Independent Component Analysis

Paris Smaragdis

paris@adobe.com

This lecture’s overview

A motivating example

The theory
= Decorrelation
= Independence vs decorrelation

= Independent component analysis

Separating sounds
= Solving instantaneous mixtures

= Solving convolutive mixtures

Data exploration and independence
= Extracting audio features

= Extracting multimodal features

A “simple™ audio problem
) o=

Formalizing the problem

- Each mic will receive a mix of both sounds @

= Sound waves superimpose linearly

= We’'ll ignore propagation delays for now

- The simplified mixing model is: W %

X(1)=A-s(t)

r)= r)+ 4
= We knOW X(t), but nOthing else xl() allsl() azlsz()

= How do we solve this system and find s(7)?
X,(t)=a,s,(t)+ays,(t)

When can we solve this?

= The mixing equation is: @ N> S
X(1)=A-s(t)
: : A:|: a a, :| .
= Our estimates of s(?) will be:
S(t)=A""-x() i:?
= To recover s(¢), A must be invertible:
= \We need as many mics as sources AN ‘
= The mics/sources must not coincide ,:'A “", - [

= All sources must be audible

= Otherwise this is a different story ... A

A simple example

x(7) A 0
(NWMW\UWHH\ {2 1] . .
i (W/mWJ\WUMJ o \NWWVWMWJ

= A simple invertible problem
= §(7) contains two structured waveforms
= A is invertible (but we don’t know it)
= x(7) looks messy, doesn'’t reveal s(7) clearly

= How do we solve this? Any ideas?

What to look for

X(1)=A-s(t)

= We can only use x(¢)

= |s there a property we can take advantage of?

= Yes! We know that different sounds are “statistically unrelated”

= The plan: Find a solution that enforces this “unrelatedness”

A first try

Find s(¢) by minimizing cross-correlation

Our estimate of s(7) is computed by:
S(t)=W -x(1)

= [f W= A-!then we have a good solution

The goal is that the output becomes uncorrelated:

(3,()-5,(1))=0,Vi # j

= We assume here that our signals are zero mean

So the overall problem to solve is:

arg min <2 Ay Xy (7)- z a Xy (t)> Vi J
w k k

How to solve for uncorrelatedness

= Let's use matrices instead of time-series:

x, (1), -, xl(N):l t x(1)=A-s(t) and s(t)=W - -x(¢) =
,efc

Xt)—> X= A
[x,1), -+, x,(N) = X=A-S and S=W-X

= The uncorrelatedness translates to:

iSST _|n 0
N 0 ¢,

= We then need to diagonalize:

1 ~ A 1 T
—S-§"=—(W-X)(W-X
N N(J(W-X)

How to solve for uncorrelatedness

= This is actually a well known problem in linear algebra

= One solution is Eigenanalysis:
n 1 ~ -
Cov(S)=—8-§
N

—(W-X)(W-X)

:lW-X-XT-WT
N

=W'C0V(X)°WT

= Cov(X) is a symmetric matrix

How to solve for uncorrelatedness

= For any symmetric matrix Z we know that:

B r] a 1« v =
Z=U-D-U' =| u - u,
_¢ J,__ a’N__euN%_

= Where u; and d,; are Z’s eigenvectors and eigenvalues respectively
= |In our case if [U,D] = eig(Cov(X))
COV(S) =W-Cov(X) W'
=W-U-D-U"-W'" letusreplace W with U’
=U"-U-D-U"-U U isorthonormal (U-U" =1)

=D
= This is actually Principal Component Analysis

Another solution

= We can also solve for a matrix inverse square root:

Cov(S)ocW-X-XT-WT

1 1

X XT)_% XX (X -X)_é replace W with (X - X")‘4
I

dl—l/Z
(X-X)2=U. U”, where [U,D] = eig(X-X)

Another approach

= What if we want to do this in real-time?

