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This lecture’s overview 

  A motivating example 

  The theory 
  Decorrelation 

  Independence vs decorrelation 

  Independent component analysis 

  Separating sounds 
  Solving instantaneous mixtures 

  Solving convolutive mixtures 

  Data exploration and independence 
  Extracting audio features 

  Extracting multimodal features 
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A “simple” audio problem 

foo! 

bar! 



4 

Formalizing the problem 

  Each mic will receive a mix of both sounds 
  Sound waves superimpose linearly 

  We’ll ignore propagation delays for now 

  The simplified mixing model is: 

  We know x(t), but nothing else 
  How do we solve this system and find s(t)? 

s1 

s2 

x1(t) = a11s1(t) + a21s2 (t)

x2 (t) = a21s1(t) + a22s2 (t)

x(t) = A ⋅ s(t)
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When can we solve this? 

  The mixing equation is: 

  Our estimates of s(t) will be: 

  To recover s(t), A must be invertible: 
  We need as many mics as sources 

  The mics/sources must not coincide 

  All sources must be audible 

  Otherwise this is a different story … 

x(t) = A ⋅ s(t)
s1 

s2 

s1 
s2 

A = a1 a2⎡
⎣

⎤
⎦

ŝ(t) = A−1 ⋅x(t)

A =
a1 a2
a1 a2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
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A simple example 

= 2 1
1 1

⎡

⎣
⎢

⎤

⎦
⎥ ⋅

s(t) x(t) A 

  A simple invertible problem 

  s(t) contains two structured waveforms 

  A is invertible (but we don’t know it) 

  x(t) looks messy, doesn’t reveal s(t) clearly  

  How do we solve this?  Any ideas? 
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What to look for 

  We can only use x(t) 

  Is there a property we can take advantage of? 

  Yes!  We know that different sounds are “statistically unrelated” 

  The plan: Find a solution that enforces this “unrelatedness” 

x(t) = A ⋅ s(t)
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A first try 

  Find s(t) by minimizing cross-correlation 

  Our estimate of s(t) is computed by: 

  If W ≈ A-1 then we have a good solution  

  The goal is that the output becomes uncorrelated: 

  We assume here that our signals are zero mean 

  So the overall problem to solve is: 

ŝ(t) =W ⋅x(t)

ŝi (t) ⋅ ŝ j (t) = 0,∀i ≠ j

argmin
W

aikxk (t)
k
∑ ⋅ ajkxk (t)

k
∑ ,∀i ≠ j
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How to solve for uncorrelatedness 

  Let’s use matrices instead of time-series: 

  The uncorrelatedness translates to: 

  We then need to diagonalize: 

 

x(t)→ X =
x1(1), , x1(N )
x2 (1), , x2 (N )

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
,etc

1
N
Ŝ ⋅ ŜT =

1
N
W ⋅X( ) W ⋅X( )T� 

1
N

ˆ S ⋅ ˆ S T =
c11 0
0 c22

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 

� 

x(t) = A ⋅ s(t)   and   ˆ s (t) = W ⋅ x(t) ⇒

    ⇒ X = A ⋅S  and  ˆ S = W ⋅X
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How to solve for uncorrelatedness 

  This is actually a well known problem in linear algebra 

  One solution is Eigenanalysis: 

  Cov( X) is a symmetric matrix 

Cov Ŝ( ) = 1
N
Ŝ ⋅ ŜT

           = 1
N
W ⋅X( ) W ⋅X( )T

           = 1
N
W ⋅X ⋅XT ⋅WT

           =W ⋅Cov X( ) ⋅WT
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How to solve for uncorrelatedness 

  For any symmetric matrix Z we know that: 

  Where ui and di are Z’s eigenvectors and eigenvalues respectively 

  In our case if [U,D] = eig( Cov( X)) 

  This is actually Principal Component Analysis 

 

Z = U ⋅D ⋅UT =
↑ ↑
u1  uN
↓ ↓

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⋅

d1


dN

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⋅

← u1 →

← uN →

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

Cov Ŝ( ) =W ⋅Cov X( ) ⋅WT

           =W ⋅U ⋅D ⋅UT ⋅WT      let us replace W with UT

           = UT ⋅U ⋅D ⋅UT ⋅U       U is orthonormal U ⋅UT = I( )
           = D
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Another solution 

  We can also solve for a matrix inverse square root: 

 

Cov Ŝ( )∝W ⋅X ⋅XT ⋅WT

           = X ⋅XT( )− 1
2 ⋅X ⋅XT ⋅ XT ⋅X( )− 1

2      replace W with X ⋅XT( )− 1
2

           = I

X ⋅X( )− 1
2 = U ⋅

d1
−1 2


dN

−1 2

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

⋅UT ,     where [U,D] = eig X ⋅XT( )
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Another approach 

  What if we want to do this in real-time? 

