Deep Neural Networks
Convolutional Networks lli

Bhiksha Raj

Outline

Quick recap
Back propagation through a CNN

Modifications: Scaling, rotation and deformation
Invariance

Segmentation and localization
Some success stories

Story so far

Pattern classification tasks such as “does this picture contain a cat”,
or “does this recording include HELLO” are best performed by
scanning for the target pattern

Scanning an input with a network and combining the outcomes is
equivalent to scanning with individual neurons hierarchically

— First level neurons scan the input

— Higher-level neurons scan the “maps” formed by lower-level neurons
— A final “decision” unit or layer makes the final decision

— Deformations in the input can be handled by “pooling”

For 2-D (or higher-dimensional) scans, the structure is called a
convnet

For 1-D scan along time, it is called a Time-delay neural network

The general architecture of a
convolutional neural network

— lj =
/
| [S-N-
/: /(s ! ! ! OUTPUT
° : . $ $ $
] $
—] : ; ANERRNE =
"WOHHOH HCIE
— D
// _— | — \ H
pow?t som"\e’ / pow?® sor\P e D D . ap\e
ns
//“ _— D{\oﬂ Q D_::\ Multi-layer
C 0“\,0\\.\’(\0 co olutio cor\"°\"‘ Co“\,o\\.\“ Perceptron

e A convolutional neural network comprises of
“convolutional” and optional “downsampling” layers

* Followed by an MLLP with one or more layers

T

Previous
layer

\\ AT < D\

=
o
P

o\

C 0“\1 O\U

\aye©

Previous
layer

* Each activation map in the convolutional layer has two components

— A linear map, obtained by convolution over maps in the previous layer

* Each linear map has, associated with it, a learnable filter

— An activation that operates on the output of the convolution

What is a convolution

o] [1]o]1 Ll Ll 1 0O
bias ot [0]1[1/1]o]| [4
Filter 0.10.[1, [Erams
0/0(1|1]|0
011(1|10]0
Convolved
Input Map Feature

e Scanning an image with a “filter”

— At each location, the “filter and the underlying map values are
multiplied component wise, and the products are added along with
the bias

hat really happens

]

[B L
-l

- -

L=

ﬁ\o\

cono

3 3
2(1,1,) :ZZZW(lmkl)I(mi+l—1j+k—1)+b

m k=11=1

* Each output is computed from multiple maps simultaneously

 There are as many weights (for each output map) as
size of the filter X no. of maps in previous layer

hat really happens

ﬁ_l_l

\\ AT < D\

=
=
P
S

3 3
2(1,1,) :ZZZW(lmkl)I(mi+l—1j+k—1)+b

m k=11=1

* Each output is computed from multiple maps simultaneously

 There are as many weights (for each output map) as
size of the filter X no. of maps in previous layer

hat really happens

i
| |
L g
- =
=
coNo™

3 3
2(1,1,) :ZZZW(lmkl)I(mi+l—1j+k—1)+b

m k=11=1

* Each output is computed from multiple maps simultaneously

 There are as many weights (for each output map) as
size of the filter X no. of maps in previous layer

hat really happens

\\ AT < D\

=
=
P
S

3 3
2(1,1,) :ZZZW(lmkl)I(mi+l—1j+k—1)+b

m k=11=1

* Each output is computed from multiple maps simultaneously

 There are as many weights (for each output map) as
size of the filter X no. of maps in previous layer

hat really happens

\\ AT < D\

=
=
P
S

3 3
2(1,1,) :ZZZW(lmkl)I(mi+l—1j+k—1)+b

m k=11=1

* Each output is computed from multiple maps simultaneously

 There are as many weights (for each output map) as
size of the filter X no. of maps in previous layer

hat really happens

\\ AT < D\

=
=
P
S

3 3
2(1,1,) :ZZZW(lmkl)I(mi+l—1j+k—1)+b

m k=11=1

* Each output is computed from multiple maps simultaneously

 There are as many weights (for each output map) as
size of the filter X no. of maps in previous layer

hat really happens

i
T g
g =
=
coNo™

3 3
2(1,1,) :ZZZW(lmkl)I(mi+l—1j+k—1)+b

m k=11=1

* Each output is computed from multiple maps simultaneously

 There are as many weights (for each output map) as
size of the filter X no. of maps in previous layer

hat really happens

\\ AT < D\

=
=
P
S

3 3
2(1,1,) :ZZZW(lmkl)I(mi+l—1j+k—1)+b

m k=11=1

* Each output is computed from multiple maps simultaneously

 There are as many weights (for each output map) as
size of the filter X no. of maps in previous layer

hat really happens

i
T g
g =
=
coNo™

3 3
2(1,1,) :ZZZW(lmkl)I(mi+l—1j+k—1)+b

m k=11=1

* Each output is computed from multiple maps simultaneously

 There are as many weights (for each output map) as
size of the filter X no. of maps in previous layer

A better representation

Stacked arrangement

arel- L
of kth layer of maps y
[oo
|
6/('9
-
5 /
e, g Con\lo\““o

Filter applied to kth layer of maps
(convolutive component plus bias)

* ..A stacked arrangement of planes

* We can view the joint processing of the various
maps as processing the stack using a three-
dimensional filter

A better representation

gitter

conV

L L
z(s,1i,j) =Z:Z:Z:W(s,p,k,l)1/(p,i+l—1,j+k— 1)+ b(s)

p k=11=1
* The computation of the convolutive map at any
location sums the convolutive outputs at all
planes

A better representation

gitter

Convo!

L L
z(s,1i,j) =Z:Z:Z:W(s,p,k,l)1/(p,i+l—1,j+k— 1)+ b(s)

p k=11=1
* The computation of the convolutive map at any
location sums the convolutive outputs at all
planes

A better representation

conV

z(s, l])—ZZZW(S p,k,DY(p,i+1—1,j+k—1)+ b(s)

=1 [=1
* The computatlon of the convolutive map at any
location sums the convolutive outputs at all
planes

A better representation

bias m

z(s, l])—ZZZW(s p,k,DY(p,i+1—1,j+k—1)+ b(s)

=1 [=1
* The computatlon of the convolutive map at any
location sums the convolutive outputs at all
planes

A better representation

L L
z(s,1i,j) =Z:Z:Z:W(s,p,k,l)Y(p,i+l—1,j+k— 1)+ b(s)

p k=11=1
* The computation of the convolutive map at any
location sums the convolutive outputs at all
planes

A better representation

L L
z(s,1i,j) =Z:Z:Z:W(s,p,k,l)Y(p,i+l—1,j+k— 1)+ b(s)

p k=11=1
* The computation of the convolutive map at any
location sums the convolutive outputs at all
planes

bias m [®e0 ////////////////'

L L
2(s, i,) =ZZZW(S,p,k,l)Y(p,i Fl—1,j+k—1)+b(s)
p k=1I1=1

* The computation of the convolutive map at any
location sums the convolutive outputs at all
planes

Convolutional neural net:
Vector notation

The weight W(l,J)is a 3D D,_;xK;xK; tensor

Y(0) = Image

for 1 = 1:L. # layers operate on vector at (x,y)
for Jj = 1:D;
for x = 1:W,_;-K;+1
for y = 1:H; ;-K;+1

segment = Y (1-1,:,x:x+K;-1,y:y+K;-1) #3D tensor
z(l,j,x,y) = W(l,]j).segment #tensor inner prod.
Y(1,7,x,y) = activation(z(1l,],x,Vv))

Y = softmax({Y¥Y(L, :,:,:)})

24

Convolution can shrink a map by
using strides greater than 1

O] [1]0]1 1X1 1XO 1X1 OO0
. 0Of{1]0
blas 1 O 1 OxO 1x1 1x0 1 O 4
Filter olol 11111
x1 x0 x1
OO0l 1]1]O0
Ol1]110]O0

* Scanning an image with a “filter”
— The filter may proceed by more than 1 pixel at a time
— E.g. with a “stride” of two pixels per shift

Convolution can shrink a map by
using strides greater than 1

O] [1]0]1 111 1X1 OXO .
. 0Of{1]0
blas 1 O 1 O 1 1xO 1x1 OxO 4 4
Filter olol 11111
x1 x0 x1
OO0l 1]1]O0
Ol1]110]O0

* Scanning an image with a “filter”
— The filter may proceed by more than 1 pixel at a time
— E.g. with a “stride” of two pixels per shift

Convolution can shrink a map by
using strides greater than 1

0 110]1 1 1 1 0 0
. 0(1]0
bias 51577 o|1|1]|1]0 4 | 4
Filter olof1]|1]1 2
OXO 0x1 1x0 1 O
0 1 1 0 0
x1 x0 x1

* Scanning an image with a “filter”
— The filter may proceed by more than 1 pixel at a time
— E.g. with a “stride” of two pixels per shift

Convolution can shrink a map by
using strides greater than 1

0 11011 1 1 1 10| O0
. 0(1]0
bias 51577 o|1|1]|1]0 4 | 4
Filter o|lo|1|1|1, 2 | 4
O O 1x0 1x1 x0
0 1 1 OO
x1 x0 x1

* Scanning an image with a “filter”

— The filter may proceed by more than 1 pixel at a time
— E.g. with a “stride” of two pixels per shift

Convolution strides

W

N\ v \

TR
A v \\

Cor\vo\“ﬂo“

Stride=1 Stride>l

e Convolution with stride 1 = output size same as input size
— Besides edge effects

» Stride greater than 1 = output size shrinks w.r.t. input

Convolutional neural net:
Vector notation

The weight W(l,j)is now a 3D D,_;xK;xK; tensor (assuming
square receptive fields)

Y (0) = Image
for 1 = 1:L # layers operate on vector at (x,y)
for j = 1:D,

m =1
for x = l:stride:W, ;-K;+1
n =1

for y = l:stride:H, -K;+1

segment = Y (1-1, :, x:x+K,-1, y:y+K,-1) #3D tensor

z(l,j,m,n) = W(l,J).segment #tensor inner prod.
Y(1,3,m,n) = activation(z(l,j,m,n))
n++

m++

Y = softmax({¥Y(L,:,:,:)})