= \We can also estimate W in an online manner:
AW o< yt(I-W-x(1)-x(1)" - W')W

= Every time we see a new observation x(r) we update W
= Using this adaptive approach we can see that:

Cov(W-x(1))=1, AW =0

= We'll skip the derivation details for now

Summary so far

= For a mixture:

X=A-S
= We can algebraically recover an uncorrelated output using
S=W-X

= |If W is the eigenvector matrix of Cov(X)

= Or with W = Cov(X) -2

= Or we can use an online estimator:

AW o< (1= W x(1)-x(0)" - W')W

So how well does this work?

- X@ N A g 0 A
%MWWWWW 1]
EKNWMHN%W%J 11 \/\M\WI/\/V\M/VJ

) S(7) " W s X(1) h
%’; WWWWWW [06 —04] f UWJU WMUW
R R . A

= Well, that was a waste of time ...

What went wrong?

= \WWhat does decorrelation mean?

= That the two things compared are “not related”

= Consider a mixture of two Gaussians

s(t) = X(t)=

Decorrelation

= Now let us do what we derived so far on this signal:

a) Find the eigenvectors b) Rotate and scale so that covariance is 1

2+

-2
4+

-3

-6 | | | | | !
-10 -5 0 5 10 -6 -4

= After we are done the two Gaussians are “statistically independent”
- i.e., P(s,,s,)=P(s)P(s,)
= We have in effect separated the original signals

= Save for a scaling ambiguity

Now lets try this on the original data

= Stating the obvious: These are not very Gaussian signals!!

Doing PCA doesn’t give us the right solution

= The result is not what we want
= We are off by a rotation

= This idea doesn’t seem to work for non-Gaussian signals

a) Find the eigenvectors b) Rotate and scale so that covariance is 1

So what's wrong?

= For Gaussian data decorrelation means independence
= Gaussians have up to second order statistics (15t is mean, 2" is variance)
= By minimizing the 2"%-order cross-statistics we achieve independence
= These statistics can be expressed by the 2"d-order cumulants:
cum(x ;,x;) = <xl.xj>

= Which happen to be the diagonals of the covariance matrix

= But real-world data are seldom Gaussian
= Non-Gaussian data have higher orders which are not taken care of with PCA
= We can measure their dependence using higher order cumulants:
3 order: cum(x;,x;,x,)= <xl.xjxk>

4™ order: cum(x, 2 XX X)) = <xl.xjxkxl> - <xl.xj><xkx,> - <xl.xk><xjx,> - <xl.xl><xkxj>

Cumulants for Gaussian vs non-Gaussian case

Non-Gaussian case

Gaussian case

I
-6 -4

Cross-cumulants tend to zero Only 29 order cross-cumulants tend to zero
cum(x;, X;) le!3 cum(x;, X;) -4e14
cum(x;, X;, X;) 0.0008, 0.0004 cum(x;, x;, x,) -0.08, -0.1
cum(x;, x; X, x;) | -0.003, 0.0005, 0.0007 cum(x;, x; X, x) | 0.42,-0.3,0.16

The real problem to solve

For statistical independence we need to minimize all cross-cumulants

= In practice up to 4" order is enough

For 2"d order we minimized the off-diagonal covariance elements

cum(x,,x,) cum(x,,x,)

cum(x,,x,) cum(x,,x,)

For 4t order we will do the same for a tensor

Qi,j,k,l = cum(xi,xj,xk,xl)

The process is similar to PCA, but in more dimensions

= We now find “eigenmatrices” instead of eigenvectors

Algorithms like JADE and FOBI solve this problem

= Can you see a potential problem though?

An alternative approach

Tensorial methods can be very very computationally intensive

How about an on-line method instead?

Independence can also be coined as “non-linear decorrelation”

= x and y are independent if and only if:

(f()g) = (f())(e()

= For all continuous functions fand g

= This is a non-linear extension of 2"d order independence where f(x) = g(x) = x

We can try solving for that then

Online ICA

= Conceptually this is very similar to online decorrelation

= For decorrelation:
AW o< fi(I-W-x(1)-x(t)" - W')W

= For non-linear decorrelation:

AW o< p1(T= £(W-x(1)) - g(W-x(0)) |W

= This adaptation method is known as the Cichocki-Unbehauen update

= But we can obtain it using many different ways

= But how do we pick the non-linearities?

