Independent Component Analysis

Paris Smaragdis

paris@adobe.com

A “simple” audio problem
| -

This lecture’s overview

= A motivating example
= The theory
= Decorrelation
= Independence vs decorrelation
= Independent component analysis
= Separating sounds
= Solving instantaneous mixtures
= Solving convolutive mixtures
= Data exploration and independence
= Extracting audio features

= Extracting multimodal features

Formalizing the problem

= Each mic will receive a mix of both sounds
= Sound waves superimpose linearly

= We'll ignore propagation delays for now

= The simplified mixing model is:
x(t)=A-s(t)

i

1) = a,,(1)+ ays, (1
= We know x(7), but nothing else 1= a5, () F ay,5,(0)

PN

= How do we solve this system and find s(1)?
X, (1) = ay 5, (1) + ays, (1)

10/1/09

When can we solve this?

= The mixing equation is:

x(1)=A-s(t)

= Our estimates of s(7) will be:
St =A"-x(1)

= To recover s(7), A must be invertible:
= We need as many mics as sources
= The mics/sources must not coincide

= All sources must be audible

= Otherwise this is a different story ...

What to look for

x(t)=A-s(t)

= We can only use x(¢)

= Is there a property we can take advantage of?

= Yes! We know that different sounds are “statistically unrelated”

= The plan: Find a solution that enforces this “unrelatedness”

10/1/09

A simple example

x(9) A s(9)

= A simple invertible problem
= s(¢) contains two structured waveforms
= Ais invertible (but we don’t know it)
= x(7) looks messy, doesn’t reveal s(¢) clearly

= How do we solve this? Any ideas?

Afirst try

= Find s(7) by minimizing cross-correlation
= Our estimate of s(7) is computed by:
$@)=W-x(1)
= |f W= A" then we have a good solution
= The goal is that the output becomes uncorrelated:
(5,0)3,(0)=0.Vi#j
= We assume here that our signals are zero mean

= So the overall problem to solve is:

argmin <2aikxk)Y a,x, (t)> Vi#j
w T T

10/1/09

How to solve for uncorrelatedness How to solve for uncorrelatedness

= Let's use matrices instead of time-series: = This is actually a well known problem in linear algebra
{ M), o x(N) } x()=A-s(t) and §(7)=W-x(1)= = One solution is Eigenanalysis:
x(t)—> X = Jei N
1, -, N =A- =W- 1A A
x,(D) X,(N) = X=A-S and S=W-X COV(S) g
= The uncorrelatedness translates to: 11\’
LS S ¢, 0 ﬁ(w X)(W X)
N 0 ¢y 1 ” -
=—W-X-X"-W
= We then need to diagonalize: N
laar_ 1 T :W‘Cov(X)-WT
—8.§ =—(W-X)(W-X)
N N = Cov(X) is a symmetric matrix

How to solve for uncorrelatedness Another solution

= For any symmetric matrix Z we know that: = We can also solve for a matrix inverse square root:
T T d, « u - A
Z=U-D-U = u - u, | . Cov(S)ocW-X-X7~W1
1 1 dy — u, -

1 —1
(X XA XX (XT-X) 7 replace W with (XX)2
= Where u; and 4, are Z’s eigenvectors and eigenvalues respectively _
= In our case if [U,D] = eig(Cov(X))

Cov(8) =W Cov(X)- W' P
1,
=W-U-D-U"-W" letus replace W with U” (X-X)#=U- -U", where [U,D]=ecig(X-X")
=U"-U-D-U"-U Uisorthonormal (U-U” =1) "
=D

= This is actually Principal Component Analysis

10/1/09

= What if we want to do this in real-time? = For a mixture:
X=A-S
= We can also estimate W in an online manner: = We can algebraically recover an uncorrelated output using
AW o< (1= W-x(1)-x(1) - W')W S=w-X
= Every time we see a new observation x(f) we update W + If Wis the eigenvector matrix of Cov(X)

« Or with W = Cov(X) 12

= Using this adaptive approach we can see that: = Or we can use an online estimator:
Cov(W-x(1))=1, AW=0 AW o< (1= W -x(1)-x(t) - W')W

= We'll skip the derivation details for now

So how well does this work? What went wrong?