The other method for shrinking the maps:
Downsampling/Pooling

0D
:

A\

3
5\ e
3

]

=
—
3
)

3 |

s
-
—

e}

L=a B

/
0
= Multi-layer

_\x'\oY\Com olutio® Perceptron

A

o
g\
£
o
>

como!

o
Z

* Convolution (and activation) layers are followed intermittently by
“downsampling” (or “pooling”) layers
— Often, they alternate with convolution, though this is not necessary

Recall: Max pooling
6

* Max pooling selects the largest from a pool of
elements

* Pooling is performed by “scanning” the input

Pooling and downsampling

Max O

* Pooling is typically performed with strides > 1

— Results in shrinking of the map

— “Downsampling”

Pooling and downsampling

Max (@)

* Pooling is typically performed with strides > 1

— Results in shrinking of the map

— “Downsampling”

Pooling and downsampling

* Pooling is typically performed with strides > 1

— Results in shrinking of the map

— “Downsampling”

Pooling and downsampling

* Pooling is typically performed with strides > 1

— Results in shrinking of the map

— “Downsampling”

Pooling and downsampling

* Pooling is typically performed with strides > 1

— Results in shrinking of the map

— “Downsampling”

Pooling and downsampling

* Pooling is typically performed with strides > 1

— Results in shrinking of the map

— “Downsampling”

Pooling and downsampling

max 338°

* Pooling is typically performed with strides > 1

— Results in shrinking of the map

— “Downsampling”

Pooling and downsampling

* Pooling is typically performed with strides > 1

— Results in shrinking of the map

— “Downsampling”

Pooling and downsampling

* Pooling is typically performed with strides > 1

— Results in shrinking of the map

— “Downsampling”

Max Pooling layer at layer [

a) Performed separately for every map (j).

*) Not combining multiple maps within a single max operation.
b) Keeping track of location of max

1

Max pooling
for j = 1:D,

m = 1
for x = l:stride(l) :W,;-K;+1
n =1

for y = l:stride (1) :H, ,-K,+1 |
pidx(l,jJ,m,n) = maxidx(Y(l-1,]J,x:x+K;-1,y:y+K;-1))
u(l,j,m,n) = Y(1-1,73,p1idx(1l,J,m,n))
n = nt+l

m = m+1

42

Recall: Mean pooling

3 1 Mean | 3.5

 Mean pooling computes the mean of the window
of values
— As opposed to the max of max pooling

e Scanning with strides is otherwise identical to
max pooling

Max Pooling layer at layer [

a) Performed separately for every map (j)
\

Max pooling

for j = 1:D,

m = 1
for x = l:stride(l) :W,;-K;+1
n = 1
for y = l:stride(l):H; -K;+1 |
u(l,3,m,n) = mean(Y(1l-1,7,x:x+K;-1,y:y+K;-1))
n = n+l

m = m+1

44

Setting everything together

* Typical image classification task

— Assuming maxpooling..

Convolutional Neural Networks

* Input: 1 or 3 images
— Black and white or color
— Will assume color to be generic

Convolutional Neural Networks

WK, X L, X L,
Wp:3XLXL m=1..K,
m=1..K;

ol

convolve

* Several convolutional and pooling layers.
 The output of the last layer is “flattened” and passed through an MLP

Learning the network

e ram | ©

convolve

* Parameters to be learned:
— The weights of the neurons in the
— The (weights and biases of the) filters for every convolutional layer

Learning the CNN

Training is as in the case of the regular MLP

— The only difference is in the structure of the network

Training examples of (Image, class) are provided

Define a divergence between the desired output and
true output of the network in response to any input

Network parameters are trained through variants of
gradient descent

Gradients are computed through backpropagation

Defining the loss

WK, X L, X L,
Wp:3XLXL m=1..K,
m=1..K;

ol

| Y(Lx)
K,
Input: x convolve
y(x)
Div (y(x),d(x)) 4& Div()
Tt
d(x)

* The loss for a single instance

Problem Setup

Given a training set of input-output pairs
(XlI dl)J (Xz, dZ)I L (XT' dT)

The error on the it" instance is div(Y;, d;)
The total error

T
1
Loss = TZ div(Y;, d;)
i=1

Minimize Loss w.rt {W,,, b.,,}

51

Training CNNs through Gradient Descent

Total training loss:

T
1
Loss = 72 div(Y;, d;)
i=1

Assuming the bias is also
represented as a weight

* Gradient descent algorithm:
* Initialize all weights and biases {w(:,:,:,:,:)}
* Do:

— For every layer [for all filter indices m, update:

dLoss

¢ W(l) m;j; X y) — W(l’ m'j' X) y) 0 dw(lm,j,x,y)

* Until Err has converged

52

Training CNNs through Gradient Descent

Total training loss:

T
1
Loss = 72 div(Y;, d;)
i=1

Assuming the bias is also
represented as a weight

* Gradient descent algorithm:
* Initialize all weights and biases {w(:,:,:,:,:)}
* Do:

— For every layer [for all filter indices m, update:

. _ dLoss
¢ W(l) m,], X, y) — W(l’ m’]’ * y) - TI(@

* Until Loss has converged

53

The derivative

Total training loss:

1
Loss = ?Z Div(Y;, d;)
i

 Computing the derivative

Total derivative:
dLoss 1 dDiv(Y;, d;)

dw(l,m,j,x%,y) TZadw(l,m,j,xy)
l

54

The derivative

Total training loss:

1
Loss = ?Z Div(Y;, d;)
i

 Computing the derivative

Total derivative:

dLoss 1

dDiv(Y;, d;)
S dw(l,m,j, x,y)

dw(l,m,j, x,y) T T

55

Backpropagation: Final flat layers

(1) If[> o
|:> UK1 Y

[
1 K,

(1)
Ye,

(VyyDiv(Y (X), d(X))

AN

)

Conventional backprop until here

* Backpropagation continues in the usual manner
until the computation of the derivative of the
divergence w.r.t the inputs to the first “flat” layer

— Important to recall: the first flat layer is only the
“unrolling” of the maps from the final convolutional

layer

Backpropagation: Convolutional and

Pooling layers
(VyyDiv(Y (X), d(X))

% Y (X)
E>bﬁ(]’g) 7 g it

<'I Need adjustments here
* Backpropagation from the flat MLP requires

special consideration of
— The shared computation in the convolution layers

— The pooling layers (particularly maxout)

BP: Convolutional layer

1. 1] 1. FONRO
0. 1|1 SN0 4
o/ofJz]1]2
0(0(1|1]|0
0[(1/1|0(0
Convolved
r¢=-1) Feature Z(1)

* For every [t layer filter, each position in the
map in the [— 1t |layer affects several
positions in the map of the [t layer

BP: Convolutional layer

1. 1.1 KOO
0. 1.1 [SI8E0 413 1|4 o 2112
Activation

0.0, 1 e 243‘ >021
0/0|1|1|0 2134 0112
0/(1/1|0|0

Convolved 40

Y(l—1)

Feature Z(1)

* For every [t layer filter, each position in the
map in the [— 1t |layer affects several
positions in the map of the [t layer

BP: Convolutional layer

= OO |-
== = =
O|lR|(R|R|lO
o|lo|lr|O|O

f Y(l—1)

Output of |-1th yer filter, ea
Affine combination

layer

positions in the

4134 Activation
fO

2143 |

2134

Convolve

Feature Z(

posit

2 (1

2

o

2

1

01

2

Y (D)

AN

Output of It

layer

1

at I™ layer

BP: Convolutional layer

7,11, Div KV, Div Ko e
0|0

1xl 13:(] 1#1
0/1,/1/21[0| |4[3]4]Actvation 15172
0/0/1 /11 >(a3] O 021
0|0|1]1]0 234 0[1(2
o[1/1]/0]0
Convolved ri)
= Feature Z(1)

* Assuming V'yyDiv is available

— Remember — it is available for the Lt layer already from
the flat MLP

* Must compute V;Div and Vy_1)Div

BP: Convolutional layer

[= [T, Div] ——= [Ty 0D |

IR 0) 0|0
Om :|_M1]m 110 4134 Activation 271112
ojoj1/1[1]| [2]a[3| /Y 0/2]1
0|0(1|1(0 2134 O(1|2
O0(1(1|0]|0
Convolved A0
Y(I—-1)

Feature Z(1)

* Computing V;)Div
dDiv dDiv ,
dz(l,m,x,y) " d Y(l,m,x, y)f (z(,m, x,))
* Simple component-wise computation

BP: Canunlutional layer
-M< oD

Moo o
O 1|1 2[0| |[4[3[4]Actvation 12112
0,041, 2(1| [2]4]3] A 0[2]1
0({0|1]1|0 2|13 |4 0112
6 0 1 0 I OB 0
Convolved rd)
Y(—1)

Feature Z(1)

* Computing Vy;_1yDiv and Vi, Div
 EachY(l—1,m,x,vy) affects several z(L,*,x,y) terms
— All of them contribute to the derivative w.r.t. Y (Il — 1,m, x,y)

BP: Convolutional layer

1/1/1/0]0
1,:0 1/o0| |4
0.0, 1,
0/|0|1(1|0
O(1 (1O [0
Convolved
Y(l—1)

Feature Z(1)

 EachY(l—1,m,x,vy) affects several z(l,n, x,y) terms

BP: Convolutional layer

4
0 J 3
0/011(1(0 2134
01111100
Convolved
Y(l—1)

Feature Z(1)

 EachY(l—1,m,x,vy) affects several z(l,n, x,y) terms

BP: Convolutional layer
1 Z(,1)
=~ Z(1,2)
: N = No. of filters
NN Z(l,N)

Each Y (Il — 1, m, x, y) affects several z(l,n, x', y") terms

— Throughw;(m,n,x —x',y —y")
— Affects terms in all [t layer Z maps

BP: Convolutional layer

i)
1

0 oy [
1 x

1
1

0

'_l
==

=
OlRr|R| RO
IO OO

o OO O |-
o

= O

Convolved
Feature Z(1)

For every [layer filter, each Y (Il — 1, m, x, y) affects several z([,n, x',y")
terms

Y(l—1)