= Depends on the prior we have on the sources

x — tanh(x), for sub-Gaussians

x + tanh(x), for super-Gaussians
J(x;)=

Other popular approaches

Minimum Mutual Information

= Minimize the mutual information of the output

= Creates maximally statistically independent outputs

Infomax

= Maximize the entropy of the output or Mutual Information of input/output

Non-Gaussianity
= Adding signals tends towards Gaussianity (Central Limit Theorem)

= Find the maximally non-Gaussian outputs undoes the mixing

Maximum Likelihood

= Less straightforward at first, but elegant nevertheless

Geometric methods

= Trying to “eyeball” the proper way to rotate

Trying this on our dataset

s(#)

(‘

x(?)

'\

A

Trying this on our dataset

X(t) A S(f)

Amufpiot) o (gl
ARy 11 APV

S(9) ’ W " x(?) ’
KAW/%WVN/W\: 139 278 .rﬂr WMJU UUMW H\
\MMWMMMMWMJ { 25 258 } \/Lh (W/Lﬂ W J\ W UL/

= We actually separated the mixture!

Trying this on our dataset

$(7) W x(?)
WMMMWM |

==
==

I8
JW%

But something is amiss ..

. There some things that ICA will S(9) s(7)
not resolve
= Scale

= Statistical independence is
invariant of scale (and sign)

= Order of inputs

= Order of inputs is irrelevant when
talking about independence

= |CA will actually recover:
s(t)=D-P-s(@@)

= Where D is diagonal and P is a
permutation matrix

Output

Mix

Input

[7)
()
=
™

-

X
S

9

O
™
©
L

..m

[o)
=

=

©
()
—
7p)

4
=
@
=

i)

R

T

Problems with instantaneous mixing

= Sounds don’t really mix
iInstantaneously

= There are multiple effects
= Room reflections

= Sensor response

= Propagation delays

= Propagation and reflection filtering

= Most can be seen as filters

= We need a convolutive mixing
model &@ @

Estimated sources using
the instantaneous model
on convolutive mix

Convolutive mixing

= |[nstead of instantaneous mixing:

x ()= a,s (1)
j=1
= We now have convolutive mixing:
x ()= a,k)s,(t—k)
Jj k

= The mixing filters a,(k) encapsulate
all the mixing effects in this model

= But how do we do ICA now?

= This is an ugly equation!

FIR matrix algebra

= Matrices with FIR filters as elements

a a
! =11 =12
|: :|
—a21 a 22

a;=a,0) - a,(k-D

= FIR matrix multiplication performs convolution and accumulation

A-b=|:g11 Q12:|.|:121:|:|:Qll*QI+Q12*122:|
a4y ay | | b, a, *b +ay, *b,

Back to convolutive mixing

= Now we can rewrite convolutive
mixing as:

x ()= a,k)s,(t—k) =

a, *s(t)+a,* sz(t)}
a,, *s,(t) +a,, *s,(1)

=>X(t)=A-S(t)=[

= Tidier formulation!

= We can use the FIR matrix
abstraction to solve this problem
now

An easy way to solve convolutive mixing

= Straightforward translation of instantaneous
learning rules using FIR matrices:

AW o< (I+ f(W-x)-(W-x)")- W

= Not so easy with algebraic approaches!

= Multiple other (and more rigorous/better behaved)
approaches have been developed

Complications with this approach

= Required convolutions are expensive

= Real-room filters are long
= Their FIR inverses are very long

= FIR products can become very time consuming

= Convergence is hard to achieve
= Huge parameter space

= Tightly interwoven parameter relationships

= A slow optimization nightmare!

FIR matrix algebra, part I

= FIR matrices have frequency domain counterparts:

A= |:a11 a12:| frequency domain >A _ |:illl a12:|
dy A4y

a, A4y

= And their products are simpler:

f):|:a11'b1+a12'b2:|
- a, b +a, b,

a-b=[a)-b©) - a(k—1)-b(k—1)]

>

Yet another convolutive mixing formulation

= We can now model the process
in the frequency domain:

X=A-S

= For every frequency we have:
Xf(t) = Af 'Sf(t)a A

» Hey, that’s instantaneous mixing!