_ x(9) ~ A g s(?) - = What does decorrelation mean?
£ WWWWW WMMM/W + That the two things compared are “not related”
kS
@ _| 2 1 = Consider a mixture of two Gaussians
£ /WWUWWWW Lo A
N N(0,2) 21
s(t)= X(1)= -s(
~ s ~ s (){‘,\’(0,1)} ® [1 1} ©
HO) - w _ x(7) - : .
H
& _[06 04
X
s
> L p \ /

Well, that was a waste of time ...

10/1/09

x(1) A s(?)

= Now let us do what we derived so far on this signal:

a) Find the eigenvectors b) Rotate and scale so that covariance is |

| &

ot

= After we are done the two Gaussians are “statistically independent”
* i, P(s;,5,) = P(s,)P(s,)
= We have in effect separated the original signals

= Save for a scaling ambiguity
= Stating the obvious: These are not very Gaussian signals!!

Doing PCA doesn’t give us the right solution So what's w

= The result is not what we want = For Gaussian data decorrelation means independence
= We are off by a rotation = Gaussians have up to second order statistics (15t is mean, 2" is variance)
= This idea doesn’t seem to work for non-Gaussian signals = By minimizing the 2"d-order cross-statistics we achieve independence
a) Find the eigenvectors b) Rotate and scale so that covariance is 1 = These statistics can be expressed by the 2"-order cumulants:

cum(x;,x;)= (.\',x]>

= Which happen to be the diagonals of the covariance matrix

= But real-world data are seldom Gaussian
= Non-Gaussian data have higher orders which are not taken care of with PCA
= We can measure their dependence using higher order cumulants:
3 order: cum(x;,x;,x,) = <x,xjxk>

4" order: cum(x, XXy X)) = <x‘xlxkx,> - <X,x/ >(ﬁxr> - <x‘xk)(x/x,) - (x,x, ><xAx/>

10/1/09

Cumulants for Gaussian vs non-Gaussian case The real problem to solve

Non-Gaussian case

= For statistical independence we need to minimize all cross-cumulants

Gaussian case

= In practice up to 4 order is enough

= For 2" order we minimized the off-diagonal covariance elements

{ cum(x,,x,) cum(x;,x,) }

cum(x,,x,) cum(x,,x,)

= For 4t order we will do the same for a tensor

O, ;s = cum(x,,x;,x,,%,)

= The process is similar to PCA, but in more dimensions

Cross-cumulants tend to zero Only 2 order cross-cumulants tend to zero
cum(x,, x) le? cum(x,, x) e = We now find “eigenmatrices” instead of eigenvectors
cum(x;, x; x;) 0.0008, 0.0004 cum(x;, x; %) -0.08, -0.1 = Algorithms like JADE and FOBI solve this problem
cum(x;, x;%,,x) | -0.003,0.0005, 0.0007 cum(x;, x,x;,x) | 0.42,-0.3,0.16 = Can you see a potential problem though?

An alternative approach Online ICA

= Tensorial methods can be very very computationally intensive = Conceptually this is very similar to online decorrelation
= How about an on-line method instead? + For decorrelation:

AW o< (1= W -x(1)-x()" - W')W
= Independence can also be coined as “non-linear decorrelation”

= xand y are independent if and only if:

= For non-linear decorrelation:

AW e u(I—f(W‘X(t>)‘g(W‘X(t>)T)W

<f(x)g(y)> = (f(x))(g(y)) = This adaptation method is known as the Cichocki-Unbehauen update
= For all continuous functions fand g = But we can obtain it using many different ways
= This is a non-linear extension of 2" order independence where f{x) = g(x) =x = But how do we pick the non-linearities?
= We can try solving for that then = Depends on the prior we have on the sources

X x + tanh(x), for super-Gaussians
fx)=

x — tanh(x), for sub-Gaussians

10/1/09

Other popular approaches Trying this on our dataset

x(1) A s(?)

