
1

Independent Component Analysis

Paris Smaragdis

paris@adobe.com

2

This lecture’s overview

  A motivating example

  The theory
  Decorrelation

  Independence vs decorrelation

  Independent component analysis

  Separating sounds
  Solving instantaneous mixtures

  Solving convolutive mixtures

  Data exploration and independence
  Extracting audio features

  Extracting multimodal features

3

A “simple” audio problem

foo!

bar!

4

Formalizing the problem

  Each mic will receive a mix of both sounds
  Sound waves superimpose linearly

  We’ll ignore propagation delays for now

  The simplified mixing model is:

  We know x(t), but nothing else
  How do we solve this system and find s(t)?

s1

s2

x1(t) = a11s1(t) + a21s2 (t)

x2 (t) = a21s1(t) + a22s2 (t)

x(t) = A ⋅ s(t)

5

When can we solve this?

  The mixing equation is:

  Our estimates of s(t) will be:

  To recover s(t), A must be invertible:
  We need as many mics as sources

  The mics/sources must not coincide

  All sources must be audible

  Otherwise this is a different story …

x(t) = A ⋅ s(t)
s1

s2

s1
s2

A = a1 a2⎡
⎣

⎤
⎦

ŝ(t) = A−1 ⋅x(t)

A =
a1 a2
a1 a2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

6

A simple example

= 2 1
1 1

⎡

⎣
⎢

⎤

⎦
⎥ ⋅

s(t) x(t) A

  A simple invertible problem

  s(t) contains two structured waveforms

  A is invertible (but we don’t know it)

  x(t) looks messy, doesn’t reveal s(t) clearly

  How do we solve this? Any ideas?

7

What to look for

  We can only use x(t)

  Is there a property we can take advantage of?

  Yes! We know that different sounds are “statistically unrelated”

  The plan: Find a solution that enforces this “unrelatedness”

x(t) = A ⋅ s(t)

8

A first try

  Find s(t) by minimizing cross-correlation

  Our estimate of s(t) is computed by:

  If W ≈ A-1 then we have a good solution

  The goal is that the output becomes uncorrelated:

  We assume here that our signals are zero mean

  So the overall problem to solve is:

ŝ(t) =W ⋅x(t)

ŝi (t) ⋅ ŝ j (t) = 0,∀i ≠ j

argmin
W

aikxk (t)
k
∑ ⋅ ajkxk (t)

k
∑ ,∀i ≠ j

9

How to solve for uncorrelatedness

  Let’s use matrices instead of time-series:

  The uncorrelatedness translates to:

  We then need to diagonalize:

x(t)→ X =
x1(1), , x1(N)
x2 (1), , x2 (N)

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
,etc

1
N
Ŝ ⋅ ŜT =

1
N
W ⋅X() W ⋅X()T�

1
N

ˆ S ⋅ ˆ S T =
c11 0
0 c22

⎡

⎣
⎢

⎤

⎦
⎥

�

x(t) = A ⋅ s(t) and ˆ s (t) = W ⋅ x(t) ⇒

 ⇒ X = A ⋅S and ˆ S = W ⋅X

10

How to solve for uncorrelatedness

  This is actually a well known problem in linear algebra

  One solution is Eigenanalysis:

  Cov(X) is a symmetric matrix

Cov Ŝ() = 1
N
Ŝ ⋅ ŜT

 = 1
N
W ⋅X() W ⋅X()T

 = 1
N
W ⋅X ⋅XT ⋅WT

 =W ⋅Cov X() ⋅WT

11

How to solve for uncorrelatedness

  For any symmetric matrix Z we know that:

  Where ui and di are Z’s eigenvectors and eigenvalues respectively

  In our case if [U,D] = eig(Cov(X))