= \We can solve that!

Overall flowgraph

Frequency Transform Instantaneous Time Transform
l ICA unmixers l
Convolved Mixtures Recovered Sources
Mixed l Unmixed
l Frequency Bins Frequency Bins l
xl E— > VVvl > — > § 1

Xy — I
2 2
@ M Point WZ M point

- ®
STFT : ISTFT @

\4

\4

N

Some complications ...

= Permutation issues
= We don’t know which source will end up in each narrowband output ...

= Resulting output can have separated narrowband elements from both sounds!

Extracted source @
with permutation

= Scaling issues
= Narrowband outputs can be scaled arbitrarily

= This results in spectrally colored outputs

Original source @ Colored source @

Scaling issue

= One simple fix is to normalize the separating matrices
1
N

norm __ orig orig
W, =W, ‘Wf

= Results into more reasonable scaling

= More sophisticated approaches exist
but this is not a major problem

= Some spectral coloration is however unavoidable

Original source @ Colored source @ Corrected source @

Some solutions for permutation problems

= Continuity of unmixing matrices

= Adjacent unmixing matrices tend to be a little similar, we can
permute/bias them accordingly

= Doesn’t work that great
= Smoothness of spectral output

= Narrowband components from each source tend to modulate the
same way

= Permute unmixing matrices to ensure adjacent narrowband output
are similarly modulated

= Works fine

= The above can fail miserably for more than two sources!

= Combinatorial explosion!

Beamforming and ICA

= |f we know the placement of the Output 1 with permutation
sensors we can obtain the spatial
response of the ICA solution

= [CA places nulls to cancel out
interfering sources

= Just as in the instantaneous case we
cancel out sources

Beam angle

Output 2 with permutaticn

= We can visualize the permutation
problem now

- Out of place bands :
g

Bands with
permutation
problems &

Beam angle

Using beamforming to resolve permutations

Output 1 with permutation Processed output 1

= Spatial information
can be used to
resolve permutations

= Find permutations that
preserve zeros or

smooth out the @ Beam angle Beam angie

res po nses Output 2 with permutaticn Processed output 2

= Works fine, although it
can be flaky if the
array response is not
that clean

The N-input N-output problem

= [CA, in either formulation inverts a square matrix (whether
scalar, or FIR)

= This implies that we have the same number of input as outputs
= E.g. in a street with 30 noise sources we need at least 30 mics!

= Solutions exist for M ins - N outs where M > N

= If N > M we can only beamform

= |n some cases extra sources can be treated as noise

= This can be restrictive in some situations

Separation recap

= Orthogonality is not independence!!

= Not all signals are Gaussian which is a usual assumption

= We can model instantaneous mixtures with ICA and get good results

= |CA algorithms can optimize a variety of objectives, but ultimately result in
statistical independence between the outputs

= Same model is useful for all sorts of mixing situations

= Convolutive mixtures are more challenging but solvable

= There’s more ambiguity, and a closer link to signal processing approaches

ICA for data exploration

ICA is also great for data exploration
= If PCA is, then ICA should be, right?

With data of large dimensionalities
we want to find structure

PCA can reduce the dimensionality

= And clean up the data structure a bit

But ICA can find much more
intuitive projections

Example cases of PCA vs ICA

= Motivation for using ICA vs PCA Non-Gaussian data

= PCA will indicate orthogonal directions osf PCA
of maximal variance

= This is great for Gaussian data | .
= Also great if we are into LS models
= Real-world is not Gaussian though

= |CA finds directions that are
more “revealing”

Finding useful transforms with ICA

= Audio preprocessing example

o \
. . N / [—— WW\'\‘L\ | W‘"‘““i, | . I f'\\m\;ﬁ‘ ‘5"\ j
= Take a lot of audio snippets j”f 77777 [R A T
and concatenate them in a big ol bl m{’»h\, . ﬁ“
matrix, do component analysis a v ' I

= PCA results in the DCT bases

= Do you see why?

