

௞
  ௪

103
Note similarity to RPROP
The magnitude of the derivative is being normalized out



RMS Prop (updates are for each 
weight of each layer)

• Do:
– Randomly shuffle inputs to change their order
– Initialize:  ; for all weights in all layers, ௪

ଶ
௞

– For all (incrementing in blocks of inputs)
• For all weights in all layers initialize 𝜕௪𝐷 ௞ = 0

• For 𝑏 = 0: 𝐵 − 1
– Compute 

» Output 𝒀(𝑿𝒕ା𝒃)

» Compute gradient  𝒅𝑫𝒊𝒗(𝒀(𝑿𝒕శ𝒃),𝒅𝒕శ𝒃)

𝒅𝒘

» Compute 𝜕௪𝐷 ௞ +=
ଵ

஻

𝒅𝑫𝒊𝒗(𝒀(𝑿𝒕శ𝒃),𝒅𝒕శ𝒃)

𝒅𝒘

• update:
𝑬 𝝏𝒘

𝟐 𝑫
𝒌

= 𝜸𝑬 𝝏𝒘
𝟐 𝑫

𝒌ି𝟏
+ 𝟏 − 𝜸 𝝏𝒘

𝟐 𝑫
𝒌

𝒘𝒌ା𝟏 = 𝒘𝒌 −
𝜼

𝑬 𝝏𝒘
𝟐 𝑫 𝒌 + 𝝐

 
𝝏𝒘𝑫

• 𝑘 = 𝑘 + 1

• Until ଵ ଶ ௄ has converged
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ADAM: RMSprop with momentum
• RMS prop only considers a second-moment normalized version of the 

current gradient
• ADAM utilizes a smoothed version of  the momentum-augmented gradient

• Procedure:
– Maintain a running estimate of the mean derivative for each parameter
– Maintain a running estimate of the mean squared value of derivatives for each 

parameter
– Scale update of the parameter by the inverse of the root mean squared 

derivative

௞ ௞ିଵ ௪  ௞

௞ ௞ିଵ ௪
ଶ

௞

௞
௞

௞ ௞
௞

௞

௞ାଵ ௞
௞

  ௞
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ADAM: RMSprop with momentum
• RMS prop only considers a second-moment normalized version of the 

current gradient
• ADAM utilizes a smoothed version of  the momentum-augmented gradient

• Procedure:
– Maintain a running estimate of the mean derivative for each parameter
– Maintain a running estimate of the mean squared value of derivatives for each 

parameter
– Scale update of the parameter by the inverse of the root mean squared 

derivative

௞ ௞ିଵ ௪  ௞

௞ ௞ିଵ ௪
ଶ

௞

௞
௞

௞ ௞
௞

௞

௞ାଵ ௞
௞

  ௞
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Ensures that the 
and terms do 

not dominate in 
early

iterations



Other variants of the same theme

• Many: 
– Adagrad
– AdaDelta
– ADAM
– AdaMax
– …

• Generally no explicit learning rate to optimize
– But come with other hyper parameters to be optimized
– Typical params:

• RMSProp: , 
• ADAM: , , 
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Visualizing the optimizers: Beale’s Function

• http://www.denizyuret.com/2015/03/alec-radfords-animations-for.html

108



Visualizing the optimizers: Long Valley

• http://www.denizyuret.com/2015/03/alec-radfords-animations-for.html

109



Visualizing the optimizers: Saddle Point

• http://www.denizyuret.com/2015/03/alec-radfords-animations-for.html
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Story so far

• Gradient descent can be sped up by incremental 
updates
– Convergence is guaranteed under most conditions

• Learning rate must shrink with time for convergence

– Stochastic gradient descent: update after each 
observation. Can be much faster than batch learning

– Mini-batch updates:  update after batches.  Can be more 
efficient than SGD

• Convergence can be improved using smoothed updates
– RMSprop and more advanced techniques
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Moving on: Topics for the day

• Incremental updates
• Revisiting “trend” algorithms
• Generalization
• Tricks of the trade

– Divergences..
– Activations
– Normalizations
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Tricks of the trade..

