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This paper shows that neural networks which use continuous acti­
vation functions have VC dimension at least as large as the square 
of the number of weights w. This result settles a long-standing 
open question, namely whether the well-known O( w log w) bound, 
known for hard-threshold nets, also held for more general sigmoidal 
nets. Implications for the number of samples needed for valid gen­
eralization are discussed. 

1 Introduction 

One of the main applications of artificial neural networks is to pattern classification 
tasks. A set of labeled training samples is provided, and a network must be obtained 
which is then expected to correctly classify previously unseen inputs. In this context, 
a central problem is to estimate the amount of training data needed to guarantee 
satisfactory learning performance. To study this question, it is necessary to first 
formalize the notion of learning from examples. 

One such formalization is based on the paradigm of probably approximately correct 
(PAC) learning, due to Valiant (1984). In this framework, one starts by fitting some 
function /, chosen from a predetermined class F, to the given training data. The 
class F is often called the "hypothesis class" , and for purposes of this discussion it 
will be assumed that the functions in F take binary values {O, I} and are defined on a 
common domain X. (In neural networks applications, typically F corresponds to the 
set of all neural networks with a given architecture and choice of activation functions. 
The elements of X are the inputs, possibly multidimensional.) The training data 
consists of labeled samples (Xi,ci), with each Xi E X and each Ci E {O, I}, and 
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"fitting" by an f means that f(xj) = Cj for each i. Given a new example x, one 
uses f( x) as a guess of the "correct" classification of x. Assuming that both training 
inputs and future inputs are picked according to the same probability distribution 
on X, one needs that the space of possible inputs be well-sampled by the training 
data, so that f is an accurate fit. We omit the details of the formalization of 
PAC learning, since there are excellent references available, both in textbook (e.g. 
Anthony and Biggs (1992), Natarajan (1991)) and survey paper (e.g. Maass (1994)) 
form, and the concept is by now very well-known. 

After the work of Vapnik (1982) in statistics and of Blumer et. al. (1989) in com­
putationallearning theory, one knows that a certain combinatorial quantity, called 
the Vapnik-Chervonenkis (VC) dimension VC(F) of the class F of interest com­
pletely characterizes the sample sizes needed for learnability in the PAC sense. (The 
appropriate definitions are reviewed below. In Valiant's formulation one is also in­
terested in quantifying the computational effort required to actually fit a function 
to the given training data, but we are ignoring that aspect in the current paper.) 
Very roughly speaking, the number of samples needed in order to learn reliably is 
proportional to VC(F). Estimating VC(F) then becomes a central concern. Thus 
from now on, we speak exclusively of VC dimension, instead of the original PAC 
learning problem. 

The work of Cover (1988) and Baum and Haussler (1989) dealt with the computa­
tion of VC(F) when the class F consists of networks built up from hard-threshold 
activations and having w weights; they showed that VC(F)= O(wlogw). (Con­
versely, Maass (1993) showed that there is also a lower bound of this form.) It 
would appear that this definitely settled the VC dimension (and hence also the 
sample size) question. 

However, the above estimate assumes an architecture based on hard-threshold 
("Heaviside") neurons. In contrast, the usually employed gradient descent learning 
algorithms ("backpropagation" method) rely upon continuous activations, that is, 
neurons with graded responses. As pointed out in Sontag (1989), the use of ana­
log activations, which allow the passing of rich (not just binary) information among 
levels, may result in higher memory capacity as compared with threshold nets. This 
has serious potential implications in learning, essentially because more memory ca­
pacity means that a given function f may be able to "memorize" in a "rote" fashion 
too much data, and less generalization is therefore possible. Indeed, Sontag (1992) 
showed that there are conceivable (though not very practical) neural architectures 
with extremely high VC dimensions. Thus the problem of studying VC(F) for ana­
log networks is an interesting and relevant issue. Two important contributions in 
this direction were the papers by Maass (1993) and by Goldberg and Jerrum (1995), 
which showed upper bounds on the VC dimension of networks that use piecewise 
polynomial activations. The last reference, in particular, established for that case 
an upper bound of O(w2), where, as before, w is the number of weights. However 
it was an open problem (specifically, "open problem number 7" in the recent survey 
by Maass (1993) if there is a matching w 2 lower bound for such networks, and more 
generally for arbitrary continuous-activation nets. It could have been the case that 
the upper bound O( w 2 ) is merely an artifact of the method of proof in Goldberg 
and Jerrum (1995), and that reliable learning with continuous-activation networks 
is still possible with far smaller sample sizes, proportional to O( w log w). But this is 
not the case, and in this paper we answer Maass' open question in the affirmative. 