  We can also estimate W in an online manner: 

  Every time we see a new observation x(t) we update W 

  Using this adaptive approach we can see that: 

  We’ll skip the derivation details for now 

ΔW ∝ µ I −W ⋅x(t) ⋅x(t)T ⋅WT( )W

Cov W ⋅x(t)( ) = I,    ΔW = 0 
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Summary so far 

  For a mixture: 

  We can algebraically recover an uncorrelated output using 

  If W is the eigenvector matrix of Cov( X) 

  Or with W = Cov( X) -1/2 

  Or we can use an online estimator: 

X = A ⋅S

Ŝ =W ⋅X

ΔW ∝ µ I −W ⋅x(t) ⋅x(t)T ⋅WT( )W
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So how well does this work? 

= 2 1
1 1

⎡

⎣
⎢

⎤

⎦
⎥ ⋅

s(t) x(t) A 

x(t) ŝ(t) W 

= −0.6 −0.4
−2.8 3.7

⎡

⎣
⎢

⎤

⎦
⎥ ⋅

  Well, that was a waste of time … 
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What went wrong? 

  What does decorrelation mean? 
  That the two things compared are “not related” 

  Consider a mixture of two Gaussians 

 

s(t) =
N (0,2)
N (0,1)

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
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 x(t) = 2 1
1 1

⎡

⎣
⎢

⎤

⎦
⎥ ⋅ s(t)
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Decorrelation 

  Now let us do what we derived so far on this signal: 

  After we are done the two Gaussians are “statistically independent” 
  i.e.,  

  We have in effect separated the original signals 
  Save for a scaling ambiguity 

−10 −5 0 5 10
−6

−4

−2

0

2

4

6

a) Find the eigenvectors b) Rotate and scale so that covariance is I 

P(s1, s2 ) = P(s1)P(s2 )
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Now lets try this on the original data 

= 2 1
1 1

⎡

⎣
⎢

⎤

⎦
⎥ ⋅

s(t) x(t) A 

  Stating the obvious: These are not very Gaussian signals!! 
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Doing PCA doesn’t give us the right solution 

a) Find the eigenvectors b) Rotate and scale so that covariance is I 

  The result is not what we want 

  We are off by a rotation 

  This idea doesn’t seem to work for non-Gaussian signals 
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So what’s wrong? 

  For Gaussian data decorrelation means independence 
  Gaussians have up to second order statistics (1st is mean, 2nd is variance) 

  By minimizing the 2nd-order cross-statistics we achieve independence 

  These statistics can be expressed by the 2nd-order cumulants: 

  Which happen to be the diagonals of the covariance matrix 

  But real-world data are seldom Gaussian 
  Non-Gaussian data have higher orders which are not taken care of with PCA 

  We can measure their dependence using higher order cumulants: 

cum(x i , x j ) = xix j

3rd  order:    cum(xi , x j , xk ) = xix j xk

4 th  order:    cum(xi , x j , xk , xl ) = xix j xkxl − xix j xkxl − xixk x j xl − xixl xkx j
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Cumulants for Gaussian vs non-Gaussian case 
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Gaussian case 

Non-Gaussian case 

Cross-cumulants tend to zero Only 2nd order cross-cumulants tend to zero 

cum( xi , xj) 1e-13 

cum( xi , xj, xk) 0.0008, 0.0004 

cum( xi , xj, xk , xl) -0.003, 0.0005, 0.0007 

cum( xi , xj) -4e-14 

cum( xi , xj, xk) -0.08, -0.1 

cum( xi , xj, xk , xl) 0.42, -0.3, 0.16 
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The real problem to solve 

  For statistical independence we need to minimize all cross-cumulants 
  In practice up to 4th order is enough 

  For 2nd order we minimized the off-diagonal covariance elements 

  For 4th order we will do the same for a tensor  

  The process is similar to PCA, but in more dimensions 
  We now find “eigenmatrices” instead of eigenvectors 

  Algorithms like JADE and FOBI solve this problem 
  Can you see a potential problem though? 

cum(x1, x1) cum(x1, x2 )
cum(x2 , x1) cum(x2 , x2 )

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

Qi, j ,k ,l = cum(xi , x j , xk , xl )
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An alternative approach 

  Tensorial methods can be very very computationally intensive 

  How about an on-line method instead? 