— Throughw;(m,n,x — x',y —y")

BP: Convolutional layer

1. 1] 1 KOllD
IR EN |
0.0 :
0|0[1]1
0|1]/1]/0]0
Convolved
=1 Feature Z(1)

* For every [* layer filter, each Y (I — 1, m, x, y) affects
several z(l,n,x’,y") terms

BP: Convolutional layer

A > 4
11|10 o/ Z(,1)
0|11 1/%/ |
0o -

‘ | Z(l,2
0|0]1 1)
of1]1]o0 i

Y(l—1) y
N Z([,N)

* EachY(l —1,m,x,y) affects several z(l,n, x', y") terms for every n
— Affects terms in all 1 th layer Z maps
— All of them contribute to the derivative of the divergence w.r.t. Y(l — 1,m, x,y)

Derivative w.r.t a specific y term

BP: Convolutional layer

o > 4

4'

=L
» »

1|1
0|1
0|0 | 1=
oo N
0|1

N\

dDiv

dY(l—1,m,x,y)

=22d2<

dDiv

dz(i, n,x,y")

n xy/

Lnx',y)dY(l —1,m,x,vy)

Z(,1)

7(1,2)

Z(l,N)

dDiv

=)0, @a

n xy'

n,x',y")

wiimnx—x',y—y")

Assuming indexing
is from O

BP: Convolutional layer

A > 4
1[1]|1|0]o0 / Z(,1)
o|l1|1]1 /%/ |
il . Z(1,2)
olo]1 1 '
O|j1(11(0 .
Y(l—1) y
N Z(l,N)
Summing over all Z maps

dDiv \iz dDiv
dY(l—1,m,x,y) dz(l,n,x’', y)wlmnx X,y =¥)

n x.,y!

BP: Convolutional layer

A > 4
1[1]|1|0]o0 / Z(,1)
o|l1|1]1 /%/ |
il ‘ — Z(l,2
0ofo]1 1 (2)
O|j1(11(0 .
Y(l—1) y
N Z(l,N)
Summing over all Z maps

Summing over all positions in each Z map

dDiv \iz/ dDiv
dY(l—1,m,x,y) dz(l,n,x’', y)wlmnx X,y =¥)

n x.,y!

BP: Convolutional layer

1 1 1 0 0 Wl(m,n,l,Z) _y Z(l,n)
o111 /; >
o ’/,‘ _y
0 o’ ‘E:-_
of1]1|0]o0
Y(l—1,m)

» Each weight w;(m,n, x',y") also affects several z(l,n, x, y) terms for every n
— Affects terms in only one Z map (the nth map)

— All entries in the map contribute to the derivative of the divergence
w.r.t.w;(m,n,x’,y")

BP: Convolutional layer

1 1 1 0 0 Wl(m,n,l,Z) ; oy Z(l,n)
o111 /; >
o ’/2 _y
0 o’ ‘E:-_
of1]1|0]o0
Y(l—1,m)

Derivative w.r.t a specific w term

dDiv dDiv dz(l,n,x',y")
dw; (m,n, x,y) - & dz(Ln,x',y") dw; (m,n,x,y)
‘= dbiv Y(U—-1,mx"+x,y +y)
dz(l,n,x',y")

Xy’

BP: Convolutional layer

w;(m,n, 1,2 Z(,n
1]1|1]0]o0]| wl B (L,n)
>
Ol 1]1]|1 /7‘
— Sy
0| 6~ -1
—
0| 07 g—!
Oj11]1(0(0O0
Y(l—1,m)
Summing over all (z,Y) pairs that are related
multiplicatively by the weight
dDiv _Z‘ dDiv Vil 1 byl 4
dWl (m’n’x,y)_ de(l,Tl,X',y') (,m, X X,y y)
xny!

CNN: Forward

Y(O,:,:,:) = Image
for 1 = 1:L # layers operate on vector at (x,y)
for j = 1:D,
for x = 1:W-K+1
for y = 1:H-K+1
z(l,3,x,y) = 0
for 1 = 1:D;_;
for x" = 1:K;
for y" = 1:K;
z(1,3,x,y) += w(l,3,1i,x",y")
Y(1-1,1,x+x"-1,yty’-1)
Y(1,3,x,y) = activation(z(l,],x,Vv))

Y = softmax(Y(L,:,1,1)..Y(L,:,W-K+1,H-K+1))
76

Backward layer [

dw(l) = zeros(D;xD;_;xK;xK;)
dY (1-1) = zeros(D;_;xW,_;xH,_;)
for j = 1:D,
for x = 1:W,_;-K;+1
for vy = 1:H, -K;+1
dz (L,3,%x,y) = d¥(l,3,%,y).£" (z(1,],%,V))
for 1 = 1:D;_;
for x" = 1:K;
for y" = 1:K;

dy (1-1,1,x+x’'-1,y+y’'-1) +=
W(l/j/iIX’Iy,)dZ(leIXIY)

dw(l,3,1,x",y") +=
dz(1,73,x,y)Y(1-1,1i,x+x"-1,y+ty’'-1)

77

Backward layer [

dw (l) = zeros (D;xD;_;xK;xK,)

dY (1-1) = zeros (D, ;xW, ,xH,_;) Multiple ways of recas’ring this
, as tensor/ vector operations.
for j = 1:D,

for x = 1:W,_-K;+1 Will not discuss here

for vy = 1:H, -K;+1
dz (L,3,%x,y) = d¥(l,3,%,y).£" (z(1,],%,V))
for 1 = 1:D;_;
for x" = 1:K;
for y" = 1:K;

dy (1-1,1,x+x’'-1,y+y’'-1) +=
w(l/j/iIX’Iy,)dZ(leIXIY)

dw(l,3,1,x",y") +=
dz(1,73,x,y)Y(1-1,1i,x+x"-1,y+ty’'-1)

78

Complete Backward (no pooling)

dY (L) = dDiv/dY (L)
for 1 = L:1 # Backward through layers
dw(l) = zeros (D;xD,_;xK;xK;)
dY (1-1) = zeros(D,_;xW,_;xH;_;)
for j = 1:D,
for x = 1:W,_;-K;+1
for y = 1:H,;-K;+1
dz (1,3,x,y) = d¥(l,J,%x,y)-£" (z(1,3,%x,¥))
for 1 = 1:D;_,
for x" = 1:K;
for y’ = 1:K;
dy (1-1, 1, x+x"-1,yty’'-1) +=
w(l,3,1,x",y")dz(1l,3,%x,V)
dw(l,3,1,x",y") +=
dz (1,J,x%x,y)y(l-1,1,x+x"-1,y+y"-1)

Complete Backward (no pooling)

dY (L) = dDiv/dY (L)
for 1 = L:1 # Backward through layers

dw(l) = zeros (D,xD K,xK : : :
v ’ (DyxD, -y 2K 28 Multiple ways of recasting this
a¥ (1=1) = zeros (D, xW,_,xH, ;) as tensor/ vector operations.
for j = 1:D,
for x = 1:W, ,-K,+1 Will not discuss here
for y = 1:H,;-K;+1
dz(1,3,x,y) = dY(1l,3,%x,y).£" (z(1,3,%,VY))
for 1 = 1:D;_;

for x" = 1:K;
for y’ = 1:K;
dy (1-1, 1, x+x"-1,yty’'-1) +=
w(l,3,1,x",y")dz(1l,3,%x,V)
dw(l,3,1,x",y") +=
dz (1,J3,x,y)y(1-1,1,x+x"-1,y+y’-1)

Backward (with strides)

dw(l) = zeros (D;xD,_;xK;xK;)
dY (1-1) = zeros(D,_;xW,_;xH;_;)
for Jj = 1:D;
for x = 1:W,
m = (x-1)stride
for y = 1:H,

n = (y-1)stride
dz(l,J,x,y) = dY(l,3,%x,y).£" (z(1,3,%x,V))
for 1 = 1:D;_;

for x" = 1:K,
for y’ = 1:K,
dy (1-1,1i,m+x"-1,n+y’-1) +=
w(l,3,1,x",y")dz(1l,3,%x,V)
dw (1l,3,1,x",y") +=
dz(1,7],x,y)y(1l-1,1,m+x"-1,n+ty’-1)

81

Complete Backward (with strides)

dY (L) = dDiv/dY (L)
for 1 = L:1 # Backward through layers

dw(l) = zeros (D;xD;_;xK;xK;)
dY (1-1) = zeros (D;_;xW,_;xH;_;)
for j = 1:D;
for x = l:stride:W,
m = (x—-1)stride

for y = l:stride: H;

n = (y-1)stride
dz(l/j/XIY) = dY(lleXIY)°f’ (Z(llj/XIY))
for 1 = 1:D;_4

for x" = 1:K;
for y" = 1:K;
dY (1-1,1i,m+x",n+y’) +=
w(l,3,1,x",y")dz(1,3,%x,VY)
dw (l,3,1,x",y") +=
dz (1,3,%,y)y(1l-1,1,mtx",n+y’")

Derivative w.r.t y: in practice

LY

Z(,1)

V
=
=) >

7(1,2)

O |]Oo | O | O

Z(l,N)

dDiv Z Z dDiv
oY(l—1,m,x,y) dz(l,n,x’, y)wlmnx Xy =¥

n xny/

Derivative w.r.t y: in practice

11100/Z(l,1)
[~
0| 1]1|1}8 % -
W_,-/ =
0 0 ‘-
r ‘\ . Z(l,Z)
o |01 [N\ =
0o|l1]1 \\\
Ya—1) \‘
Z(l, N)
This is a convolution

What are the limits of summation?