• To make the network converge better
– The Divergence
– Dropout
– Batch normalization
– Other tricks

• Gradient clipping
• Data augmentation
• Other hacks..
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Training Neural Nets by Gradient Descent: 
The Divergence

• The convergence of the gradient descent 
depends on the divergence
– Ideally, must have a shape that results in a 

significant gradient in the right direction outside 
the optimum
• To “guide” the algorithm to the right solution
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Total training loss:



Desiderata for a good divergence

• Must be smooth and not have many poor local optima
• Low slopes far from the optimum == bad

– Initial estimates far from the optimum will take forever to 
converge

• High slopes near the optimum == bad
– Steep gradients
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Desiderata for a good divergence

• Functions that are shallow far from the optimum will result in very small steps during optimization
– Slow convergence of gradient descent

• Functions that are steep near the optimum will result in large steps and overshoot during 
optimization
– Gradient descent will not converge easily

• The best type of divergence is steep far from the optimum, but shallow at the optimum
– But not too shallow: ideally quadratic in nature
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Choices for divergence

• Most common choices: The L2 divergence and 
the KL divergence 117

Desired output:   Desired output:

L2

KL

ଶ

1 2 3 4 0

Softmax

௜ ௜
ଶ

 

௜

௜ ௜

 

௜

௜ ௜

 

௜



L2 or KL?

• The L2 divergence has long been favored in 
most applications

• It is particularly appropriate when attempting 
to perform regression
– Numeric prediction

• The KL divergence is better when the intent is 
classification
– The output is a probability vector
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L2 or KL

• Plot of L2 and KL divergences for a single perceptron, as 
function of weights
– Setup:  2-dimensional input
– 100 training examples randomly generated
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L2 or KL

• Plot of L2 and KL divergences for a single perceptron, as 
function of weights
– Setup:  2-dimensional input
– 100 training examples randomly generated
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NOTE:  L2 divergence is not convex while KL is convex

However, L2 also has a unique global minimum



A note on derivatives

• Note: For L2 divergence the derivative w.r.t. 
the pre-activation of the output layer is:

• We literally “propagate” the error 
backward
– Which is why the method is sometimes called 

“error backpropagation”
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Story so far

• Gradient descent can be sped up by 
incremental updates

• Convergence can be improved using 
smoothed updates

• The choice of divergence affects both the 
learned network and results
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The problem of covariate shifts

• Training assumes the training data are all similarly distributed
– Minibatches have similar distribution

• In practice, each minibatch may have a different distribution
– A “covariate shift”

• Covariate shifts can affect training badly
123



The problem of covariate shifts

• Training assumes the training data are all similarly distributed
– Minibatches have similar distribution

• In practice, each minibatch may have a different distribution
– A “covariate shift”
– Which may occur in each layer of the networkg badly
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The problem of covariate shifts

• Training assumes the training data are all similarly distributed
– Minibatches have similar distribution

• In practice, each minibatch may have a different distribution
– A “covariate shift”

• Covariate shifts can be large!
– All covariate shifts can affect training badly
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• “Move” all batches to have a mean of 0 and unit 
standard deviation
– Eliminates covariate shift between batches

Solution: Move all subgroups to a “standard” 
location
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Solution: Move all subgroups to a “standard” 
location

• “Move” all batches to have a mean of 0 and unit 
standard deviation
– Eliminates covariate shift between batches
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Solution: Move all subgroups to a “standard” 
location

• “Move” all batches to have a mean of 0 and unit 
standard deviation
– Eliminates covariate shift between batches
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Solution: Move all subgroups to a “standard” 
location

• “Move” all batches to have a mean of 0 and unit 
standard deviation
– Eliminates covariate shift between batches
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Solution: Move all subgroups to a “standard” 
location

• “Move” all batches to have a mean of 0 and unit 
standard deviation
– Eliminates covariate shift between batches
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Solution: Move all subgroups to a “standard” 
location