  Independence can also be coined as “non-linear decorrelation”  
  x and y are independent if and only if: 

  For all continuous functions f and g 

  This is a non-linear extension of 2nd order independence where f(x) = g(x) = x 

  We can try solving for that then 

f (x)g(y) = f (x) g(y)
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Online ICA 

  Conceptually this is very similar to online decorrelation 
  For decorrelation: 

  For non-linear decorrelation: 

  This adaptation method is known as the Cichocki-Unbehauen update 
  But we can obtain it using many different ways 

  But how do we pick the non-linearities? 
  Depends on the prior we have on the sources 

ΔW ∝ µ I −W ⋅x(t) ⋅x(t)T ⋅WT( )W

ΔW ∝ µ I − f W ⋅x(t)( ) ⋅ g W ⋅x(t)( )T( )W

f (xi ) =
x + tanh(x), for super-Gaussians
x − tanh(x), for sub-Gaussians   

⎧
⎨
⎪

⎩⎪
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Other popular approaches 

  Minimum Mutual Information 
  Minimize the mutual information of the output 

  Creates maximally statistically independent outputs 

  Infomax 
  Maximize the entropy of the output or Mutual Information of input/output 

  Non-Gaussianity 
  Adding signals tends towards Gaussianity (Central Limit Theorem) 

  Find the maximally non-Gaussian outputs undoes the mixing 

  Maximum Likelihood 
  Less straightforward at first, but elegant nevertheless 

  Geometric methods 
  Trying to “eyeball” the proper way to rotate 
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Trying this on our dataset 

= 2 1
1 1

⎡

⎣
⎢

⎤

⎦
⎥ ⋅

s(t) x(t) A 
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Trying this on our dataset 

= 2 1
1 1

⎡

⎣
⎢

⎤

⎦
⎥ ⋅

s(t) x(t) A 

x(t) 

= −1.39 2.78
2.5 −2.58

⎡

⎣
⎢

⎤

⎦
⎥ ⋅

W ŝ(t) 

  We actually separated the mixture! 
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Trying this on our dataset 

x(t) W ŝ(t) 
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⎤

⎦
⎥ ⋅
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But something is amiss .. 

  There some things that ICA will 
not resolve 

  Scale 
  Statistical independence is 

invariant of scale (and sign) 

  Order of inputs 
  Order of inputs is irrelevant when 

talking about independence 

  ICA will actually recover: 

  Where D is diagonal and P is a 
permutation matrix 

ŝ(t) 
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This works really well for audio mixtures! 
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Problems with instantaneous mixing 

  Sounds don’t really mix 
instantaneously 

  There are multiple effects 
  Room reflections 

  Sensor response 
  Propagation delays 

  Propagation and reflection filtering 

  Most can be seen as filters 

  We need a convolutive mixing 
model 

2s
1s

2x1x

Estimated sources using 
the instantaneous model 

on convolutive mix 
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Convolutive mixing 

  Instead of instantaneous mixing: 

  We now have convolutive mixing: 

  The mixing filters aij(k) encapsulate 
all the mixing effects in this model 

  But how do we do ICA now? 

  This is an ugly equation! 

2s
1s

2x1x

� 

xi(t) = aijs j (t)
j=1
∑

� 

xi(t) = aij (k)s j (t − k)
k
∑

j
∑
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FIR matrix algebra 

  Matrices with FIR filters as elements 

  FIR matrix multiplication performs convolution and accumulation 

  

� 

A =
a11 a12
a21 a22
⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 

aij = aij (0)  aij (k −1)[ ]

� 

A ⋅b =
a11 a12
a21 a22
⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ ⋅

b1
b2
⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ =

a11 ∗b1 + a12 ∗b2
a21 ∗b1 + a22 ∗b2
⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 
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Back to convolutive mixing 

  Now we can rewrite convolutive 
mixing as: 

  Tidier formulation! 

  We can use the FIR matrix 
abstraction to solve this problem 
now 

� 

xi(t) = aij (k)s j (t − k)
k
∑

j
∑ ⇒

⇒ x(t) = A ⋅ s(t) =
a11 ∗ s1(t) + a12 ∗ s2(t)
a21 ∗ s1(t) + a22 ∗ s2(t)
⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 

2s
1s

2x1x
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An easy way to solve convolutive mixing 

 Straightforward translation of instantaneous 
learning rules using FIR matrices: 

 Not so easy with algebraic approaches! 