/

dDiv

] B dDiv
oY(l—1,m,x,y) B dz(I,n,x",y")
n xi,

wiimnx—x",y—y")
/

P ——

I

How asingle Y (I — 1,m, x, y) influences z(l,n, x', y")
Y(I—-1,m,x,y)

z(l,n,x',y")

X,y

wi(m, n,xx)

* Compute how each x,y inY influences various locations of z

— We will have to reverse the direction of influence to compute the
derivative w.r.t that x, y component of Y

How asingle Y (I — 1,m, x, y) influences z(l,n, x', y")
Y(I—-1,m,x,y)

z(l,n,x',y")

=
1

X,y

wi(m, n,xx)

z(Ln,x—2,y—=2)+=Y({ -1, m,x,y)w;(m,n, 2,2)
dDiv L dDiv
dY(l —1,m,x,y) - dz(Ln,x — 2,y — 2)

* Compute how each x,y inY influences various locations of z

— We will have to reverse the direction of influence to compute the derivative w.r.t that x, y
component of Y

w;(m,n,2,2)

 Each z is the sum of component-wise product of the filter elements and the
elements of the region of Y it is placed on

How asingle Y (I — 1,m, x, y) influences z(l,n, x', y")
Y(I—-1,m,x,y)

‘ x—1

z(l,n,x',y")

X,y

wi(m, n,xx)

z(Lbnx—1,y—=2)+=Y({ -1, m,x,y)w;(m,n,1,2)
dDiv L dDiv
dY(l —1,m,x,y) - dz(Ln,x — 1,y —2)

* Compute how each x,y inY influences various locations of z

— We will have to reverse the direction of influence to compute the derivative w.r.t that x, y
component of Y

w;(m,n,1,2)

 Each z is the sum of component-wise product of the filter elements and the
elements of the region of Y it is placed on

How asingle Y (I — 1,m, x, y) influences z(l,n, x', y")
Y(I—-1,m,x,y)

z(l,n,x',y")

< R
(.
N =

X,y

wi(m, n,xx)

z(Ln,x,y—2)+=Y({(—-1,m,x,y)w;(m,n,0,2)
dDiv L dDiv
dY(l —1,m,x,y) ~dz(Ln, X,y —2)

* Compute how each x,y inY influences various locations of z

— We will have to reverse the direction of influence to compute the derivative w.r.t that x, y
component of Y

w;(m,n,0,2)

— Each z is the sum of component-wise product of the filter elements and the elements of the
region of Y it is placed on

How asingle Y (I — 1,m, x, y) influences z(l,n, x', y")
Y(I—-1,m,x,y)

z(l,n,x',y")

< R
(.
N =

X,y

X,y

wi(m, n,xx)

z(Lbn,x—2,y—1)+=Y({—-1,m,x,y)w;(m,n, 2,1)
dDiv L dDiv
dY(l —1,m,x,y) - dz(Ln,x — 2,y — 1)

* Compute how each x,y inY influences various locations of z

— We will have to reverse the direction of influence to compute the derivative w.r.t that x, y
component of Y

w;(m,n,2,1)

— Each z is the sum of component-wise product of the filter elements and the elements of the
region of Y it is placed on

How asingle Y (I — 1,m, x, y) influences z(l,n, x', y")
Y(I—-1,m,x,y)

z(l,n,x',y")

< R
(.
N =

— N
< R
[
=

X,y

X,y

wi(m, n,xx)

z(Ln,x—2,y—=2)+=Y({—-1,m,x,y)w;(m,n,1,1)
dDiv L dDiv
dY(l —1,m,x,y) - dz(Ln,x — 1,y —1)

* Compute how each x,y inY influences various locations of z

— We will have to reverse the direction of influence to compute the derivative w.r.t that x, y
component of Y

wi(m,n,1,1)

— Each z is the sum of component-wise product of the filter elements and the elements of the
region of Y it is placed on

How asingle Y (I — 1,m, x, y) influences z(l,n, x', y")
Y(I—-1,m,x,y)

z(l,n,x',y")

wi(m, n,xx)

z(Ln,x,y—1)+=Y({—-1,m,x,y)w;(m,n,0,1)
dDiv L dDiv
dY(l —1,m,x,y) ~dz(Ln, x,y—1)

* Compute how each x,y inY influences various locations of z

— We will have to reverse the direction of influence to compute the derivative w.r.t that x, y
component of Y

w;(m,n,0,1)

— Each z is the sum of component-wise product of the filter elements and the elements of the
region of Y it is placed on

How asingle Y (I — 1,m, x, y) influences z(l,n, x', y")
Y(I—-1,m,x,y)

wi(m, n,xx)

z(Ln,x—2,y)+=Y({ —1,m,x,y)w;(m,n, 2,0)
dDiv L dDiv
ay(l—1,m,x,y) dz(Lnx—2,y)

* Compute how each x,y inY influences various locations of z

— We will have to reverse the direction of influence to compute the derivative w.r.t that x, y
component of Y

w;(m,n, 2,0)

— Each z is the sum of component-wise product of the filter elements and the elements of the
region of Y it is placed on

How asingle Y (I — 1,m, x, y) influences z(l,n, x', y")
Y(I—-1,m,x,y)

wi(m, n,xx)

z(Ln,x—1,y)+=Y({(—-1,m,x,y)w;(m,n,1,0)
dDiv L dDiv
ay(l—1,m,x,y) dz(Lnx—1,y)

* Compute how each x,y inY influences various locations of z

— We will have to reverse the direction of influence to compute the derivative w.r.t that x, y
component of Y

w;(m,n,1,0)

— Each z is the sum of component-wise product of the filter elements and the elements of the
region of Y it is placed on

How asingle Y (I — 1,m, x, y) influences z(l,n, x', y")
Y(I—-1,m,x,y)

wi(m, n,xx)

z(Ln,x,y)+=Y({ —1,m,x,y)w;(m,n,0,0)
dDiv L dDiv
dY(l—l,m,X,}’) _dZ(l,Tl,X,y)

* Compute how each x,y inY influences various locations of z

— We will have to reverse the direction of influence to compute the derivative w.r.t that x, y
component of Y

w;(m,n,0,0)

— Each z is the sum of component-wise product of the filter elements and the elements of the
region of Y it is placed on

How asingle Y (I — 1,m, x, y) influences z(l,n, x', y")
Y(I—-1,m,x,y)

wi(m, n,xx)

dDiv B z dDiv o
dy(l—1,m,x,y) Az nx—x,y —y) wi(m,n,x',y")

n_lxryr

-

* Lets see the derivative maps..

Computing the derivative

' , Flip up down
oDiv aD”’, _ flip left right
dy(l—1,m,x,y) dz(l,n,x,y) of w;(m, n,*,x)

oy

wi(m, n,xx)

dDiv B z dDiv o
dy(l—1,m,x,y) Az nx—x,y —y) wi(m,n,x’,y")

n_lxryr

-

* The derivative (w.r.t) y at (x, y) is obtained by flipping the filter left-
right, top-bottom, and computing the inner product with respect to

the square patch of% ending at (x,y)

— This would be for any (x, y)

Computing the derivative

wi(m, n,*,x)

dDiv dDiv ’
dy(l—1,m,x,y) 0z(l,n,x',y’)

Computing the derivative

wi(m, n,*,x)

dDiv dDiv ’
dy(l—1,m,x,y) 0z(l,n,x',y’)

Computing the derivative

wi(m, n,*,x)

dDiv dDiv ’
dy(l—1,m,x,y) 0z(l,n,x',y’)

Computing the derivative

Wi (m' TL,*,*)

dDiv dDiv
dy(l—1,m,x,y) dz(L,n,x',y")

Computing the derivative

Wi (m' TL,*,*)

dDiv dDiv
dy(l—1,m,x,y) dz(L,n,x',y")

Computing the derivative

Wi (m' Tl,*,*)

F

dDiv dDiv
dy(l—1,m,x,y) dz(L,n,x',y")

Computing the derivative

Wi (m' Tl,*,*)

dDiv dDiv
dy(l—1,m,x,y) dz(L,n,x',y")

Computing the derivative

Wi (m' Tl,*,*)

dDiv dDiv

dy(l—1,m,x,y) dz(L,n,x',y")

Computing the derivative

Wi (m' Tl,*,*)

dDiv dDiv

dy(l—1,m,x,y) dz(L,n,x',y")

Computing the derivative

Wi (m' Tl,*,*)

dDiv dDiv

dy(l—1,m,x,y) dz(L,n,x',y")

Computing the derivative

Wi (m' Tl,*,*)

dDiv dDiv
dy(l—1,m,x,y) dz(L,n,x',y")

Computing the derivative

Wi (m' Tl,*,*)

dDiv dDiv
dy(l—1,m,x,y) dz(L,n,x',y")

Computing the derivative

Wi (m' Tl,*,*)

dDiv dDiv
dy(l—1,m,x,y) dz(L,n,x',y")

Computing the derivative

Wi (m' Tl,*,*)

dDiv dDiv
dy(l—1,m,x,y) dz(L,n,x',y")

Computing the derivative

Wi (m' Tl,*,*)

dDiv dDiv
dy(l—1,m,x,y) dz(L,n,x',y")

Computing the derivative

Wi (m' n'*'*)

dDiv
az(l,n,x',y")

dDiv
dy(l—1,m,x,y)

Computing the derivative

Wi (m' n,*,*)

dDiv
az(l,n,x',y")

dDiv
dy(l—1,m,x,y)

Computing the derivative

Wi (m' n,*,*)

dDiv
az(l,n,x',y")

dDiv
dy(l—1,m,x,y)

Computing the derivative

Wi (m' n,*,*)

dDiv
az(l,n,x',y")

dDiv
dy(l—1,m,x,y)

Computing the derivative

Wi (m' n,*,*)

dDiv
az(l,n,x',y")

dDiv
dy(l—1,m,x,y)

Computing the derivative

Wi (m' n,*,*)

dDiv
az(l,n,x',y")

dDiv

dy(l—1,m,x,y)

Computing the derivative

Wi (m' n,*,*)

dDiv
az(l,n,x',y")

dDiv

dy(l—1,m,x,y)

Computing the derivative

Wi (m' n,*,*)

dDiv
az(l,n,x',y")

dDiv

dy(l—1,m,x,y)

Computing the derivative

Wi (m' n,*,*)

dDiv
az(l,n,x',y")

dDiv

dy(l—1,m,x,y)

Computing the derivative

Wi (m' n,*,*)

dDiv
az(l,n,x',y")

dDiv

dy(l—1,m,x,y)

dDiv

oz(l,n,x',y")
In reality, the derivative at each (x,y)

location is obtained from all z maps
=
T

dDiv y
dy(l—1,m,x,y)

dDiv

dz(l,n,x',y")
w(l,l+1,n,x,y) In reality, the derivative at each (x,y)

E ﬂ location is obtained from all z maps

- .Y L T
* * dDiv *
dy(l—1,m,x,y)

= =

wl,l+1,n,K+1—x,K+1—y)

w(l,l+1,n,x,y)

In o

u : E
[] L
[] L
[L
dDiv
dy(l—1,m,x,y)

=

wl,l+1,n,K+1—x,K+1—y)

w(l,l+1,n,x,y)

In o

u : E
[] L °
[] L °
[L
dDiv 2
dy(l—1,m,x,y)

=

wl,l+1,n,K+1—x,K+1—y)

W(l,l + 1,71,35;3’)

In o

° [
° [
° [
dDiv
ay(l — 1; m, X, y)

=

wl,l+1,n,K+1—x,K+1-Yy)

w(l,l+1,n,x,y)

In o

. |
; E o
[
[]
(] [°
(] [
[] []
dDiv
dy(l—1,m,x,y)

=

wl,l+1,n,K+1—x,K+1—y)

w(l,l+1,n,x,y)

In o

ook .