  This is actually Principal Component Analysis

Z = U ⋅D ⋅UT =
↑ ↑
u1  uN
↓ ↓

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⋅

d1


dN

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⋅

← u1 →

← uN →

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

Cov Ŝ() =W ⋅Cov X() ⋅WT

 =W ⋅U ⋅D ⋅UT ⋅WT let us replace W with UT

 = UT ⋅U ⋅D ⋅UT ⋅U U is orthonormal U ⋅UT = I()
 = D

12

Another solution

  We can also solve for a matrix inverse square root:

Cov Ŝ()∝W ⋅X ⋅XT ⋅WT

 = X ⋅XT()− 1
2 ⋅X ⋅XT ⋅ XT ⋅X()− 1

2 replace W with X ⋅XT()− 1
2

 = I

X ⋅X()− 1
2 = U ⋅

d1
−1 2


dN

−1 2

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

⋅UT , where [U,D] = eig X ⋅XT()

13

Another approach

  What if we want to do this in real-time?

  We can also estimate W in an online manner:

  Every time we see a new observation x(t) we update W

  Using this adaptive approach we can see that:

  We’ll skip the derivation details for now

ΔW ∝ µ I −W ⋅x(t) ⋅x(t)T ⋅WT()W

Cov W ⋅x(t)() = I, ΔW = 0

14

Summary so far

  For a mixture:

  We can algebraically recover an uncorrelated output using

  If W is the eigenvector matrix of Cov(X)

  Or with W = Cov(X) -1/2

  Or we can use an online estimator:

X = A ⋅S

Ŝ =W ⋅X

ΔW ∝ µ I −W ⋅x(t) ⋅x(t)T ⋅WT()W

15

So how well does this work?

= 2 1
1 1

⎡

⎣
⎢

⎤

⎦
⎥ ⋅

s(t) x(t) A

x(t) ŝ(t) W

= −0.6 −0.4
−2.8 3.7

⎡

⎣
⎢

⎤

⎦
⎥ ⋅

  Well, that was a waste of time …

M
ix

in
g

sy
st

em

U
nm

ix
in

g
sy

st
em

16

What went wrong?

  What does decorrelation mean?
  That the two things compared are “not related”

  Consider a mixture of two Gaussians

s(t) =
N (0,2)
N (0,1)

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

−6 −4 −2 0 2 4 6
−4

−3

−2

−1

0

1

2

3

4

−10 −5 0 5 10
−6

−4

−2

0

2

4

6

 x(t) = 2 1
1 1

⎡

⎣
⎢

⎤

⎦
⎥ ⋅ s(t)

17

Decorrelation

  Now let us do what we derived so far on this signal:

  After we are done the two Gaussians are “statistically independent”
  i.e.,

  We have in effect separated the original signals
  Save for a scaling ambiguity

−10 −5 0 5 10
−6

−4

−2

0

2

4

6

a) Find the eigenvectors b) Rotate and scale so that covariance is I

P(s1, s2) = P(s1)P(s2)

−6 −4 −2 0 2 4 6

−3

−2

−1

0

1

2

3

18

Now lets try this on the original data

= 2 1
1 1

⎡

⎣
⎢

⎤

⎦
⎥ ⋅

s(t) x(t) A

  Stating the obvious: These are not very Gaussian signals!!

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

−1.5

−1

−0.5

0

0.5

1

1.5

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

19

Doing PCA doesn’t give us the right solution

a) Find the eigenvectors b) Rotate and scale so that covariance is I

  The result is not what we want

  We are off by a rotation

  This idea doesn’t seem to work for non-Gaussian signals

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

−1.5

−1

−0.5

0

0.5

1

1.5

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

20

So what’s wrong?