 Multiple other (and more rigorous/better behaved) 
approaches have been developed 

ΔW ∝ I + f (W ⋅x) ⋅ (W ⋅x)T( ) ⋅W



36 
36 

Complications with this approach 

  Required convolutions are expensive 
  Real-room filters are long 

  Their FIR inverses are very long 

  FIR products can become very time consuming 

  Convergence is hard to achieve 
  Huge parameter space 

  Tightly interwoven parameter relationships 

  A slow optimization nightmare! 
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FIR matrix algebra, part II 

  FIR matrices have frequency domain counterparts: 

  And their products are simpler: 

][ DFTˆ
ˆˆ
ˆˆˆ

2221

1211 

2221

1211

ijij

domainfrequency

aa
aa
aa

aa
aa

=

⎥
⎦

⎤
⎢
⎣

⎡
=⎯⎯⎯⎯⎯ →⎯⎥

⎦

⎤
⎢
⎣

⎡
= AA

  

� 

ˆ A ⋅ ˆ b =
ˆ a 11 ⋅ ˆ b 1 + ˆ a 12 ⋅ ˆ b 2
ˆ a 21 ⋅ ˆ b 1 + ˆ a 22 ⋅ ˆ b 2

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 

ˆ a ⋅ ˆ b =  a(0) ⋅b(0)  a(k −1) ⋅b(k −1)[ ]
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Yet another convolutive mixing formulation 

 We can now model the process 
in the frequency domain: 

 For every frequency we have: 

 Hey, that’s instantaneous mixing! 
  We can solve that! 

SAX ˆˆˆ ⋅=

tftt fff ,  ),()( ∀⋅= SAX

2s
1s

2x1x
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Overall flowgraph 
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Some complications … 

  Permutation issues 
  We don’t know which source will end up in each narrowband output … 

  Resulting output can have separated narrowband elements from both sounds! 

  Scaling issues 
  Narrowband outputs can be scaled arbitrarily 

  This results in spectrally colored outputs 

Original source Colored source 

Extracted source 
with permutation 
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Scaling issue 

  One simple fix is to normalize the separating matrices 

  Results into more reasonable scaling 

  More sophisticated approaches exist       
but this is not a major problem 

  Some spectral coloration is however unavoidable 

Norig
f

orig
f

norm
f

1

WWW ⋅=

Original source Colored source Corrected source 
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Interspeec
h 2006 

Microphone Array Processing and 
Source Separation 

42 

Some solutions for permutation problems 

  Continuity of unmixing matrices 
  Adjacent unmixing matrices tend to be a little similar, we can 

permute/bias them accordingly 
  Doesn’t work that great 

  Smoothness of spectral output 
  Narrowband components from each source tend to modulate the 

same way 

  Permute unmixing matrices to ensure adjacent narrowband output 
are similarly modulated 

  Works fine 

  The above can fail miserably for more than two  sources! 
  Combinatorial explosion! 
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Interspeec
h 2006 

Microphone Array Processing and 
Source Separation 

43 

Beamforming and ICA 

  If we know the placement of the 
sensors we can obtain the spatial 
response of the ICA solution 

  ICA places nulls to cancel out 
interfering sources 
  Just as in the instantaneous case we 

cancel out sources 

  We can visualize the permutation 
problem now 
  Out of place bands 

Bands with 
permutation 

problems 
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Interspeec
h 2006 

Microphone Array Processing and 
Source Separation 

Using beamforming to resolve permutations 

  Spatial information 
can be used to 
resolve permutations 
  Find permutations that 

preserve zeros or 
smooth out the 
responses 

  Works fine, although it 
can be flaky if the 
array response is not 
that clean 
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Interspeec
h 2006 

Microphone Array Processing and 
Source Separation 
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The N-input N-output problem 

  ICA, in either formulation inverts a square matrix (whether 
scalar, or FIR) 
  This implies that we have the same number of input as outputs 
  E.g. in a street with 30 noise sources we need at least 30 mics! 