• “Move” all batches to have a mean of 0 and unit 
standard deviation
– Eliminates covariate shift between batches
– Then move the entire collection to the appropriate location
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Batch normalization

• Batch normalization is a covariate adjustment unit that happens 
after the weighted addition of inputs but before the application of 
activation
– Is done independently for each unit, to simplify computation

• Training: The adjustment occurs over individual minibatches

+

+

+

+

+
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Batch normalization

• BN aggregates the statistics over a minibatch and normalizes the 
batch by them

• Normalized instances are “shifted” to a unit-specific location

+  

௝ ௝

 

௝

ଵ

ଶ

ே

ேିଵ

௜
௜ ஻

஻
 ௜ ௜

Batch normalization

Covariate shift to 
standard position

Shift to right
position

Neuron-specific terms
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Batch normalization: Training

• BN aggregates the statistics over a minibatch and normalizes the 
batch by them

• Normalized instances are “shifted” to a unit-specific location

+  

௝ ௝

 

௝

ଵ

ଶ

ே

ேିଵ

௜
௜ ஻

஻
ଶ   ௜ ௜

Batch normalization

஻ ௜

஻

௜ୀଵ

஻
ଶ

௜ ஻
ଶ

஻

௜ୀଵ
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Batch normalization: Training

• BN aggregates the statistics over a minibatch and normalizes the 
batch by them

• Normalized instances are “shifted” to a unit-specific location

+  

௝ ௝

 

௝

ଵ

ଶ

ே

ேିଵ

௜
௜ ஻

஻
ଶ   ௜ ௜

Minibatch size Minibatch mean

Batch normalization

Minibatch standard deviation

஻ ௜

஻

௜ୀଵ

஻
ଶ

௜ ஻
ଶ

஻

௜ୀଵ
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Batch normalization: Training

• BN aggregates the statistics over a minibatch and normalizes the 
batch by them

• Normalized instances are “shifted” to a unit-specific location

+  

௝ ௝

 

௝

ଵ

ଶ

ே

ேିଵ

௜
௜ ஻

஻
ଶ   ௜ ௜

Normalize minibatch to 
zero-mean unit variance

Shift to right
position

Batch normalization

஻ ௜

஻

௜ୀଵ

஻
ଶ

௜ ஻
ଶ

஻

௜ୀଵ
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A better picture for batch norm

+  

ଵ

ଶ

ே

ேିଵ

Batch normalization

+  

ଵ

ଶ

ே

ேିଵ

+
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A note on derivatives
• In conventional learning, we attempt to compute the 

derivative of the divergence for individual training instances 
w.r.t. parameters

• This is based on the following relations

• If we use Batch Norm, the above relation gets a little 
complicated
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A note on derivatives
• The outputs are now functions of and 

which are functions of the entire minibatch

• The Divergence for each depends on all the 
within the minibatch

• Specifically, within each layer, we get the 
relationship in the following slide
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Batchnorm is a vector function over 
the minibatch

• Batch normalization is really a vector function applied over all the inputs from a 
minibatch
– Every 𝑧௜ affects every 𝑧̂௝

– Shown on the next slide

• To compute the derivative of the divergence w.r.t any ௜, we must consider all ௝

in the batch
140
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஻

ଵ
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Batchnorm

• The complete dependency figure for Batchnorm
• Note : inputs and outputs are different instances in a minibatch

– The diagram represents BN occurring at a single neuron

• You can use vector function differentiation rules to compute the derivatives
– But the equations in the following slides summarize them for you
– The actual derivation uses the simplified diagram shown in the next slide, but you could do it 

directly off the figure above and arrive at the same answers
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ଶ
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ଵ
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Batchnorm

• Simplified diagram for a single input in a 
minibatch
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Influence diagram

஻
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Batch normalization: 
Backpropagation

+  

ଵ

ଶ

ே

ேିଵ

௜
௜ ஻

஻
ଶ   ௜ ௜

Batch normalization

 