  For Gaussian data decorrelation means independence
  Gaussians have up to second order statistics (1st is mean, 2nd is variance)

  By minimizing the 2nd-order cross-statistics we achieve independence

  These statistics can be expressed by the 2nd-order cumulants:

  Which happen to be the diagonals of the covariance matrix

  But real-world data are seldom Gaussian
  Non-Gaussian data have higher orders which are not taken care of with PCA

  We can measure their dependence using higher order cumulants:

cum(x i , x j) = xix j

3rd order: cum(xi , x j , xk) = xix j xk

4 th order: cum(xi , x j , xk , xl) = xix j xkxl − xix j xkxl − xixk x j xl − xixl xkx j

21

Cumulants for Gaussian vs non-Gaussian case

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

−6 −4 −2 0 2 4 6

−3

−2

−1

0

1

2

3

Gaussian case

Non-Gaussian case

Cross-cumulants tend to zero Only 2nd order cross-cumulants tend to zero

cum(xi , xj) 1e-13

cum(xi , xj, xk) 0.0008, 0.0004

cum(xi , xj, xk , xl) -0.003, 0.0005, 0.0007

cum(xi , xj) -4e-14

cum(xi , xj, xk) -0.08, -0.1

cum(xi , xj, xk , xl) 0.42, -0.3, 0.16

22

The real problem to solve

  For statistical independence we need to minimize all cross-cumulants
  In practice up to 4th order is enough

  For 2nd order we minimized the off-diagonal covariance elements

  For 4th order we will do the same for a tensor

  The process is similar to PCA, but in more dimensions
  We now find “eigenmatrices” instead of eigenvectors

  Algorithms like JADE and FOBI solve this problem
  Can you see a potential problem though?

cum(x1, x1) cum(x1, x2)
cum(x2 , x1) cum(x2 , x2)

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

Qi, j ,k ,l = cum(xi , x j , xk , xl)

23

An alternative approach

  Tensorial methods can be very very computationally intensive

  How about an on-line method instead?

  Independence can also be coined as “non-linear decorrelation”
  x and y are independent if and only if:

  For all continuous functions f and g

  This is a non-linear extension of 2nd order independence where f(x) = g(x) = x

  We can try solving for that then

f (x)g(y) = f (x) g(y)

24

Online ICA

  Conceptually this is very similar to online decorrelation
  For decorrelation:

  For non-linear decorrelation:

  This adaptation method is known as the Cichocki-Unbehauen update
  But we can obtain it using many different ways

  But how do we pick the non-linearities?
  Depends on the prior we have on the sources

ΔW ∝ µ I −W ⋅x(t) ⋅x(t)T ⋅WT()W

ΔW ∝ µ I − f W ⋅x(t)() ⋅ g W ⋅x(t)()T()W

f (xi) =
x + tanh(x), for super-Gaussians
x − tanh(x), for sub-Gaussians

⎧
⎨
⎪

⎩⎪

25

Other popular approaches

  Minimum Mutual Information
  Minimize the mutual information of the output

  Creates maximally statistically independent outputs

  Infomax
  Maximize the entropy of the output or Mutual Information of input/output

  Non-Gaussianity
  Adding signals tends towards Gaussianity (Central Limit Theorem)

  Find the maximally non-Gaussian outputs undoes the mixing

  Maximum Likelihood
  Less straightforward at first, but elegant nevertheless

  Geometric methods
  Trying to “eyeball” the proper way to rotate

26

Trying this on our dataset

= 2 1
1 1

⎡

⎣
⎢

⎤

⎦
⎥ ⋅

s(t) x(t) A

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5

−1.5

−1

−0.5

0

0.5

1

1.5

27

Trying this on our dataset

= 2 1
1 1

⎡

⎣
⎢

⎤

⎦
⎥ ⋅

s(t) x(t) A

x(t)

= −1.39 2.78
2.5 −2.58

⎡

⎣
⎢

⎤

⎦
⎥ ⋅

W ŝ(t)

  We actually separated the mixture!

28

Trying this on our dataset

x(t) W ŝ(t)

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5

−1.5

−1

−0.5

0

0.5

1

1.5

−1 −0.5 0 0.5 1

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

= −1.39 2.78
2.5 −2.58

⎡

⎣
⎢

⎤

⎦
⎥ ⋅

29

But something is amiss ..