= Minimum Mutual Information

= Minimize the mutual information of the output

= Creates maximally statistically independent outputs
= Infomax

= Maximize the entropy of the output or Mutual Information of input/output
= Non-Gaussianity

= Adding signals tends towards Gaussianity (Central Limit Theorem)

= Find the maximally non-Gaussian outputs undoes the mixing
= Maximum Likelihood
= Less straightforward at first, but elegant nevertheless

= Geometric methods

= Trying to “eyeball” the proper way to rotate

Trying this on our dataset Trying this on our dataset

x(0) A s(f) 0 w x(f)

ARaplla] o) (@Qbapd AN (AT

YV IEE

= We actually separated the mixture!

10/1/09

But something is amiss .. This works really well for audio mixtures!

There some things that ICA will S0 s(®) Input Output

not resolve AM/\M\/\/\M/\MV
Scale WWMWWM’MNW’WM
= Statistical independence is
invariant of scale (and sign)

Order of inputs

= Order of inputs is irrelevant when
talking about independence

ICA will actually recover:

A 1, &=
§()=D-P-s(r)) S
NS 7~
= Where D is diagonal and P is a S N ﬂ\
permutation matrix ':/ /\, ~N

Problems with instantaneous mixing Convolutive mixing

= Sounds don’t really mix = Instead of instantaneous mixing:
instantaneously x,(H)= Z%Sj(f)
= There are multiple effects j=1

« Room reflections = We now have convolutive mixing:

%®=ZZ%®HF@

= The mlxmg fllters a;(k) encapsulate
all the mixing effects in this model

= Sensor response
= Propagation delays

= Propagation and reflection filtering

= Most can be seen as filters . But how do we do ICA now?

= We need a convolutive mixing @ @

. - ionl
model This is an ugly equation!
Estimated sources using
the instantaneous model

on convolutive mix

FIR matrix algebra

= Matrices with FIR filters as elements

a, 4ap
A-|
ay 4y

a,=[a,©0 - a,(k-D)

= FIR matrix multiplication performs convolution and accumulation

a, ap||b a, #b +ay,*b,
A-b= . =
ay 4| |b, a5 #b, +a,, *b,

An easy way to solve convolutive mixing

= Straightforward translation of instantaneous
learning rules using FIR matrices:

AW o< (I+ f(W-x)-(W-x)")- W

= Not so easy with algebraic approaches!

= Multiple other (and more rigorous/better behaved)
approaches have been developed

10/1/09

Back to convolutive mixing

= Now we can rewrite convolutive
mixing as:

X=X Y a,(k)s,(t—k) =
ik

= x(1)= A‘SU):{““ #5,(1) + ay, *Sz(t)}

ay, % 5,(1) + ay * 5,(1)

= Tidier formulation!

= We can use the FIR matrix
abstraction to solve this problem

>
o

Complications with this approach

= Required convolutions are expensive
= Real-room filters are long
= Their FIR inverses are very long
= FIR products can become very time consuming
= Convergence is hard to achieve
= Huge parameter space

= Tightly interwoven parameter relationships

= A slow optimization nightmare!