(] [°
(] [°
[] []
dDiv
dy(l—1,m,x,y)

=

wl,l+1,n,K+1—x,K+1—y)

w(l,l+1,n,x,y)

In o

u : E
[] L
[] L
[L
dDiv
dy(l—1,m,x,y)

=

wl,l+1,n,K+1—x,K+1—y)

w(l,l+1,n,x,y)

In o

flip

ook

=

dDiv

dy(l—1,m,x,y)

wl,l+1,n,K+1—x,K+1—y)

w(l,l+1,n,x,y)

flip

dDiv
ay(l — 1; m, X, y)

L~ I L

+1—x,K+1-—y)

=

w(l,l+ 1,n,

w(l,l+1,n,x,y)

In o

u : E
([
° ° o
° ° : o
o []
dDiv *
dy(l—1,m,x,y)

=

wl,l+1,n,K+1—x,K+1—y)

w(l,l+1,n,x,y)

In o

TE

=

dDiv

dy(l—1,m,x,y)

wl,l+1,n,K+1—x,K+1—y)

w(l,l+1,n,x,y)

In o

u : E
[] L
[] L
[L
dDiv
dy(l—1,m,x,y)

=

wl,l+1,n,K+1—x,K+1—y)

w(l,l+1,n,x,y)

In o

TE

=

dDiv

dy(l—1,m,x,y)

wl,l+1,n,K+1—x,K+1—y)

w(l,l+1,n,x,y)

In o

flip

ook

=

dDiv

dy(l—1,m,x,y)

wl,l+1,n,K+1—x,K+1—y)

Gp Gp O

w(l,l+1,n,x,y)

In o

flip

= B = -

dy(l—1,m,x,y)

=

wl,l+1,n,K+1—x,K+1—y)

w(l,l+1,n,x,y)

In o

TE

=

dDiv

dy(l—1,m,x,y)

wl,l+1,n,K+1—x,K+1—y)

w(l,l+1,n,x,y)

In o

flip

ook

=

dDiv

dy(l—1,m,x,y)

wl,l+1,n,K+1—x,K+1—y)

w(l,l+1,n,x,y)

In o

flip

ook

=

dDiv

dy(l—1,m,x,y)

wl,l+1,n,K+1—x,K+1—y)

w(l,l+1,n,x,y)

In o

TE

dDiv

dy(l—1,m,x,y)

=

wl,l+1,nK+1—-—x,K+1-y)

w(l,l+1,n,x,y)

In o

flip

ook

=

dDiv

dy(l—1,m,x,y)

wl,l+1,n,K+1—x,K+1—y)

w(l,l+1,n,x,y)

In o

flip

ook

=

dDiv

dy(l—1,m,x,y)

wl,l+1,n,K+1—x,K+1—y)

w(l,l+1,n,x,y)

In o

u : E
[] L
[] L
[L
dDiv
dy(l—1,m,x,y)

=

wl,l+1,n,K+1—x,K+1—y)

w(l,l+1,n,x,y)

In o

u 5 E
([J o
([J o °
([J o
dDiv o ®
dy(l—1,m,x,y) :

=

wl,l+1,n,K+1—x,K+1—y)

w(l,l+1,n,x,y)

In o

flip

ook

=

dDiv

dy(l—1,m,x,y)

wl,l+1,n,K+1—-x,K+1-y)

w(l,l+1,n,x,y)

In o

flip

(] [
(] [°
[] []
dDiv ® o
dy(l—1,m,x,y) :

=

wl,l+1,n,K+1—x,K+1—y)

w(l,l+1,n,x,y)

In o

TE

=

dDiv

dy(l—1,m,x,y)

wl,l+1,n,K+1—x,K+1—y)

-
.
=y

Computing the derivative

w(l,l+1,nx,y)

au
1L e

dDiv
dy(l—1,m,x,y)

a o
wlLl+1nK+1—xK+1-y)

0Div
dz(ln,x,y)

* This is just a convolution of by the

inverted filter
— After zero padding it first with L-1 zeros on every side

Derivative w.r.t y

W(l,n,m,x',y’) W(l,n,m,K—l—X',K—l—y,)
1123 > 918 |7
4 Bottom to top flip o=
718|9 Left to right flip 3121

Define Flipping the fiter left-right and top-bottom

wll,nmx',y)=wllnmK-1—-x"K—-1 ?

)

dDiv dDiv

oay(l—1,m,x,y) =Z z wihnmK=1=-x,K~-1-y)az(l,n,x+x’ —(K—-1),y+y —(K—-1))

)

n x'yr

dDiv _z z o] . dDiv
ay(l—1L,mx,y) Wi m Xy) S Tt —(K=D.y+y — (K 1)

n x'yr

Derivative w.r.t y

z(I,n,x,y) z(ILbnx—(K—1),y— (K —1))
0,0
K-1,K-1
X,y X,y
| I N

Reading the value at (x,y) from
a shifted version of z

dDiv _22/\1 ., dDiv
dy(l—1,m,x,y) i £ wt,m,m,x’y zLnx+x'—(K—1),y+y —(K—-1)
x!,yr

Derivative w.r.t y

Z(l;n;x:y) Z(l,n,x_(K_].),y_(K_l))
0,0 0,K-1 0,0
K-1,1 K-1,K-1 K-1,K-1
X,y X,y

Reading the value at (x,y) from
a shifted version of z

dDiv B z z] . dDiv
vl —1,mxy) W('n'm'x'y)Bz(l,n,x+x’—(1{—1),y+y’—(K—1))

n x'yr

Shifting down and right by K-1, such that 0,0 becomes K-1,K-1

zshift(l,n, m,x,y) =z(IL,n,x—K+1,y—K+1)

dDiv B z z] ., dDiv
av(l—1,mxy) o2 03)azs,u-ft(l, Lx+x,y+y)

n x'yr

Derivative w.r.t y

dDiv _ZZ l . . . dDiv
dy(l—1,mx,y) i £ w(l,m,m, o y)az(l,n,x+x’—(K—1),y+y’—(K—1))
x!yr
Define

wl,nmx',y)=wllnmK-1-xK—1-y")

Zshift(l,n, m,x,y) =z(l,n,x—K+1,y—K+1)

dDiv B z z o] . dDiv
ayl—1L,mx,y) o2 o3)azs,u-ﬁ(l, Lx+x,y+y)

n x'yr

Derivative w.r.t y

Define

wll,nmx",y)=wllnmK-1-x"K—1—y")

Zenire(Ln,m,x,y) = z(Ln,x — K+ 1,y — K+ 1)

Regular convolution running on
shifted derivative maps using
flipped filter

~ >

dDiv B 2 z] ., dDiv
ay(l—1,mxy) DT 2253) 0zgnire(L L x + 1,y + ')

n x'yr

Derivatives for a single layer [:
Vector notation

The weight W(l1,j)is a 3D D,_,xK;xK;

dzshift = zeros(D;x(H,+K;-1)x(W,+K;-1)) #pad for -ve indices
for j = 1:D,
Wflip(j,:,:) = flipLeftRight(flipUpDown(W(1l,3,:,:)))
dzshift(j,K;:end,K;:end) = dz(1,j,:,:) # move idx 1->K,
end

for j = 1:D,
for x = 1:W;_;
for v = 1:H;
segment = dzshift(:, x:x+K;-1, y:y+K;-1) #3D tensor
dy (1-1,73,%x,y) = Wflip.segment #tensor inner prod.

Pooling and downsampling

* Pooling is typically performed with strides > 1

— Results in shrinking of the map

— “Downsampling”

156

Pooling and downsampling

Max (@)

* Pooling is typically performed with strides > 1

— Results in shrinking of the map

— “Downsampling”

157

Pooling and downsampling

Max @8O
—

* Pooling is typically performed with strides > 1

— Results in shrinking of the map

— “Downsampling”

158

Pooling and downsampling

* Pooling is typically performed with strides > 1

— Results in shrinking of the map

— “Downsampling”

159

Pooling and downsampling

* Pooling is typically performed with strides > 1

— Results in shrinking of the map

— “Downsampling”

160

Pooling and downsampling

* Pooling is typically performed with strides > 1

— Results in shrinking of the map

— “Downsampling”

Max pooling

 Max pooling selects the largest from a pool of elements
* Poolingis performed by “scanning” the input

P(l,m,i,j) = argmax Y(I,m, k,n)
ke{(i-1)d+1, (i-1)d+Kipool},

ne{(j-1d+1,(j-1)d+Kpool}

Ul,m,i,j) =Y({,m P(l,m,i,j))

Derivative of Max pooling

Derivative goes here?