  There some things that ICA will
not resolve

  Scale
  Statistical independence is

invariant of scale (and sign)

  Order of inputs
  Order of inputs is irrelevant when

talking about independence

  ICA will actually recover:

  Where D is diagonal and P is a
permutation matrix

ŝ(t)

−1 −0.5 0 0.5 1

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

s(t)

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

ŝ(t) = D ⋅P ⋅ s(t)

30

This works really well for audio mixtures!

−6 −4 −2 0 2 4 6

−6

−4

−2

0

2

4

6

8

−10 −5 0 5 10 15

−8

−6

−4

−2

0

2

4

6

8

10

−6 −4 −2 0 2 4 6

−6

−4

−2

0

2

4

6

8

Input Mix Output

31
31

Problems with instantaneous mixing

  Sounds don’t really mix
instantaneously

  There are multiple effects
  Room reflections

  Sensor response
  Propagation delays

  Propagation and reflection filtering

  Most can be seen as filters

  We need a convolutive mixing
model

2s
1s

2x1x

Estimated sources using
the instantaneous model

on convolutive mix

32
32

Convolutive mixing

  Instead of instantaneous mixing:

  We now have convolutive mixing:

  The mixing filters aij(k) encapsulate
all the mixing effects in this model

  But how do we do ICA now?

  This is an ugly equation!

2s
1s

2x1x

�

xi(t) = aijs j (t)
j=1
∑

�

xi(t) = aij (k)s j (t − k)
k
∑

j
∑

33
33

FIR matrix algebra

  Matrices with FIR filters as elements

  FIR matrix multiplication performs convolution and accumulation

�

A =
a11 a12
a21 a22
⎡

⎣
⎢

⎤

⎦
⎥

aij = aij (0)  aij (k −1)[]

�

A ⋅b =
a11 a12
a21 a22
⎡

⎣
⎢

⎤

⎦
⎥ ⋅

b1
b2
⎡

⎣
⎢

⎤

⎦
⎥ =

a11 ∗b1 + a12 ∗b2
a21 ∗b1 + a22 ∗b2
⎡

⎣
⎢

⎤

⎦
⎥

34
34

Back to convolutive mixing

  Now we can rewrite convolutive
mixing as:

  Tidier formulation!

  We can use the FIR matrix
abstraction to solve this problem
now

�

xi(t) = aij (k)s j (t − k)
k
∑

j
∑ ⇒

⇒ x(t) = A ⋅ s(t) =
a11 ∗ s1(t) + a12 ∗ s2(t)
a21 ∗ s1(t) + a22 ∗ s2(t)
⎡

⎣
⎢

⎤

⎦
⎥

2s
1s

2x1x

35
35

An easy way to solve convolutive mixing

 Straightforward translation of instantaneous
learning rules using FIR matrices:

 Not so easy with algebraic approaches!

 Multiple other (and more rigorous/better behaved)
approaches have been developed

ΔW ∝ I + f (W ⋅x) ⋅ (W ⋅x)T() ⋅W

36
36

Complications with this approach

  Required convolutions are expensive
  Real-room filters are long

  Their FIR inverses are very long

  FIR products can become very time consuming

  Convergence is hard to achieve
  Huge parameter space

  Tightly interwoven parameter relationships

  A slow optimization nightmare!

37
37

FIR matrix algebra, part II

  FIR matrices have frequency domain counterparts:

  And their products are simpler:

][DFTˆ
ˆˆ
ˆˆˆ

2221

1211

2221

1211

ijij

domainfrequency

aa
aa
aa

aa
aa

=

⎥
⎦

⎤
⎢
⎣

⎡
=⎯⎯⎯⎯⎯ →⎯⎥

⎦

⎤
⎢
⎣

⎡
= AA

�

ˆ A ⋅ ˆ b =
ˆ a 11 ⋅ ˆ b 1 + ˆ a 12 ⋅ ˆ b 2
ˆ a 21 ⋅ ˆ b 1 + ˆ a 22 ⋅ ˆ b 2

⎡

⎣
⎢

⎤

⎦
⎥

ˆ a ⋅ ˆ b = a(0) ⋅b(0)  a(k −1) ⋅b(k −1)[]

38
38

Yet another convolutive mixing formulation

 We can now model the process
in the frequency domain:

 For every frequency we have:

 Hey, that’s instantaneous mixing!
  We can solve that!