Assume given an activation (T which has different limits at ±oo, and is such that 
there is at least one point where it has a derivative and the derivative is nonzero 
(this last condition rules out the Heaviside activation). Then there are architec­
tures with arbitrary large numbers of weights wand VC dimension proportional 
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to w 2 • The proof relies on first showing that networks consisting of two types of 
activations, Heavisides and linear, already have this power. This is a somewhat 
surprising result, since purely linear networks result in VC dimension proportional 
to w, and purely threshold nets have, as per the results quoted above, VC dimension 
bounded by w log w. Our construction was originally motivated by a related one, 
given in Goldberg and Jerrum (1995), which showed that real-number programs (in 
the Blum-Shub-Smale (1989) model of computation) with running time T have VC 
dimension O(T2). The desired result on continuous activations is then obtained, 
approximating Heaviside gates by IT-nets with large weights and approximating lin­
ear gates by IT-nets with small weights. This result applies in particular to the 
standard sigmoid 1/(1 + e- X ). (However, in contrast with the piecewise-polynomial 
case, there is still in that case a large gap between our O( w 2 ) lower bound and 
the O( w4 ) upper bound which was recently established in Karpinski and Macin­
tyre (1995).) A number of variations, dealing with Boolean inputs, or weakening 
the assumptions on IT, are discussed. The full version of this paper also includes 
some remarks on thresholds networks with a constant number of linear gates, and 
threshold-only nets with "shared" weights. 

Basic Terminology and Definitions 

Formally, a (first-order, feedforward) architecture or network A is a connected di­
rected acyclic graph together with an assignment of a function to a subset of its 
nodes. The nodes are of two types: those of fan-in zero are called input nodes and 
the remaining ones are called computation nodes or gates. An output node is a node 
of fan-out zero. To each gate g there is associated a function IT g : IR. -!- IR., called the 
activation or gate function associated to g. 

The number of weights or parameters associated to a gate 9 is the integer ng equal 
to the fan-in of 9 plus one. (This definition is motivated by the fact that each input 
to the gate will be multiplied by a weight, and the results are added together with 
a "bias" constant term, seen as one more weight; see below.) The (total) number 
of weights (or parameters) of A is by definition the sum of the numbers n g , over all 
the gates 9 of A. The number of inputs m of A is the total number of input nodes 
(one also says that "A has inputs in IR.m,,); it is assumed that m > O. The number 
of outputs p of A is the number of output nodes (unless otherwise mentioned, we 
assume by default that all nets considered have one-dimensional outputs, that is, 
p = 1). 

Two examples of gate functions that are of particular interest are the identity or 
linear gate: Id( x) = x for all x, and the threshold or H eaviside function: H (x) = 1 
if x ~ 0, H(x) = 0 if x < O. 

Let A be an architecture. Assume that nodes of A have been linearly ordered as 
11"1, ... , 11" m, gl, ... , gl, where the 1I"j 's are the input nodes and the gj 's the gates . For 
simplicity, write nj := n g., for each i = 1, ... , I. Note that the total number of 

parameters is n = L:~=1 nj and the fan-in of each gj is nj - 1. To each architecture 
A (strictly speaking, an architecture together with such an ordering of nodes) we 
associate a function 

F : ]Rm x ]Rn -!-]RP , 

where p is the number of outputs of A, defined by first assigning an "output" to 
each node, recursively on the distance from the the input nodes. Assume given 
an input x E ]Rm and a vector of weights w E ]Rn. We partition w into blocks 
(WI , ... , WI) of sizes nl, ... , nl respectively. First the coordinates of x are assigned 
as the outputs of the input nodes 11"1, ... , 1I"m respectively. For each of the other 
gates gj, we proceed as follows. Assume that outputs Yl, ... , Yn. -1 have already 
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been assigned to the predecessor nodes of gi (these are input and/or computation 
nodes, listed consistently with the order fixed in advance). Then the output of gi 
is by definition 

(1'g. (Wi,O + Wi , lYI + Wi ,2Y2 + ... + wi,n.-lYn.-d , 

where we are writing Wi = (Wi,O, Wi,l, Wi ,2, ... , wi,n.-d. The value of F(x, w) is 
then by definition the vector (scalar if p = 1) obtained by listing the outputs of the 
output nodes (in the agreed-upon fixed ordering of nodes). We call F the function 
computed by the architecture A. For each choice of weights W E IRn, there is a 
function Fw : IRm _ IRP defined by Fw(x) := F(x, w) ; by abuse of terminology we 
sometimes call this also the function computed by A (if the weight vector has been 
fixed). 