1| 3 6
6 > Max

—_—

: dDiv
dDiv if (k,1) =P(,m,i,j)
Y, m kD) {du(l mL,J)
0 otherwise

 Max pooling selects the largest from a pool of elements
* Pooling is performed by “scanning” the input

P(l,m,i,j) = argmax Y(I,m, k,n)
ke{(i-1)d+1, (i-1)d+Kpoo1),

nE{(j—1)d+1;(f_1)d+Klpool}

Ul,m,i,j) =Y({,mP(,m,ij))

Max Pooling layer at layer [

a) Performed separately for every map (j).
*) Not combining multiple maps within a single max operation.
b) Keeping track of location of max

1

Max pooling

for j = 1:D,

m =1
for x = l:stride(l) :W,_;-K;+1
n =1
for y = l:stride (1) :H, ,-K,+1 |

pidx(l,jJ,m,n) = maxidx(y(l-1,7J,x:x+K;-1,y:y+K;-1))
u(lljlmln) = Y(l_lrjlpldx(llj/mrn))
n = ntl

m = m+1
164

Derivative of max pooling layer at
layer [

a) Performed separately for every map (j).
*) Not combining multiple maps within a single max operation.

b) Keeping track of location of max

Max pooling
dy(:,:,:) = zeros(D; x W, x H;)
for j = 1:D,

for x = lzwl_downsampled

for y = l:Hl_downsampled
dy (1,3,p1dx(1,3J,%x,y)) += u(l,J,x,Vy)

“+=“ because this entry may be selected in multiple adjacent overlapping windows
165

Mean pooling

3.75

 Mean pooling compute the mean of a pool of elements
* Poolingis performed by “scanning” the input

1

2
Ilpool

U(l,m,i,j) =

y(l,m, k,n)
ke{(i-1)d+1, (i-1)d+Kpool},
ne{(j-1)d+1,(j-1)d+Kpoo1}

Derivative of mean pooling

* The derivative of mean pooling is distributed over the
pool

kei(i—-1)d+1,(i—-1)d+K ,
{() () lpool} dy(l,m,k,n) =—
ne{(]_l)d+1;(]_1)d+Klpool} KlPOOI

du(l,m,k,n)

Mean Pooling layer at layer [

a) Performed separately for every map (j).
*) Not combining multiple maps within a single max operation.
b) Keeping track of location of max

1

Mean pooling

for j = 1:D,

m = 1

for x = l:stride(l) :W,;-K;+1

n = 1

for y = l:stride (1) :H, ,-K,+1 |
u(l,3,m,n) = mean(y(l-1,7,x:x+K;-1,y:y+K;-1))
n = n+l

m = m+1

168

Derivative of mean pooling layer at
layer [

Mean pooling
dy(:,:,:) = zeros(D; x W, x H;)
for j = 1:D,
m = 1
for x = 1:W) gounsampied
n = (x-1)stride
for v = 1:H) gounsampied
m = (y—-1)stride
for 1 = 1:Kj 001
for J = 1:Kj 001
dy (l,7j,p1dx(l,3j,n+1i,m+3)) +=
(1/K? o) u(l,3,%,y)

“+=“because adjacent windows may overlap

Learning the network

y@

Dl e

A

s —
-
e

 Have shown the derivative of divergence w.r.t every intermediate output,
and every free parameter (filter weights)

 Can now be embedded in gradient descent framework to learn the
network

Story so far

The convolutional neural network is a supervised version of a
computational model of mammalian vision

It includes

— Convolutional layers comprising learned filters that scan the outputs
of the previous layer

— Downsampling layers that operate over groups of outputs from the
convolutional layer to reduce network size

The parameters of the network can be learned through regular back
propagation
— Maxpooling layers must propagate derivatives only over the maximum
element in each pool
* Other pooling operators can use regular gradients or subgradients

— Derivatives must sum over appropriate sets of elements to account for
the fact that the network is, in fact, a shared parameter network

An implicit assumption

_—] _—]
% %
| |Le s
- : : -
. g
E =
/ /
wo/ﬁ“ Stride>! %

 We've always assumed that subsequent steps
shrink the size of the maps

e Can subsequent maps increase in size

Recall this 1-D figure

0 e\
%“‘“\\\ ///"‘T\Q\
X ZA
57 N S 5 N g
(5) YOy (5 JaPw Vs
/(o AN {--ro\\\ AQS AQN f'!\\\
)\') \ "‘\ AABCIN)\ S /\. *'l‘\ /4 4
I0% 4 0% 493 PN W 4%)
"R EBEREERE N "R EEBEREERERENE
/ I / I I I\ / I \ ! \ \ \ \

time

e We've seen this before.. where??

Recall this 1-D figure

A
s D & N

OBDDBAMN

* Simplified diagram "

With layer of increased size

ADADAAHA

time

* Maintaining Symmetry:
— Vertical bars in the 4t layer are regularly arranged w.r.t. bars of layer 3

— The pattern of values of upward weights for each of the three pink (37 layer)
bars is identical

With layer of increased size

MDA

* Flow of info from bottom to top when implemented as a left-
to-right scan

— Note: Arrangement of vertical bars is predetermined by architecture

With layer of increased size

oe

é I____
] oe
—1
— ioe
—1

® 3
O

MDA

* Flow of info from bottom to top when implemented as a left-
to-right scan

— Note: Arrangement of vertical bars is predetermined by architecture

With layer of increased size

MDA

* Flow of info from bottom to top when implemented as a left-
to-right scan

— Note: Arrangement of vertical bars is predetermined by architecture

With layer of increased size

DOBDDBDMMN

time

* Flow of info from bottom to top when implemented as a left-
to-right scan

— Note: Arrangement of vertical bars is predetermined by architecture

“Transposed Convolution”

E e K AR X A
(R DR

Connection rules are transposed for expanding layers

— In shrinking layers, the pattern of incoming weights is identical for each bar

— In expanding layers, the pattern of outgoing (upward) weights is identical for each bar

When thought of as an MLP, can write
Z=WY_4
W, is broader than tall for a shrinking layer

W is taller than broad for an expanding layer
— Sometimes viewed as the transpose of a broad matrix

Leading to terminology “transpose convolution”

In 2-D

/E/////

//f////

* Similar computation

2D expanding convolution

2(1,i,) = Z Z Z w(l,m,i — kb, j — Ib)I(m, k,)
m k l

b is the "stride"
(scaling factor between the sizes of Z and Y)

* Qutput size is typically an integer multiple of input
e +1 if filter width is odd
— Easier to determine assignment of output to input

2D expanding convolution

2(1,i,) = Z Z Z w(l,m,i — kb, j — Ib)I(m, k,)
m k l

b is the "stride"
(scaling factor between the sizes of Z and Y)

* Qutput size is typically an integer multiple of input
e +1 if filter width is odd
— Easier to determine assignment of output to input

2D expanding convolution

2(1,i,) = Z Z Z w(l,m,i — kb, j — Ib)I(m, k,)
m k l

b is the "stride"
(scaling factor between the sizes of Z and Y)

* Qutput size is typically an integer multiple of input
e +1 if filter width is odd
— Easier to determine assignment of output to input

2D expanding convolution

m 2(1,i,) = Z Z Z w(l,m,i — kb, j — Ib)I(m, k,)
m k l

b is the "stride"
(scaling factor between the sizes of Z and Y)

* Qutput size is typically an integer multiple of input
e +1 if filter width is odd
— Easier to determine assignment of output to input

2D expanding convolution

2(1,i,) = Z Z Z w(l,m,i — kb, j — Ib)I(m, k,)
m k l

b is the "stride"
(scaling factor between the sizes of Z and Y)

* Qutput size is typically an integer multiple of input
e +1 if filter width is odd
— Easier to determine assignment of output to input

2D expanding convolution

F

F
F

m 2(1,i,) = Z Z Z w(l,m,i — kb, j — Ib)I(m, k,)
m k l

b is the "stride"
(scaling factor between the sizes of Z and Y)

* Qutput size is typically an integer multiple of input
e +1 if filter width is odd
— Easier to determine assignment of output to input

2D expanding convolution

m 2(1,i,) = Z Z Z w(l,m,i — kb, j — Ib)I(m, k,)
m k l

b is the "stride"
(scaling factor between the sizes of Z and Y)

* Qutput size is typically an integer multiple of input
e +1 if filter width is odd
— Easier to determine assignment of output to input

2D expanding convolution

m 2(1,i,) = Z Z Z w(l,m,i — kb, j — Ib)I(m, k,)
m k l

b is the "stride"
(scaling factor between the sizes of Z and Y)

* Qutput size is typically an integer multiple of input
e +1 if filter width is odd
— Easier to determine assignment of output to input

2D expanding convolution

2(1,i,) = Z Z Z w(l,m,i — kb, j — Ib)I(m, k,)
m k l

b is the "stride"
(scaling factor between the sizes of Z and Y)

* Qutput size is typically an integer multiple of input
e +1 if filter width is odd
— Easier to determine assignment of output to input

2D expanding convolution

feee

feee
feee

2(1,i,) = Z Z Z w(l,m,i — kb, j — Ib)I(m, k,)
m k l

b is the "stride"
(scaling factor between the sizes of Z and Y)

* Qutput size is typically an integer multiple of input
e +1 if filter width is odd
— Easier to determine assignment of output to input

2D expanding convolution

. m z(l,i,j)=zzzw(l,m,i—kb,j—lb)I(m,k,l)
m k l

b is the "stride"
(scaling factor between the sizes of Z and Y)

* Qutput size is typically an integer multiple of input
e +1 if filter width is odd
— Easier to determine assignment of output to input

CNN: Expanding convolution layer [

Z(l) = zeros (Dl x (Wb+K,;) x (Hb+K,)) # b = stride
for j = 1:D,
for x = 1:W
for vy = 1:H
for 1 = 1:D;_;
for x" = 1:K;
for y" = 1:K;
z (1,3, (x-1)b+x’, (y-1)b+y’) +=

w(l,J,i,x",y")y(1-1,1i,x,¥y)

CNN: Expanding convolution layer [

Z(l) = zeros (Dl x (Wb+K,) x (Hb+K;)) # b = stride
for j = 1:D,
for x = 1:W
for vy = 1:H

for 1 = 1:D;_;

for y’' = 1:K;
z(1l,73, (x-1)b+x", (y-1)b+y") +=
wi(l,3,1i,x",v")y(1-1,1i,%,vy)

We leave the rather trivial issue of how o modify this code to
compute the derivatives w.r.t w and y to you