஻ ௜

஻

௜ୀଵ

஻
ଶ

௜ ஻
ଶ

஻

௜ୀଵ
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Batch normalization: 
Backpropagation

+  

ଵ

ଶ

ே

ேିଵ

௜
௜ ஻

஻
ଶ   ௜ ௜

Batch normalization

 

 
Parameters to be
learned

஻ ௜

஻

௜ୀଵ

஻
ଶ

௜ ஻
ଶ

஻

௜ୀଵ
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Batch normalization: 
Backpropagation

+  

ଵ

ଶ

ே

ேିଵ

௜
௜ ஻

஻
ଶ   ௜ ௜

Batch normalization

 

 
Parameters to be
learned

஻ ௜

஻

௜ୀଵ

஻
ଶ

௜ ஻
ଶ

஻

௜ୀଵ
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Batch normalization: 
Backpropagation

+  

ଵ

ଶ

ே

ேିଵ

௜
௜ ஻

஻
ଶ   ௜ ௜

Batch normalization

஻ ௜

஻

௜ୀଵ

஻
ଶ

௜ ஻
ଶ

஻

௜ୀଵ
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Batch normalization: 
Backpropagation

+  

ଵ

ଶ

ே

ேିଵ

௜
௜ ஻

஻
ଶ   ௜ ௜

Batch normalization

஻ ௜

஻

௜ୀଵ

஻
ଶ

௜ ஻
ଶ

஻

௜ୀଵ
147

௜, ஻, ஻
ଶ

௜ ௜

௜

௜ ஻
ଶ

஻
ଶ

௜ ஻

஻

௜



Batch normalization: 
Backpropagation

 
 

஻
ଶ

௜஻

Influence diagram
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Backpropagation
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Backpropagation
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Batch normalization: 
Backpropagation
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Batch normalization: 
Backpropagation
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Batch normalization: 
Backpropagation
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Batch normalization: 
Backpropagation
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Batch normalization: 
Backpropagation
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Batch normalization: 
Backpropagation

+
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Batch normalization: 
Backpropagation

+
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The rest of backprop continues from డ஽௜௩
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Batch normalization: Inference

• On test data, BN requires 𝜇஻ and 𝜎஻
ଶ.

• We will use the average over all training minibatches

𝜇஻ே =
1

𝑁𝑏𝑎𝑡𝑐ℎ𝑒𝑠
෍ 𝜇஻(𝑏𝑎𝑡𝑐ℎ)

 

௕௔௧௖௛

𝜎஻ே
ଶ =

𝐵

(𝐵 − 1)𝑁𝑏𝑎𝑡𝑐ℎ𝑒𝑠
෍ 𝜎஻

ଶ(𝑏𝑎𝑡𝑐ℎ)

 

௕௔௧௖௛

• Note: these are neuron-specific
– 𝜇஻(𝑏𝑎𝑡𝑐ℎ) and 𝜎஻

ଶ(𝑏𝑎𝑡𝑐ℎ) here are obtained from the final converged network
– The 𝐵/(𝐵 − 1) term gives us an unbiased estimator for the variance

+  

ଶ

ே

ேିଵ
௜

௜ ஻ே

஻ே
ଶ   ௜ ௜

Batch normalization
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Batch normalization

• Batch normalization may only be applied to some layers 
– Or even only selected neurons in the layer

• Improves both convergence rate and neural network performance
– Anecdotal evidence that BN eliminates the need for dropout
– To get maximum benefit from BN, learning rates must be increased 

and learning rate decay can be faster
• Since the data generally remain in the high-gradient regions of the activations

– Also needs better randomization of training data order

+

+

+

+
+

159



Batch Normalization: Typical result

• Performance on Imagenet, from Ioffe and Szegedy,  JMLR 
2015
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Story so far

• Gradient descent can be sped up by incremental 
updates

• Convergence can be improved using smoothed updates

• The choice of divergence affects both the learned 
network and results

• Covariate shift between training and test may cause 
problems and may be handled by batch normalization
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The problem of data 
underspecification