SAX ˆˆˆ ⋅=

tftt fff ,),()(∀⋅= SAX

2s
1s

2x1x

39
39

Overall flowgraph

M Point
STFT

M point
ISTFT .

.

.

2W

1W

MW

.

.

.

.

.

.

2s
1s

Ns

2x
1x

Nx

Convolved Mixtures

Frequency Transform

Mixed
Frequency Bins

Instantaneous
ICA unmixers

Unmixed
Frequency Bins

Time Transform

Recovered Sources

40
40

Some complications …

  Permutation issues
  We don’t know which source will end up in each narrowband output …

  Resulting output can have separated narrowband elements from both sounds!

  Scaling issues
  Narrowband outputs can be scaled arbitrarily

  This results in spectrally colored outputs

Original source Colored source

Extracted source
with permutation

41
41

Scaling issue

  One simple fix is to normalize the separating matrices

  Results into more reasonable scaling

  More sophisticated approaches exist
but this is not a major problem

  Some spectral coloration is however unavoidable

Norig
f

orig
f

norm
f

1

WWW ⋅=

Original source Colored source Corrected source

42
Interspeec
h 2006

Microphone Array Processing and
Source Separation

42

Some solutions for permutation problems

  Continuity of unmixing matrices
  Adjacent unmixing matrices tend to be a little similar, we can

permute/bias them accordingly
  Doesn’t work that great

  Smoothness of spectral output
  Narrowband components from each source tend to modulate the

same way

  Permute unmixing matrices to ensure adjacent narrowband output
are similarly modulated

  Works fine

  The above can fail miserably for more than two sources!
  Combinatorial explosion!

43
Interspeec
h 2006

Microphone Array Processing and
Source Separation

43

Beamforming and ICA

  If we know the placement of the
sensors we can obtain the spatial
response of the ICA solution

  ICA places nulls to cancel out
interfering sources
  Just as in the instantaneous case we

cancel out sources

  We can visualize the permutation
problem now
  Out of place bands

Bands with
permutation

problems

44
Interspeec
h 2006

Microphone Array Processing and
Source Separation

Using beamforming to resolve permutations

  Spatial information
can be used to
resolve permutations
  Find permutations that

preserve zeros or
smooth out the
responses

  Works fine, although it
can be flaky if the
array response is not
that clean

45
Interspeec
h 2006

Microphone Array Processing and
Source Separation

45

The N-input N-output problem

  ICA, in either formulation inverts a square matrix (whether
scalar, or FIR)
  This implies that we have the same number of input as outputs
  E.g. in a street with 30 noise sources we need at least 30 mics!

  Solutions exist for M ins - N outs where M > N

  If N > M we can only beamform
  In some cases extra sources can be treated as noise

  This can be restrictive in some situations

46

Separation recap

  Orthogonality is not independence!!
  Not all signals are Gaussian which is a usual assumption

  We can model instantaneous mixtures with ICA and get good results
  ICA algorithms can optimize a variety of objectives, but ultimately result in

statistical independence between the outputs

  Same model is useful for all sorts of mixing situations

  Convolutive mixtures are more challenging but solvable
  There’s more ambiguity, and a closer link to signal processing approaches

47

ICA for data exploration

  ICA is also great for data exploration
  If PCA is, then ICA should be, right?