2D expanding convolution

. 2(1,i,)) = z Z 2 w(l,m,i — kb, j — Ib)I(m, k, [)
m k l

b is the "stride”
(scaling factor between the sizes of Z and Y)

* Also called transpose convolution

— If you recast the CNN as a shared-parameter MLP, expanding
layers have weight matrices that are taller than wide

 Also called “deconvolution”

— Strictly speaking, abuse of terminology

Invariance

* CNNs are shift invariant
 What about rotation, scale or reflection invariance

Shift-invariance — a different
perspective

O
m

co®

2Ls,i)= > > wil,s,pkm)Y(U—1,pi+kj+m)

* We can rewrite this as so (tensor inner product)

2(s,i,)) = Y.shift(w(s), i,)

Generalizing shift-invariance

(R

Zregular(s» i,j) =Y.shift(w(s),i,))
* Also find rotated by 45 degrees version of the pattern

Zrotas(S,1,j) = Y.shift(rotated5(w(s)),i,j)

Transform invariance

o B
 More generally each /
filter produces a set of ‘N * I
transformed (and \'

L

hifted gy
shifted) maps :
) P % ./
— Set of transforms * —
must be enumerated P
and discrete
— E.g. discrete set of e, -
rotations and scaling, :
reflections etc. /
* The network becomes)
invariant to all the L
transforms considered]
E 'n —T
/

21,(5,1,J) = Y. Shif t(T,(w(s)), i,)

Regular CNN : single layer [

The weight W(l,j)is a 3D D,_;xK;xK; tensor

for j = 1:D,
for x = 1:W,_,-K;+1
for v = 1:H, ;-K;+1
segment = Y (1-1, :, x:x+K;-1, y:y+K;-1) #3D tensor
z(1l,3,%x,y) = W(l,]J) .segment #tensor inner prod.
Y(1,3,x,y) = activation(z(l,],x,Vv))

200

Transform invariance

The weight W(l,j)is a 3D D,_;xK;xK; tensor

m = 1
for j = 1:D,
for t in {Transforms} # enumerated transforms
TW = T(W(1,3))
for x = 1:W,_;-K;+1
for v = 1:H, ;-K;+1
segment = Y (1-1, :, x:x+K;-1, y:y+K;-1)#3D tensor
z(l,m,x,y) = TW.segment #tensor inner prod.
Y(l,m,x,y) = activation(z(l,m,x,Vvy))

m =m + 1

201

BP with transform invariance

 Derivatives flow i *

back through the ‘% \ éﬁﬂ

transforms to update

individual filters \\ I.f—/*

— Need point

correspondences -
between original and ‘/% -
transformed filters i\\ -

— Left as an exercise

i

T

6
i

Story so far

CNNs are shift-invariant neural-network models for shift-invariant
pattern detection

— Are equivalent to scanning with shared-parameter MLPs with
distributed representations

The parameters of the network can be learned through regular back
propagation

Like a regular MLP, individual layers may either increase or decrease
the span of the representation learned

The models can be easily modified to include invariance to other
transforms

— Although these tend to be computationally painful

But what about the exact location?

 We began with the desire to identify the picture as
containing a flower, regardless of the position of the flower

— Or more generally the class of object in the picture

* But can we detect the position of the main object?

Finding Bounding Boxes

ﬂ ﬁ » Class Output
0 —

~

)
=
s
)

-
i
\

. 4
S
2

T

Coordinates of
» bounding box
(x1,y1), (x2,y2)

(x3.y3).(x4.y4)

The flatten layer outputs to two separate output layers
One predicts the class of the output

The second predicts the corners of the bounding box of the object (8 coordinates)
in all

The divergence minimized is the sum of the cross-entropy loss of the classifier
layer and L2 loss of the bounding-box predictor

— Multi-task learning

Pose estimation

A 1 PP _ dhtita
IR LA 5=

HiELE »é» NHNHE

/ —— IQ

~ % D Q D g E (x.,y) coordinates
o l:, lj B = » of all 14 joints
= = = =

* Can use the same mechanism to predict the
joints of a stick model

— For post estimation

Model variations

* Very deep networks
— 100 or more layers in MLP

— Formalism called “Resnhet”

 “Depth-wise” convolutions

— Instead of multiple independent filters with
independent parameters, use common layer-wise
weights and combine the layers differently for
each filter

Depth-wise convolutions
Conventional
(oo

o >
convolve M&/ collapse /

Alternate view of conventional convolution:

Each layer of each filter scans its corresponding map to produce a convolved map
N input channels will require a filter with N layers
The independent convolutions of each layer of the filter result in N convolved maps

The N convolved maps are added together to produce the final output map (or channel) for that
filter

Conventional convolutoins

convolve collapse /
& I}
‘ convolve collapse

~ iy »
convolve collapse

o
4

* This is done separately for each of the M filters
producing M output maps (channels)

NN NN

Depth-wise convolution

A W
o€ W
it ot
' Collapse with weiiht w,

CO//ap
convolve AN/ se Wigy,
We/g/)t
W,

* In depth-wise convolution the convolution step is performed only once

RN

N

 The simple summation is replaced by a weighted sum across channels
— Different weights (for summation) produce different output channels

Conventional vs. depth-wise
convolution

Conventional

it
oy

i zz/

M input channels, N output channels:

N independent MxKxK 3D filters,
which span all M input channels

Each filter produces one output channel

Total NMK? parameters

Depth-wise

S

OREEOO0

W

M input channels, N output channels in 2 stages:
Stage 1:
* M independent KxK 2D filters, one per input channel
* Each filter applies to only one input channel
* No. of output channels = no. of input channels
Stage 2:
* N Mx1x1 1D filters
* Each applies to one 2D location across all M input
channels
Total NM + MK? parameters

Story so far

CNNs are shift-invariant neural-network models for shift-invariant pattern
detection
— Are equivalent to scanning with shared-parameter MLPs with distributed representations

The parameters of the network can be learned through regular back propagation

Like a regular MLP, individual layers may either increase or decrease the span of
the representation learned

The models can be easily modified to include invariance to other transforms
— Although these tend to be computationally painful

Can also make predictions related to the position and arrangement of target object
through multi-task learning

Several variations on the basic model exist to obtain greater parameter efficiency,
better ability to compute derivatives, etc.

What do the filters learn?
Receptlve fields

+444444°
2000000
20000004
20000004
20000004
20000004
20000004
20000004

44444440
2009090004
20099000¢
20099000¢
20099000¢
20099000¢
20099000¢
20099000¢

* The pattern in the input image that each neuron sees is its “Receptive Field”
* The receptive field for a first layer neurons is simply its arrangement of weights

* For the higher level neurons, the actual receptive field is not immediately obvious
and must be calculated
— What patterns in the input do the neurons actually respond to?

— We estimate it by setting the output of the neuron to 1, and learning the input by
backpropagation

Features learned from training on different object classes.

Elephants Chairs

Iln'w C T IR S SR
I - r-.

| ‘nln.h.ﬂ_"l- “h

k|

] 11- L1

ﬁ‘.",-..;r'.-_:z’-’* e TR

HANESE | WENI| SN
R, TECNE ENCRE =0

-l “"IJ ‘:_.l.-,--l’
[Illll."""w H’f“'j‘ ""1-1
P IN |

ASNNEZ

wl i ims

Training Issues

e Standard convergence issues

— Solution: Adam or other momentum-style
algorithms

— Other tricks such as batch normalization

* The number of parameters can quickly
become very large

* |nsufficient training data to train well
— Solution: Data augmentation

Data Augmentation

Original data Augmented data

- .

A v N -

- <5\
L\ / \

’ S | , \ ey

rotation: uniformly chosen random angle between 0° and 360°

translation: random translation between -10 and 10 pixels

rescaling: random scaling with scale factor between 1/1.6 and 1.6 (log-uniform)
flipping: yes or no (bernoulli)

shearing: random shearing with angle between -20° and 20°

stretching: random stretching with stretch factor between 1/1.3 and 1.3 (log-
uniform)

Convolutional neural nets

* One of the most frequently used nnet
formalism today

e Used everywhere
— Not just for image classification
— Used in speech and audio processing

* Convnets on spectrograms

Digit classification

C] 5| (." 51 m >
amprt feature maps feature maps feature maps feature maps output
32x32 0 IExJE ___ l4x14 10x10 = 3x3
. 73 K"'{" e ™
'.'::] ——
N e\
'_:{""I:_ ' l i 7 \:\ R.'“x *- Cm..ﬂg
— =N\ o\
5x5 2x2 5x5 <
convolution H subsampling convolution 2x2 \ \'\ ':]J' fully \

sul:rmuq:rhng \-\ muuev:t.ed
feature extraction -.:Ia-sslﬁmtmn

Le-net 5

C'_ -‘.‘;: {': ‘}* mj 53
mput fearure maps feature maps feature maps feature maps output
32x32 2WxI l4x14 10x10 T
‘._ \\.‘._ | .(.')/__
N —_— J \\ Sy -Qﬁ-ul
1 1 \ ——
1 = N S RN
3 I e e A N
. W =% N\, 2 g
5x5 2x2 5x5 o
convolution N subsampling convolution 2x2 \\ D fully)
“, subsamphng \\ connected Y
feature extraction classification

Digit recognition on MNIST (32x32 images)
— Convl: 6 5x5 filters in first conv layer (no zero pad), stride 1
e Result: 6 28x28 maps

— Pooll: 2x2 max pooling, stride 2
* Result: 6 14x14 maps

— Conv2: 16 5x5 filters in second conv layer, stride 1, no zero pad
e Result: 16 10x10 maps

— Pool2: 2x2 max pooling with stride 2 for second conv layer
» Result 16 5x5 maps (400 values in all)

— FC: Final MLP: 3 layers

e 120 neurons, 84 neurons, and finally 10 output neurons

Nice visual example

* http://cs.stanford.edu/people/karpathy/convn
etjs/demo/cifar10.html

The imagenet task

S RS RN TGS afe W% 5 ™
' R TSR PV MY RN T WA Y
Ill Bl el A0 B - §OR ﬂﬂi

mammal . placental — carnivore —. <canine —. dog _.worklngdog —— husky

-lﬁ‘ : E
BT = IE IEI ﬂlﬂ ==pr

vehicle craft —— watercraft —— sailingvessel —— sailboat —— trimaran

Imagenet Large Scale Visual Recognition Challenge (ILSVRC)
http://www.image-net.org/challenges/LSVRC/

Actual dataset: Many million images, thousands of categories

For the evaluations that follow:
— 1.2 million pictures
— 1000 categories

AlexNet

* 1.2 million high-resolution images from ImageNet LSVRC-2010 contest
« 1000 different classes (softmax layer)
* NN configuration
* NN contains 60 million parameters and 650,000 neurons,
* 5 convolutional layers, some of which are followed by max-pooling layers
e 3 fully-connected layers

— \ ENST Tl |) |
48 192 192 128 2048 zo4g \dense
7 B\ T — AT
NN T 13 _ 13
5\‘ ' -.""-.__ Sy .:,- '-_‘_ot“ﬂ 2‘5\ -
5 3," - - 3 . 5 _ d
= 13 T ense ense
27 E ¥ o 3| s 13
| 1000
192 192 128 Max))
. 2048
Max 128 Max pooling 2048
pooling pooling

3 48

Krizhevsky, A., Sutskever, I. and Hinton, G. E. “ImageNet Classification with Deep Convolutional
Neural Networks” NIPS 2012: Neural Information Processing Systems, Lake Tahoe, Nevada

Krizhevsky et. al.