• The figures shown to illustrate the learning 
problem so far were fake news..
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Learning the network

• We attempt to learn an entire function from just 
a few snapshots of it
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General approach to training

• Define an error between the actual network output for 
any parameter value and the desired output
– Error typically defined as the sum of the squared error over 

individual training instances

Blue lines: error when
function is below desired
output

Black lines: error when
function is above desired
output

௜ ௜
ଶ

 

௜
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Overfitting

• Problem:  Network may just learn the values at 
the inputs
– Learn the red curve instead of the dotted blue one

• Given only the red vertical bars as inputs
165



Data under-specification

• Consider a binary 100-dimensional input
• There are 2100=1030 possible inputs
• Complete specification of the function will require specification of 1030 output 

values
• A training set with only  1015 training instances will be off by a factor of 1015
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Data under-specification in learning

• Consider a binary 100-dimensional input
• There are 2100=1030 possible inputs
• Complete specification of the function will require specification of 1030 output 

values
• A training set with only  1015 training instances will be off by a factor of 1015

167
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Need “smoothing” constraints

• Need additional constraints that will “fill in” 
the missing regions acceptably
– Generalization

168



Smoothness through weight 
manipulation

• Illustrative example: Simple binary classifier
– The “desired” output is generally smooth
– The “overfit” model has fast changes

x

y
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Smoothness through weight 
manipulation

• Illustrative example: Simple binary classifier
– The “desired” output is generally smooth

• Capture statistical or average trends
– An unconstrained model will model individual instances 

instead

x

y
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The unconstrained model

• Illustrative example: Simple binary classifier
– The “desired” output is generally smooth

• Capture statistical or average trends
– An unconstrained model will model individual instances 

instead

x

y
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Why overfitting

x

y

These sharp changes happen because ..

..the perceptrons in the network are individually capable of sharp changes 
in output
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The individual perceptron

• Using a sigmoid activation
– As increases, the response becomes steeper
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Smoothness through weight 
manipulation

x

y

• Steep changes that enable overfitted responses are 
facilitated by perceptrons with large 

• Constraining the weights to be low will force slower 
perceptrons and smoother output response
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Smoothness through weight 
manipulation

x

y

• Steep changes that enable overfitted responses are 
facilitated by perceptrons with large 

• Constraining the weights to be low will force slower 
perceptrons and smoother output response
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Objective function for neural 
networks

• Conventional training: minimize the total loss:

Desired output of network: 

Error on i-th training input:    

ଵ ଶ ௄

Batch training loss:

176
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Smoothness through weight 
constraints

• Regularized training: minimize the loss while also minimizing the 
weights

• is the regularization parameter whose value depends on how 
important it is for us to want to minimize the weights

• Increasing assigns greater importance to shrinking the weights
– Make greater error on training data, to obtain a more acceptable network

177

భ మ ಼



Regularizing the weights

ଵ ଶ ௄ ௧ ௧

 

௧

௞ ଶ
ଶ

 

௞

• Batch mode:

௞ ௐೖ ௧ ௧
𝑇

 

௧

௞

• SGD:
௞ ௐೖ ௧ ௧

𝑇
௞

• Minibatch:

௞ ௐೖ ఛ ఛ
𝑇

௧ା௕ିଵ

ఛୀ௧

௞

• Update rule:
௞ ௞ ௞

178



Incremental Update: Mini-batch 
update

• Given ଵ ଵ , ଶ ଶ ,…, ் ்

• Initialize all weights ଵ ଶ ௄;   

• Do:
– Randomly permute ଵ ଵ , ଶ ଶ ,…, ் ்

– For 
• 𝑗 = 𝑗 + 1

• For every layer k:
– ∆𝑊௞ = 0

• For t’ = t : t+b-1
– For every layer 𝑘:

» Compute  𝛻ௐೖ
𝐷𝑖𝑣(𝑌௧, 𝑑௧)