FIR matrix algebra, part Il

= FIR matrices have frequency domain counterparts:
A= |:£|1 a :| frequency domain_y A __ |:Qn ﬂlz:|
= A S A=

4y A4y a4y 4y

d,=DFTlg,]

= And their products are simpler:

A-f)= én'él"'élz'éz
o ézl'bl"'ézz'bz

a-b=[a(0)-b0) alk—1)-b(k—1)]

Overall flowgraph

Frequency Transform Instantaneous Time Transform

ICA unmixers
Recovered Sources

Convolved Mixtures Mixed i Unmixed
ixe nmixer
l Frequency Bins Frequency Bins
X W, s
1 1 1
X, —|] —,
@) M Point 2 M point | .
. |STFT . ISTFT| - @
x N ——s
N N
w,
LM

Yet another convolutive mixing formulation

= We can now model the process
in the frequency domain:

X=A-S

= For every frequency we have:
X_/ = Af 'Sf(t)a Vf,t

= Hey, that’s instantaneous mixing!

= We can solve that!

Some complications ...

= Permutation issues
= We don’t know which source will end up in each narrowband output ...

= Resulting output can have separated narrowband elements from both sounds!

Extracted source @
with permutation
= Scaling issues

= Narrowband outputs can be scaled arbitrarily

= This results in spectrally colored outputs

Original source @ Colored source @

10/1/09

10

10/1/09

= Continuity of unmixing matrices

= Adjacent unmixing matrices tend to be a little similar, we can
permute/bias them accordingly

= One simple fix is to normalize the separating matrices

1
N

norm _ ywyorig _|yworig
W) = W (W

+ Results into more reasonable scaling » Doesn’t work that great

= Smoothness of spectral output

= Narrowband components from each source tend to modulate the

= More sophisticated approaches exist
same way

but this is not a major problem
= Permute unmixing matrices to ensure adjacent narrowband output
are similarly modulated

Original source @ Colored source @ Corrected source @ * Works fine

= The above can fail miserably for more than two sources!

= Combinatorial explosion!

Beamforming and ICA Using beamforming to resolve permutations

Output 1 with permutation

= Some spectral coloration is however unavoidable

Processed output 1

Output 1 with permutation

= If we know the placement of the
sensors we can obtain the spatial
response of the ICA solution

= Spatial information
can be used to
resolve permutations

= ICA places nulls to cancel out
interfering sources

= Just as in the instantaneous case we Soam anglo
cancel out sources responses

= Works fine, although it
can be flaky if the
array response is not
that clean

= Find permutations that
preserve zeros or
smooth out the

o

@ Boam angle

Output 2 with permutation

= We can visualize the permutation
problem now

= Out of place bands

Froquancy

Bands with
permutation
problems

@ Beam angle

@ Beam angle

Beam angle

11

10/1/09

= ICA, in either formulation inverts a square matrix (whether
scalar, or FIR) » Orthogonality is not independence!!

= This implies that we have the same number of input as outputs * Not all signals are Gaussian which is a usual assumption

= E.g. in a street with 30 noise sources we need at least 30 mics!

= Solutions exist for M ins - N outs where M > N = We can model instantaneous mixtures with ICA and get good results
= ICA algorithms can optimize a variety of objectives, but ultimately result in
= If N> M we can onIy beamform statistical independence between the outputs
= |n some cases extra sources can be treated as noise = Same model is useful for all sorts of mixing situations

= This can be restrictive in some situations
= Convolutive mixtures are more challenging but solvable

= There’s more ambiguity, and a closer link to signal processing approaches

ICA for data explorati Example cases of PCA vs ICA

Non-Gaussian data

= Motivation for using ICA vs PCA

= ICAis also great for data exploration

It PCA s, then ICA should be, right? = PCA will indicate orthogonal directions osf PCA

of maximal variance

04 .

= With data of large dimensionalities - This is great for Gaussian data .

we want to find structure

= PCA can reduce the dimensionality * Also great if we are into LS models

» And clean up the data structure a bit = Real-world is not Gaussian though

= ICA finds directions that are
more “revealing”

= But ICA can find much more
intuitive projections

-06

-08

12

Finding useful transforms with ICA

Audio preprocessing example

Take a lot of audio snippets

and concatenate them in a big

matrix, do component analysis

PCA results in the DCT bases
= Do you see why?