  With data of large dimensionalities
we want to find structure

  PCA can reduce the dimensionality
  And clean up the data structure a bit

  But ICA can find much more
 intuitive projections

48

Example cases of PCA vs ICA

−0.2 0 0.2 0.4 0.6
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

Non-Gaussian data

ICA
PCA

  Motivation for using ICA vs PCA

  PCA will indicate orthogonal directions
of maximal variance

  This is great for Gaussian data

  Also great if we are into LS models

  Real-world is not Gaussian though

  ICA finds directions that are
 more “revealing”

49

Finding useful transforms with ICA

  Audio preprocessing example

  Take a lot of audio snippets
and concatenate them in a big
matrix, do component analysis

  PCA results in the DCT bases
  Do you see why?

  ICA returns time/freq localized
sinusoids which is a better
way to analyze sounds

  Ditto for images
  ICA returns localizes edge filters

50

Enhancing PCA with ICA

  ICA cannot perform dimensionality reduction
  The goal is to find independent components, hence there is no sense of order

  PCA does a great job at reducing dimensionality
  Keeps the elements that carry most of the input’s energy

  It turns out that PCA is a great preprocessor for ICA
  There is no guarantee that the PCA subspace will be appropriate for the independent

components but for most practical purposes this doesn’t make a big difference

M×N input M×K PCA K×K ICA K×N ICs

≈
⋅ ⋅

51

Example case: ICA-faces vs. Eigenfaces

ICA-faces Eigenfaces

52

A Video Example

  The movie is a series of frames
  Each frame is a data point

  126, 80×60 pixel frames

  Data X will be 4800×126

  Using PCA/ICA
  X = W×H

  W will contain visual components

  H will contain their time weights

53

PCA Results

  Nothing special about the
visual components

  They are orthogonal
pictures
  Does this mean anything?

(not really …)
  Some segmentation of

constant vs. moving parts

  Some highlighting of the
action in the weights

54

ICA Results

  Much more interesting
visual components

  They are independent
  Unrelated elements (left/

right hands, background) are
now highlighted

  We have some
decomposition by parts

  Components weights are
now describing the scene

55

A Video Example

  The movie is a series of frames
  Each frame is a data point

  315, 80×60 pixel frames

  Data X will be 4800×315

  Using PCA/ICA
  X = W×H

  W will contain visual components

  H will contain their time weights

Independent neighborhoods

Input movie

56

What about the soundtrack?

  We can also analyze audio in a
similar way

  We do a frequency transform
and get an audio spectrogram X

  X is frequencies × time

  Distinct audio elements can be
seen in X

  Unlike before we have only one
input this time

Time (1k samples)

Fr
eq

ue
nc

y

26 51 77 102 128 154 179 205 230 256 282

57

PCA on Audio

  Umm … it sucks!

  Orthogonality doesn’t
mean much for audio
components
  Results are mathematically

optimal, perceptually
useless

Input

20 40 60 80 100 120 140 160 180 200 220

50

100

150

200

250

20 40 60 80 100 120 140 160 180 200 220
1

2

3

4

1

2

3

4

Principal Component Weights

58

ICA on Audio

  A definite improvement

  Independence helps pick
up somewhat more
meaningful sound objects
  Not too clean results, but

the intentions are clear

  Misses some details

20 40 60 80 100 120 140 160 180 200 220
1

2

3

4

Independent Component Weights

Input

20 40 60 80 100 120 140 160 180 200 220

50

100

150

200

250

59

Audio Visual Components?

  We can can even take in both
audio and video data and try to
find structure

  Sometimes there is a very
strong correlation between
auditory and visual elements

  We should be able to discover
that automatically

Input video

Time (1k samples)

Fr
eq

ue
nc

y

26 51 77 102 128 154 179 205

Input audio

60

Audio/Visual Components

61

Which allows us to play with output

  And of course once we have such a nice
description we can resynthesize at will Resynthesis

62

Recap

  A motivating example

  The theory
  Decorrelation

  Independence vs decorrelation

  Independent component analysis

  Separating sounds
  Solving instantaneous mixtures

  Solving convolutive mixtures

  Data exploration and independence
  Extracting audio features

  Extracting multimodal features