  Solutions exist for M ins - N outs where M > N 

  If N > M we can only beamform 
  In some cases extra sources can be treated as noise 

  This can be restrictive in some situations 
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Separation recap 

  Orthogonality is not independence!! 
  Not all signals are Gaussian which is a usual assumption 

  We can model instantaneous mixtures with ICA and get good results 
  ICA algorithms can optimize a variety of objectives, but ultimately result in 

statistical independence between the outputs 

  Same model is useful for all sorts of mixing situations 

  Convolutive mixtures are more challenging but solvable 
  There’s more ambiguity, and a closer link to signal processing approaches 
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ICA for data exploration 

  ICA is also great for data exploration  
  If PCA is, then ICA should be, right? 

  With data of large dimensionalities 
we want to find structure 

  PCA can reduce the dimensionality 
  And clean up the data structure a bit 

  But ICA can find much more 
 intuitive projections 
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Example cases of PCA vs ICA 
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  Motivation for using ICA vs PCA 

  PCA will indicate orthogonal directions 
of maximal variance 

  This is great for Gaussian data 

  Also great if we are into LS models 

  Real-world is not Gaussian though 

  ICA finds directions that are  
 more “revealing”  
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Finding useful transforms with ICA 

  Audio preprocessing example 

  Take a lot of audio snippets 
and concatenate them in a big 
matrix, do component analysis 

  PCA results in the DCT bases 
  Do you see why? 

  ICA returns time/freq localized 
sinusoids which is a better 
way to analyze sounds 

  Ditto for images 
  ICA returns localizes edge filters 
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Enhancing PCA with ICA 

  ICA cannot perform dimensionality reduction 
  The goal is to find independent components, hence there is no sense of order 

  PCA does a great job at reducing dimensionality 
  Keeps the elements that carry most of the input’s energy 

  It turns out that PCA is a great preprocessor for ICA 
  There is no guarantee that the PCA subspace will be appropriate for the independent 

components but for most practical purposes this doesn’t make a big difference 

M×N input M×K PCA K×K ICA K×N ICs 

≈ 
⋅ ⋅ 
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Example case: ICA-faces vs. Eigenfaces 

ICA-faces Eigenfaces 
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A Video Example 

  The movie is a series of frames 
  Each frame is a data point 

  126, 80×60 pixel frames 

  Data X will be 4800×126 

  Using PCA/ICA 
  X = W×H 

  W will contain visual components 

  H will contain their time weights 
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PCA Results 

  Nothing special about the 
visual components 

  They are orthogonal 
pictures 
  Does this mean anything? 

(not really …) 
  Some segmentation of 

constant vs. moving parts 

  Some highlighting of the 
action in the weights 
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ICA Results 

  Much more interesting 
visual components 

  They are independent 
  Unrelated elements (left/

right hands, background) are 
now highlighted 

  We have some 
decomposition by parts 

  Components weights are 
now describing the scene 
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A Video Example 

  The movie is a series of frames 
  Each frame is a data point 

  315, 80×60 pixel frames 

  Data X will be 4800×315 

  Using PCA/ICA 
  X = W×H 

  W will contain visual components 

  H will contain their time weights 

Independent neighborhoods 

Input movie 
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What about the soundtrack? 

  We can also analyze audio in a 
similar way 

  We do a frequency transform 
and get an audio spectrogram X 

  X is frequencies × time 

  Distinct audio elements can be 
seen in X  

  Unlike before we have only one 
input this time 

Time (1k samples)

Fr
eq

ue
nc

y

26 51 77 102 128 154 179 205 230 256 282
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PCA on Audio 

  Umm … it sucks! 

  Orthogonality doesn’t 
mean much for audio 
components 
  Results are mathematically 

optimal, perceptually 
useless 
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ICA on Audio 

  A definite improvement 

  Independence helps pick 
up somewhat more 
meaningful sound objects  
  Not too clean results, but 

the intentions are clear 

  Misses some details 
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Audio Visual Components? 

  We can can even take in both 
audio and video data and try to 
find structure 

  Sometimes there is a very 
strong correlation between 
auditory and visual elements 

  We should be able to discover 
that automatically 

Input video 

Time (1k samples)

Fr
eq

ue
nc

y

26 51 77 102 128 154 179 205

Input audio 
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Audio/Visual Components 
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Which allows us to play with output 

  And of course once we have such a nice 
description we can resynthesize at will Resynthesis 
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Recap 

  A motivating example 

  The theory 
  Decorrelation 

  Independence vs decorrelation 

  Independent component analysis 

  Separating sounds 
  Solving instantaneous mixtures 

  Solving convolutive mixtures 

  Data exploration and independence 
  Extracting audio features 

  Extracting multimodal features 