Assume that A is an architecture with inputs in IRm and scalar outputs, and that 
the (unique) output gate has range {O, 1}. A subset A ~ IR m is said to be shattered 
by A if for each Boolean function 13 : A - {O, 1} there is some weight W E IRn so 
that Fw(x) = f3(x) for all x EA . The Vapnik-Chervonenkis (VC) dimension of A 
is the maximal size of a subset A ~ IRm that is shattered by A. If the output gate 
can take non-binary values, we implicitly assume that the result of the computation 
is the sign of the output. That is, when we say that a subset A ~ IRm is shattered 
by A, we really mean that A is shattered by the architecture H(A) in which the 
output of A is fed to a sign gate . 

2 Networks Made up of Linear and Threshold Gates 

Proposition 1 For every n ;::: 1, there is a network architecture A with inputs in 
IR 2 and O( VN) weights that can shatter a set of size N = n2. This architecture is 
made only of linear and threshold gates. 

Proof. Our architecture has n parameters WI , ... , Wn; each of them is an element 
ofT = {O.WI . .. Wn ;Wi E {O, 1}}. The shattered set will be S = [n]2 = {1, .. . ,nF. 

For a given choice of W = (WI' ... ' Wn), A will compute the boolean function 
fw : S - {O, 1} defined as follows: fw(x, y) is equal to the x-th bit of Wy . Clearly, 
for any boolean function f on S, there exists a (unique) W such that f = fw. 

We first consider the obvious architecture which computes the function: 
n 

flv(Y) = WI + I)Wz - Wz-dH(y - z + 1/2) (1) 
z=2 

sending each point Y E [n] to Wy. This architecture has n - 1 threshold gates, 
3(n - 1) + 1 weights, and just one linear gate. 

Next we define a second multi-output net which maps wET to its binary rep­
resentation j2(w) = (WI' . .. ' wn ). Assume by induction that we have a net N? 
that maps W to (WI, ... ,Wi,O.Wi+l ... Wn) . Since Wi+l = H(O.Wi+l . .. Wn -1/2) 
and o. Wi+2 ... Wn = 2 x o. Wi+1 . .. Wn - Wi+!, .N;;'l can be obtained by adding one 
threshold gate and one linear gate to .N;2 (as well as 4 weights). It follows that N~ 
has n threshold gates, n linear gates and 4n weights. 

Finally, we define a net N3 which takes as input x E [n] and W = (WI , ... , wn) E 
{O, l}n, and outputs W X • We would like this network to be as follows: 

n n 

f3(X , w) = WI + L wzH(x - z + 1/2) - L wz_IH(x - z + 1/2). 
z=2 z=2 
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This is not quite possible, because the products between the Wi'S (which are inputs 
in this context) and the Heavisides are not allowed. However, since we are dealing 
with binary variables one can write uv = H(u + v - l.5). Thus N3 has one linear 
gate, 4(n - 1) threshold gates and 12(n - 1) + n weights. Note that fw(x, y) = 
p (x, P Ulv (y)). This can be realized by means of a net that has n + 2 linear gates, 
(n-l)+n+4(n-l) = 6n-5 threshold gates, and (3n-2)+4n+(12n-ll) = 19n-13 
weights. 0 

The following is the main result of this section: 

Theorem 1 For every n ;::: 1, there is a network architecture A with inputs in IR. 
and O( VN) weights that can shatter a set of size N = n2. This architecture is 
made only of linear and threshold gates. 

Proof. The shattered set will be S = {O, 1, .. . ,n2 -I}. For every xES, there 
are unique integers x, y E {O, 1, ... , n - I} such that u = nx + y. The idea of the 
construction is to compute x and y, and then feed (x + 1, y + 1) to the network 
constructed in Proposition 1. Note that x is the unique integer such that u - nx E 
{O, 1, .. . , n - I}. It can therefore by computed by brute force search as follows: 

n-1 

X = L kH[H(u - nk) + H(n - 1 - (u - nk)) - l.5]. 
k=O 

This network has 3n threshold gates, one linear gate and 8n weights. Then of course 
y = u - nx. 0 

A Boolean version is as follows. 

Theorem 2 For every d ;::: 1, there is a network architecture A with O( VN) 
weights that can shatter the N = 22d points of {O, 1 Fd . This architecture is made 
only of linear and threshold gates. 