ICA returns time/freq localized

sinusoids which is a better

way to analyze sounds

Ditto for images

= ICA returns localizes edge filters

10/1/09

Enhancing PCA with ICA

= |CA cannot perform dimensionality reduction

= The goal is to find independent components, hence there is no sense of order
= PCA does a great job at reducing dimensionality

= Keeps the elements that carry most of the input's energy
= It turns out that PCA is a great preprocessor for ICA

= There is no guarantee that the PCA subspace will be appropriate for the independent
components but for most practical purposes this doesn’t make a big difference

MxN input MxKPCA KxKICA KxN ICs

e

Example case: ICA-faces vs. Eigenfaces

ICA-faces

T TER
b I = o
8 ¥ =

I

=

Eigenfaces

SMHEE SRES

A Video Example

= The movie is a series of frames
= Each frame is a data point
= 126, 80x60 pixel frames
= Data X will be 4800%126
= Using PCA/ICA
« X=WxH

= W will contain visual components

= H will contain their time weights

13

PCA Results

= Nothing special about the Video Gompnert 1 Video Gomporent 2 Video C
visual components ‘ (A

= They are orthogonal
pictures

= Does this mean anything?
(not really ...)

= Some segmentation of
constant vs. moving parts L

= Some highlighting of the
action in the weights SIS /T A

Component
\
j

A Video Example

Input movie

= The movie is a series of frames
= Each frame is a data point
= 315, 80%60 pixel frames

Viceo Fiter 1 Vo Fiter2 Vo Fiter3

= Data X will be 4800%315 : L | N
- Using PCAV/ICA | 4
« X=WxH , >

= W will contain visual components

= H will contain their time weights

Independent neighborhoods

ICA Results

- MUCh more interesting Video C: 1 Video C t2 Video C |3
visual components ‘

= They are independent

= Unrelated elements (left/
right hands, background) are
now highlighted

= We have some W
decomposition by parts -
. |17 Y S N A N S VR
= Components weights are L. T
now describing the scene e

What about the soundtrack?

= We can also analyze audio in a
similar way

= We do a frequency transform
and get an audio spectrogram X
= X is frequencies x time

= Distinct audio elements can be
seenin X

= Unlike before we have only one
input this time

10/1/09

14

10/1/09

PCA on Audio ICA on Audio

« Umm ... it sucks! = A definite improvement

= Independence helps pick
up somewhat more
meaningful sound objects

= Orthogonality doesn'’t
mean much for audio

components e =
. = Not too clean results, but
= Results are mathematically Pl Componar Welghe .) IdepanntCamporont Wostis
. . the intentions are clear
optimal, perceptually . N
useless T v v T = Misses some details — N A
© O 3 — —_

20 40 6 8 100 120 140 180 180 200 220

Audio Visual Components? Audio/Visual Components

Input video Audio Filter 1 Audio Filter 2 Audio Filter 3 Audio Filter4 Audio Filter 5 Audio Filter 6

= We can can even take in both
audio and video data and try to

L.

) | | ™
find structure o — bt o
Video Filter 1 Video Filter 2 Video Filter 3 Video Filter4 Video Filter 5 Video Filter 6
= Sometimes there is a very A { e y
strong correlation between / / / /

auditory and visual elements Input audio
Component weights
= We should be able to discover o[7~
that automatically =50
féa I e A e —
| N ¥ — - ——— .
£ - - _
2 v - .
1]- S - — [— — e —_—

15

Which allows us to play with output

= And of course once we have such a nice
description we can resynthesize at will

Resynthesis

= A motivating example
= The theory
= Decorrelation
= Independence vs decorrelation
= Independent component analysis
= Separating sounds
= Solving instantaneous mixtures
= Solving convolutive mixtures
= Data exploration and independence
= Extracting audio features

= Extracting multimodal features

10/1/09

16