» ∆𝑊௞ = ∆𝑊௞ + 𝛻ௐೖ
𝐷𝑖𝑣 𝑌௧, 𝑑௧

𝑇

• Update
– For every layer k:

𝑊௞ = 𝑊௞ − 𝜂௝ ∆𝑊௞ + 𝜆𝑊௞

• Until has converged 179



Smoothness through network 
structure

• MLPs naturally impose constraints

• MLPs are universal approximators
– Arbitrarily increasing size can give 

you arbitrarily wiggly functions
– The function will remain ill-defined 

on the majority of the space

• For a given number of parameters deeper networks impose 
more smoothness than shallow ones
– Each layer works on the already smooth surface output by the 

previous layer
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• Typical results (varies with initialization)
• 1000 training points – orders of magnitude more than you 

usually get
• All the training tricks known to mankind 181

Even when we get it all right



But depth and training data help

• Deeper networks seem to learn better, for the same 
number of total neurons
– Implicit smoothness constraints

• As opposed to explicit constraints from more conventional 
classification models

• Similar functions not learnable using more usual 
pattern-recognition models!! 182

6 layers 11 layers

3 layers 4 layers

6 layers 11 layers

3 layers 4 layers

10000 training instances



Regularization..

• Other techniques have been proposed to 
improve the smoothness of the learned 
function
– L1 regularization of network activations
– Regularizing with added noise..

• Possibly the most influential method has been 
“dropout”
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Story so far

• Gradient descent can be sped up by incremental updates
• Convergence can be improved using smoothed updates

• The choice of divergence affects both the learned network 
and results

• Covariate shift between training and test may cause 
problems and may be handled by batch normalization

• Data underspecification can result in overfitted models and 
must be handled by regularization and more constrained 
(generally deeper) network architectures
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A brief detour..  Bagging

• Popular method proposed by Leo Breiman:
– Sample training data and train several different classifiers
– Classify test instance with entire ensemble of classifiers
– Vote across classifiers for final decision
– Empirically shown to improve significantly over training a single 

classifier from combined data

• Returning to our problem….
185



Dropout

• During training: For each input, at each iteration, 
“turn off” each neuron with a probability 1-a

Input

Output
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Dropout

• During training: For each input, at each iteration, 
“turn off” each neuron with a probability 1-a
– Also turn off inputs similarly

Input

Output

X1 Y1
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Dropout

• During training: For each input, at each iteration, “turn off” 
each neuron (including inputs) with a probability 1-a
– In practice, set them to 0 according to the success of a Bernoulli 

random number generator with success probability 1-a

Input

Output

X1 Y1
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Dropout

• During training: For each input, at each iteration, “turn off” 
each neuron (including inputs) with a probability 1-a
– In practice, set them to 0 according to the success of a Bernoulli 

random number generator with success probability 1-a

The pattern of dropped nodes
changes for each input
i.e. in every pass through the net

Input

Output

X1 Y1

Input

Output

X2 Y2

Input

Output

X3 Y3
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Dropout

• During training: Backpropagation is effectively performed only over the remaining 
network
– The effective network is different for different inputs
– Gradients are obtained only for the weights and biases from “On” nodes to “On” nodes

• For the remaining, the gradient is just 0

The pattern of dropped nodes
changes for each input
i.e. in every pass through the net

Input

Output

X1 Y1

Input

Output

X2 Y2

Output

X3 Y3

Input
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Statistical Interpretation

• For a network with a total of N neurons, there are 2N

possible sub-networks
– Obtained by choosing different subsets of nodes
– Dropout samples over all 2N possible networks
– Effectively learns a network that averages over all possible 

networks
• Bagging

Input

Output
X1 Y1

Input

Output
X2 Y2

Output
X3 Y3

Input

Output

X1 Y1
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Dropout as a mechanism to increase 
pattern density