Proof. Given u E {O, IFd, one can compute x = 1 + 2::=1 2i-1ui and y = 1 + 
2:1=12i-1Ui+d with two linear gates. Then (x, y) can be fed to the network of 
Proposition 1 (with n = 2d ). 0 

In other words, there is a network architecture with 2d weights that can compute 
all boolean functions on 2d variables. 

3 Arbitrary Sigmoids 

We now extend the preceding VC dimension bounds to networks that use just 
one activation function tr (instead of both linear and threshold gates). All that is 
required is that the gate function have a sigmoidal shape and satisfy a very weak 
smoothness property: 

l. tr is differentiable at some point Xo (i.e., tr(xo+h) = tr(xo)+tr'(xo)h+o(h)) 
where tr'(xo)# 0. 

2. limx __ oo tr(x) = ° and limx _+oo tr(x) = 1 (the limits ° and 1 can be 
replaced by any distinct numbers). 

A function satisfying these two conditions will be called sigmoidal. Given any such 
tr, we will show that networks using only tr gates provide quadratic VC dimension. 
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Theorem 3 Let tT be an arbitrary sigmoidal function. There exist architectures Al 
and A2 with O( VN) weights made only of tT gates such that: 

• Al can shatter a subset ofIR of cardinality N = n2 ,-

• A2 can shatter the N = 22d points of {O, 1}2d. 

This follows directly from Theorems 1 and 2, together with the following simulation 
result: 

Theorem 4 Let tT be a an arbitrary sigmoidal function. Let N be a network of 
T threshold and L linear gates, with a threshold gate at the output. Then N can 
be simulated on any given finite set of inputs by a network N' of T + L gates that 
all use the activation function tT (except the output gate which is still a threshold). 
Moreover, if N has n weights then N' has O( n) weights. 

Proof. Let S be a finite set of inputs. We can assume, by changing the thresholds of 
threshold gates if necessary, that the net input Ig (x) to any threshold gate 9 of N 
is different from ° for all inputs xES. 

Given € > 0, let N( be the net obtained by replacing the output functions of all gates 
by the new output function x 1--+ tT( X / €) if this output function is the sign function , 
and by x 1--+ tT(x) = [tT(xo+€x)-tT(xo))/[€tT'(xo)] ifit is the identity function. Note 
that for any a > 0, lim(_o+ tT(x/€) = H(x) uniformly for x E) - 00, -a] U [a, +00] 
and limHo tT(x) = x uniformly for x E [-l/a, l/a]. 

This implies by induction on the depth of 9 that for any gate 9 of N and any input 
XES, the net input Ig,(x) to 9 in the transformed net N( satisfies li~_o IgAx) = 
Ig(x) (here, we use the fact that the output function of every 9 is continuous at 
Ig(x)). In particular, by taking 9 to be the output gate of N, we see that Nand 
N( compute the same function on S if € is small enough. Such a net N( can be 
transformed into an equivalent net N' that uses only tT as gate function by a simple 
transformation of its weights and thresholds. The number of weights remains the 
same, except at most for a constant term that must be added to each net input to 
a gate; thus if N has n weights, N' has at most 2n weights. 0 

4 More General Gate Functions 

The objective of this section is to establish results similar to Theorem 3, but for 
even more arbitrary gate functions, in particular weakening the assumption that 
limits exist at infinity. The main result is, roughly, that any tT which is piecewise 
twice (continuously) differentiable gives at least quadratic VC dimension, save for 
certain exceptional cases involving functions that are almost everywhere linear. 

A function tT : IR --+ IR is said to be piecewise C 2 if there is a finite sequence 
al < a2 < ... < ap such that on each interval I of the form] - 00, al [, )ai, ai+1 [ or 
]ap , +00[, tTll is C2. 

(Note: our results hold even if it is only assumed that the second derivative exists in 
each of the above intervals; we do not use the continuity of these second derivatives.) 

Theorem 5 Let tT be a piecewise C2 function. For every n ~ 1, there exists an 
architecture made of tT-gates, and with O( n) weights, that can shatter a subset of 
IR 2 of cardinality n2 , except perhaps in the following cases: 

1. tT is piecewise-constant, and in this case the VC dimension of any architec­
ture of n weights is O( n log n),-
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2. u is affine, and in this case the VC dimension of any architecture of n 
weights is at most n. 

3. there are constants af; 0 and b such that u( x) = ax + b except at a finite 
nonempty set of points. In this case, the VC dimension of any architec­
ture of n weights is O(n2 ), and there are architectures of VC dimension 
O(nlogn). 

Due to the lack of space, the proof cannot be included in this paper. Note that 
the upper bound of the first special case is tight for threshold nets, and that of the 
second special case is tight for linear functions in ]R n. 
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