= |CA returns time/freq localized
sinusoids which is a better
way to analyze sounds

= Ditto for images

= |CA returns localizes edge filters

Enhancing PCA with ICA

= |CA cannot perform dimensionality reduction

= The goal is to find independent components, hence there is no sense of order

= PCA does a great job at reducing dimensionality

= Keeps the elements that carry most of the input’s energy

= |t turns out that PCA is a great preprocessor for ICA

= There is no guarantee that the PCA subspace will be appropriate for the independent
components but for most practical purposes this doesn’t make a big difference

MxN input MxK PCA KxKICA KxN ICs

N

Example case: ICA-faces vs. Eigenfaces

ICA-faces Eigenfaces

142 HETE
20
E

—%«@@

A Video Example

= The movie is a series of frames

= Each frame is a data point
= 126, 80x%60 pixel frames
= Data X will be 4800%126

= Using PCAJ/ICA
- X =WxH

= W will contain visual components

= H will contain their time weights

PCA Results

= Nothing special about the
visual components

Video Component 1 Video Component2 Video Component 3

= They are orthogonal
pictures

= Does this mean anything?
(not really ...)

= Some segmentation of
constant vs. moving parts

= Some highlighting of the
action in the weights

Component

Time

|ICA Results

- M u Ch more inte resti ng Video Component 1 Video Component2 Video Compot 3
visual components | -

= They are independent

= Unrelated elements (left/
right hands, background) are
now highlighted

Component weights

= \We have some]
decomposition by parts

= Components weights are
now describing the scene

Time

A Video Example

Input movie

= The movie is a series of frames

= Each frame is a data point

- 3 1 5) 80 x 60 p ixel fra m eS Video Filter 1 Video Filter 2 Video Filter 3

. Data X will be 4800315 5
. =
- Using PCA/ICA e '

Component weights

= X=WxH

= W will contain visual components |/~ S

= H will contain their time weights

Time

Independent neighborhoods

What about the soundtrack?

= We can also analyze audio in a
similar way

= We do a frequency transform
and get an audio spectrogram X

= X is frequencies x time

= Distinct audio elements can be
seen in X

= Unlike before we have only one
input this time

26 51 77 102 128 154 179 205 230 256 282
Time (1k samples)

PCA on Audio

Input

= Umm ... it sucks!

= Orthogonality doesn’t
mean much for audio

CO m po n e n tS 20 4 60 80 100 120 140 160 O 200 220
= Results are mathematically e e et
optimal, perceptually S N\
useless i I Ve Vo e —
— N A e /_

! ! ! ! ! !
20 40 60 80 100 120 140 160 180 200 220

|ICA on Audio

= A definite improvement

= Independence helps pick *

150

up somewhat more
meaningful sound objects «

20 40 60 80 100 120 140 160 180 200 220

= Not too clean results, but

the intentions are clear L A N A
= Misses some details o — B |
o N N

Audio Visual Components?

Input video

= \We can can even take in both
audio and video data and try to
find structure

= Sometimes there is a very

strong correlation between
auditory and visual elements Input audio

= \WWe should be able to discover
that automatically

Audio/Visual Components

Audio Filter 1 Audio Filter 2 Aucio Filter 3 Audio Filter 4 Audio Filter 5 Audio Filler 6

Wi .\\. L& J lu_ 1 Wt sl

Video Filter 1 Video Filler 2 Video Filler 4 Viceo Filter 5 Video Filter 6
: {‘ }-"w ~

/

'y :
A} 3 5

fudd |/

>

6 A e
S|
=
8 “ — e — I~ ﬁ_‘—‘___ _— —— — T—— — T —
8 -
§ ; || o — . - — N py —
2 — L I~ - | S R - S
1|- — e e e |
Time

Which allows us to play with output

= And of course once we have such a nice
description we can resynthesize at will

Resynthesis

Recap

A motivating example

The theory
= Decorrelation
= Independence vs decorrelation

= Independent component analysis

Separating sounds
= Solving instantaneous mixtures

= Solving convolutive mixtures

Data exploration and independence
= Extracting audio features

= Extracting multimodal features