• Dropout forces the neurons to 
learn “rich” and redundant 
patterns

• E.g. without dropout, a non-
compressive layer may just 
“clone” its input to its output
– Transferring the task of learning 

to the rest of the network 
upstream

• Dropout forces the neurons to 
learn denser patterns
– With redundancy
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The forward pass
• Input: dimensional vector ௝

• Set:
– ଴ ,  is the width of the 0th (input) layer

– ௝
(଴)

௝ ;       ଴
(௞ୀଵ…ே)

଴

• For layer 
– For ௞

• 𝑧௝
(௞)

= ∑ 𝑤௜,௝
(௞)

𝑦௜
(௞ିଵ)

+
ேೖ
௜ୀ଴ 𝑏௝

(௞)

• 𝑦௝
(௞)

= 𝑓௞ 𝑧௝
(௞)

• If (𝑘 =  𝑑𝑟𝑜𝑝𝑜𝑢𝑡 𝑙𝑎𝑦𝑒𝑟) : 
– 𝑚𝑎𝑠𝑘 𝑘, 𝑗 =  𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖 𝛼

– If  𝑚𝑎𝑠𝑘 𝑘, 𝑗 == 0

» 𝑦௝
(௞)

= 0

• Output:

– ௝
(ே)

ே
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Backward Pass
• Output layer (N) :

–
డ஽௜௩

డ௒೔

డ஽௜௩(௒,ௗ)

డ௬
೔
(ಿ)

–
డ஽௜௩

డ௭
೔
(ೖ) ௞

ᇱ
௜
(௞) డ஽௜௩

డ௬
೔
(ೖ)

• For layer 
– For ௞

• If (not dropout layer OR )

–
డ஽௜௩

డ௬
೔
(ೖ) = ∑ 𝑤௜௝

௞ାଵ 
௝

డ஽௜௩

డ௭ೕ
ೖశభ 𝑚𝑎𝑠𝑘(𝑘 + 1, 𝑗)

–
డ஽௜௩

డ௭
೔
(ೖ) = 𝑓௞

ᇱ 𝑧௜
(௞) డ஽௜௩

డ௬
೔
(ೖ)

–
డ஽௜௩

డ௪
೔ೕ
(ೖశభ) = 𝑦௜

௞ డ஽௜௩

డ௭ೕ
ೖశభ 𝑚𝑎𝑠𝑘(𝑘 + 1, 𝑗) for 𝑗 = 1 … 𝐷௞ାଵ

• Else

–
డ஽௜

డ௭
೔
(ೖ) = 0
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What each neuron computes

• Each neuron actually has the following activation:

௜
(௞)

௝௜
(௞)

௝
(௞ିଵ)

 

௝

௜
(௞)

– Where is a Bernoulli variable that takes a value 1 with probability a

• may be switched on or off for individual sub networks, but over 
the ensemble, the expected output of the neuron is 

௜
(௞) a ௝௜

(௞)
௝
(௞ିଵ)

 

௝

௜
(௞)

• During test time, we will use the expected output of the neuron
– Which corresponds to the bagged average output
– Consists of simply scaling the output of each neuron by a
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Dropout during  test: implementation

• Instead of multiplying every output by , multiply 
all weights by 

Input

Output

X1 Y1

apply a here (to the output of the neuron) OR..

Push the a to all outgoing weights

𝑧௜
(௞)

= ෍ 𝑤௝௜
(௞)

𝑦௝
(௞ିଵ)

+

 

௝

𝑏௜
(௞)

         = ෍ 𝑤௝௜
(௞)a𝜎 𝑧௝

(௞ିଵ)
+

 

௝

𝑏௜
(௞)

         = ෍ a𝑤௝௜
(௞)

𝜎 𝑧௝
(௞ିଵ)

+

 

௝

𝑏௜
(௞)
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Dropout : alternate implementation

• Alternately, during training, replace the activation 
of all neurons in the network by a
– This does not affect the dropout procedure itself

– We will use as the activation during testing, and not 
modify the weights

Input

Output

X1 Y1
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The forward pass (testing)
• Input: dimensional vector ௝