Input: 227x227x3 images

Convl: 96 11x11 filters, stride 4, no zeropad
Pooll: 3x3 filters, stride 2
“Normalization” layer [Unnecessary]
Conv2: 256 5x5 filters, stride 2, zero pad
Pool2: 3x3, stride 2

Normalization layer [Unnecessary]
Conv3: 384 3x3, stride 1, zeropad
Conv4: 384 3x3, stride 1, zeropad
Conv5: 256 3x3, stride 1, zeropad

Pool3: 3x3, stride 2

FC: 3 layers,
— 4096 neurons, 4096 neurons, 1000 output neurons

Alexnet: Total parameters

650K neurons

60M parameters
630M connections

10 patches

Testing: Multi-crop

— Classify different shifts of the image and vote over
the lot!

Learning magic in Alexnet

Activations were RELU
— Made a large difference in convergence

“Dropout” — 0.5 (in FC layers only)
Large amount of data augmentation
SGD with mini batch size 128
Momentum, with momentum factor 0.9
L2 weight decay 5e-4

Learning rate: 0.01, decreased by 10 every time validation accuracy
plateaus

Evaluated using: Validation accuracy

Final top-5 error: 18.2% with a single net, 15.4% using an ensemble of 7
networks

— Lowest prior error using conventional classifiers: > 25%

ImageNet

Figure 3: 96 convolutional
kernels of size 11x11x3
learned by the first
convolutional layer on the
224x224 %3 input images. The
top 48 kernels were learned
on GPU 1 while the bottom 48
kernels were learned on GPU
2. See Section 6.1 for details.

Krizhevsky, A., Sutskever, I. and Hinton, G. E. “ImageNet Classification with Deep Convolutional
Neural Networks” NIPS 2012: Neural Information Processing Systems, Lake Tahoe, Nevada

The net actually learns features!

mite container s motor scooter
mite container shi ‘mathr scooter
black widow lifeboat go-kart
cockroach amphibian moped
tick fireboat | bumper car

drilling platform

N

Madagascar cat |l 01

agaric ‘dalmatia T I monkey
mushroom s'_ﬁ der monkey
Jelly fungus titi
gill fungus |ffordshire bullterrier
fire engine | dead-man's-fingers currant

Eight ILSVRC-2010 test images and the five
labels considered most probable by our model.
The correct label is written under each image,

column. The remaining columns show the six
training images that produce feature vectors in

and the probability assigned to the correct label the last hidden layer with the smallest Euclidean
is also shown with a red bar (if it happens to be distance from the feature vector for the test
in the top 5). Image.

Krizhevsky, A., Sutskever, I. and Hinton, G. E. “ImageNet Classification with Deep Convolutional
Neural Networks” NIPS 2012: Neural Information Processing Systems, Lake Tahoe, Nevada

ZFNet

image size 224 110 26 13 13 13

filter size 7 ' 3 3
'vl-'l 512 VL 1 1024 512 -
| _ R256 W "\

lstride 2 96 3x3 max e C

313 max pool| | contras pool| |contrast pool 4096 4096 class

T _ . stride 2| [norm. stride 2 units units| | softmax
13 6 -

Input Image 256 256 || |
Layer 2 Layer 3 Layer 4 Layer 5 Layer6 Layer7 Qutput

ZF Net Architecture

e Zeiler and Fergus 2013

* Same as Alexnet except:
— 7x7 input-layer filters with stride 2
— 3 conv layers are 512, 1024, 512
— Error went down from 15.4% 2 14.8%

* Combining multiple models as before

VGGNet

Simonyan and Zisserman, 2014
Only used 3x3 filters, stride 1, pad 1
Only used 2x2 pooling filters, stride 2

Tried a large number of architectures.

Finally obtained 7.3% top-5 error

using 13 conv layers and 3 FC layers
— Combining 7 classifiers
— Subsequent to paper, reduced error to

6.8% using only two classifiers

Final arch: 64 conv, 64 conv,

64 pool,

128 conv, 128 cony,

128 pool,

256 cony, 256 conv, 256 convy,

256 pool,

512 cony, 512 conv, 512 cony,

512 pool,

512 cony, 512 conv, 512 cony,

512 pool,

FC with 4096, 4096, 1000

~140 million parameters in all! <

ConvNet Configuration
A A-LRN B L D E
11 weight | 11 weight | 13 weight 16 weight | 16 weight | 19 weight
layers layers layers layers layers layers
mnput (224 x 224 RGB image)

conv3-64 conv3-64 conv3-64 conv3-64 conv3-64 conv3-64
LRN conv3-64 conv3-64 conv3-64 conv3-64

maxpool
conv3-128 | conv3-128 | conv3-128 | conv3-128 | conv3-128 | conv3-128
conv3-128 | conv3-128 | conv3-128 | conv3-128

maxpool
conv3-256 | conv3-256 | conv3-256 | conv3-256 | conv3-256 | conv3-256
conv3-256 | conv3-256 | conv3-256 | conv3-256 | conv3-256 | conv3-256
convl-256 | conv3-256 | conv3-256
conv3-256

maxpool
conv3-512 | conv3-512 | conv3-512 | conv3-512 | conv3-512 | conv3-512
conv3-512 | conv3-512 | conv3-512 | conv3-512 | conv3-512 | conv3-512
convl-512 | conv3-512 | conv3-512
conv3-512

maxpool
conv3-512 | conv3-512 | conv3-512 | conv3-512 | conv3-512 | conv3-512
conv3-512 | conv3-512 | conv3-512 | conv3-512 | conv3-512 | conv3-512
convl-512 | conv3-512 | comv3-512
conv3-512

maxpool

FC-4096

FC-4006

FC-1000

soft-max

. Madness!

Googlenet: Inception

1x%1 convolutions

3x3 convolutions

1x1 conwolutions

]

,...—--"""_Fr._..___._-—-—-—-—'_'_'_'_-_-_._-__’

Previous layer

$

3x3 max pooling

AVERRGE

PooLING

* Multiple filter sizes simultaneously

* Detailsirrelevant; error 2 6.7%
— Using only 5 million parameters, thanks to average pooling

.......

I m a ge n et S e T
- . e
v 22 L .

X
A
weight layer
F (x)] relu -
weight layer identity

F(x) +x
Figure 2. Residual learning: a building block.

Resnet: 2015

— Current top-5 error: <3.5%
— Over 150 layers, with “skip” connections..

Resnet details for the curious..

weight layer
F(x) | relu

weight layer

X

identity

F(x) +x
Figure 2. Residual learning: a building block.

Last layer before addition must have the same number of filters as
the input to the module

Batch normalization after each convolution
SGD + momentum (0.9)

Learning rate 0.1, divide by 10 (batch norm lets you use larger
learning rate)

Mini batch 256
Weight decay 1e-5

Densenet

* All convolutional
e Each layer looks at the union of maps from all previous layers
— Instead of just the set of maps from the immediately previous layer

 Was state of the art before | went for coffee one day
— Wasn’t when | got back..

Many many more architectures

* Daily updates on arxiv..

 Many more applications
— CNNs for speech recognition
— CNNs for language processing!
— More on these later..

CNN for Automatic ™ “peve s
Speech Recognition

bands

« Convolution over frequencies
« Convolution over time

max pooling P p
2
layer bands ! _ .
pooling size 59 S
convolution R
layer bands %ili basid of 5 Deep Networks Phone Error Rate
L]
consecutive gﬁ %ﬁlﬂg_i?f?eaed) ig ;’
= 7 s I . 0
shared weights ﬁa1ne§ CNN-DNN; P=12 20.8%
including CNN-DNN; P=6 (fixed P, optimal) 20.4%
. dynamic CNN-DNN: P=6 (add dropout) 19.9%
input bands | v, features CNN-DNN; P=1:m (HP, m=12) 19.3%
CNN-DNN; above (add dropout) 18.7%
H—J : s 4D Table 1: TIMIT core fest set phone recognition error rate comparisons.
2 i
filter size \A S

CNN-Recap

Feature maps

* Neural network with specialized connectivity T
structure _

« Feed-forward: Pooling
- Convolve input T
- Non-linearity (rectified linear) Non-linearity

- Pooling (local max)
* Supervised training

. . : : Convolution
« Train convolutional filters by back-propagating error (Learned)
« Convolution over time
Input image
INPUT g:ézfggéusre maps s 16@10)(19?4: f. maps 16@5x5

32x32 S2: f. maps

|
Ful[coml.ection l Gaussian connections

i l i b li i
x(t) x(t-1) x(t-2) x(t-3) Convolutions Subsampling Convolutions ~ Subsampling Full connection

x(t) —I—B>—|