• Set:
– 𝐷଴ = 𝐷,  is the width of the 0th (input) layer

– 𝑦௝
(଴)

= 𝑥௝, 𝑗 = 1 … 𝐷;       𝑦଴
(௞ୀଵ…ே)

= 𝑥଴ = 1

• For layer 
– For 𝑗 = 1 … 𝐷௞

• 𝑧௝
(௞)

= ∑ 𝑤௜,௝
(௞)

𝑦௜
(௞ିଵ)

+
ேೖ
௜ୀ଴ 𝑏௝

(௞)

• 𝑦௝
(௞)

= 𝑓௞ 𝑧௝
(௞)

• If (𝑘 =  𝑑𝑟𝑜𝑝𝑜𝑢𝑡 𝑙𝑎𝑦𝑒𝑟) : 

» 𝑦௝
(௞)

= 𝑦௝
(௞)

/𝛼

– Else

» 𝑦௝
(௞)

= 0

• Output:

– 𝑌 = 𝑦௝
(ே)

, 𝑗 = 1. . 𝐷ே
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Dropout: Typical results

• From Srivastava et al., 2013.  Test error for different 
architectures on MNIST with and without dropout
– 2-4 hidden layers with 1024-2048 units 199



Variations on dropout

• Zoneout: For RNNs
– Randomly chosen units remain unchanged across a time transition

• Dropconnect
– Drop individual connections, instead of nodes

• Shakeout
– Scale up the weights of randomly selected weights

• 𝑤 → 𝛼 𝑤 + 1 − 𝛼 𝑐

– Fix remaining weights to a negative constant
• 𝑤 → −𝑐

• Whiteout
– Add or multiply weight-dependent Gaussian noise to the signal on 

each connection 
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Story so far
• Gradient descent can be sped up by incremental updates
• Convergence can be improved using smoothed updates

• The choice of divergence affects both the learned network and 
results

• Covariate shift between training and test may cause problems and 
may be handled by batch normalization

• Data underspecification can result in overfitted models and must be 
handled by regularization and more constrained (generally deeper) 
network architectures

• “Dropout” is a stochastic data/model erasure method that 
sometimes forces the network to learn more robust models
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Other heuristics: Early stopping

• Continued training can result in over fitting to 
training data
– Track performance on a held-out validation set
– Apply one of several early-stopping criterion to 

terminate training when performance on validation 
set degrades significantly

error

epochs

training

validation
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Additional heuristics: Gradient 
clipping

• Often the derivative will be too high
– When the divergence has a steep slope
– This can result in instability

• Gradient clipping: set a ceiling on derivative value

– Typical value is 5

203
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Additional heuristics: Data 
Augmentation

• Available training data will often be small
• “Extend” it by distorting examples in a variety of 

ways to generate synthetic labelled examples
– E.g. rotation, stretching, adding noise, other distortion
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Other tricks

• Normalize the input:
– Apply covariate shift to entire training data to make it 0 

mean, unit variance
– Equivalent of batch norm on input

• A variety of other tricks are applied
– Initialization techniques

• Typically initialized randomly
• Key point:  neurons with identical connections that are identically 

initialized will never diverge

– Practice makes man perfect
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Setting up a problem
• Obtain training data

– Use appropriate representation for inputs and outputs

• Choose network architecture
– More neurons need more data
– Deep is better, but harder to train

• Choose the appropriate divergence function
– Choose regularization

• Choose heuristics (batch norm, dropout, etc.) 
• Choose optimization algorithm

– E.g. Adagrad

• Perform a grid search for hyper parameters (learning rate, regularization 
parameter, …) on held-out data

• Train
– Evaluate periodically on validation data, for early stopping if required

206



In closing

• Have outlined the process of training neural 
networks
– Some history
– A variety of algorithms
– Gradient-descent based techniques
– Regularization for generalization
– Algorithms for convergence
– Heuristics

• Practice makes perfect..

207


