11-755 Machine Learning for Signal Processing

[Latent Variable Models and
Signal Separation

Class 13. 07 Oct 2009



‘ Separating Mixed Signals an example

- “Raise my rent” by David Gilmour
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A Thought E xperiment
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A person shoots dice repeatedly
The dice are loaded
You may observe the series of outcomes

After observing the outcomes for some time, you can form a good
idea of how the dice is loaded

+ Figure out what the probabilities of the various numbers are for dice
P(number) = count(number)/sum(rolls)
This is a maximum likelihood estimate

+ Estimate that makes the observed sequence of numbers most probable
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A Thought E xperiment
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Two persons shoot dice repeatedly

The dice are loaded

= The dice are differently loaded for the two of them

You may observe the series of outcomes for both persons

After observing the outcomes for some time, you can form a
good idea of how each of the two dice is loaded

- Figure out what the probabilities of the various numbers are on each
set dice
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Estimating Probabilities

. 0645123452214346216...
Observation: Observe the

sequence of numbers from the
two shooters

- As indicated by the colors, we
know who rolled what number
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Estimating Probabilities

| 645123452214346216...
Observation: Observe the

sequence of numbers from the
two shooters

- As indicated by the colors,

we know who rolled what

652421361..(1413524426..

num I . .
umbe Collection of “blue” Collection of “red”

. numbers numbers
Segregation: Separate the

blue observations from the red
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Estimating Probabilities

Observation: Observe the 645123452214346216...

sequence of numbers from the
two shooters

- As indicated by the colors,
we know who rolled what

413524426..

number 65242136 1.
Segregation: Separate the blue
observations from the red

!

From each set compute ]

probabilities for each of the 6 o]

possible outcomes BT
no.of times number was rolled

P(number) =

0.3
0.25 §
0.2 7
0.15 §
0.1
0.05 T
0 4

1 2 3 4 5 6

total number of observed rolls
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A Thought E xperiment
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Now imagine that you cannot observe the dice yourself
Instead there is a “caller” who randomly calls out the outcomes of the
rolls

5 40% of the time he calls out the number from the left shooter, and 60%
of the time, the one from the right (and you know this)

At any time, you do not know which of the two he is calling out

How do you now determine the probability distributions for the two
sets of dice?
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A Thought Experiment

63154124 .. 44163212 ..
- Now imagine that you cannot observe the dice yourself
» Instead there is a “caller” who randomly calls out the outcomes of the rolls

¢ 40% of the time he calls out the number from the left shooter, and 60% of the
time, the one from the right (and you know this)

» At any time, you do not know which of the two he is calling out

n I(;I_ow?do you now determine the probability distributions for the two sets of
ice”




Probabilities to Estimate

The caller will call out a number 6 in any given callout IF
+ He selects “RED”, and the Red die rolls the number 6

= OR

+ He selects “BLUE” and the Blue die rolls the number 6

So the probability that he will call out 6 is:
. Prob(RED)*P(6 | RED) + Prob(BLUE)*P(6|BLUE)

More generically
. P(X) = P(Red)P(X|Red) + P(Blue)P(X|Blue)

What we must estimate from the sequence of numbers called out
+« P(RED) and P(BLUE) — the probabilities that he will select either die

« P(X|RED) and P(X|BLUE) — the probability distribution of the
numbers 1-6 for both dice!
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Multinomials and Mixture Multinomials

A probability distribution over a collection of
items, each of which may be drawn in any
draw is a Multinomial

P(X : X belongs to a discrete set) = P(X)

A probability distribution that combines (or
mixes) draws from multiple multinomials is a
mixture multinomial

P(X) = ZP(Z)P(X 17)
y4

ZN

Mixture weights Component multinomials
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Expectation Maximization

It is possible to estimate all parameters in this setup
using the Expectation Maximization (or EM) algorithm

First described in a landmark paper by Dempster, Laird
and Rubin

- Maximum Likelihood Estimation from incomplete data,
via the EM Algorithm, Journal of the Royal Statistical
Society, Series B, 1977

Much work on the algorithm since then
- MclLachlan, Bashford, .......

The principles behind the algorithm existed for several
years prior to the landmark paper, however.
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EM results in maximum likelihood
estimates

P(X) = ZP(Z)P(X 12)
YA

P(X) = P(O==X) is the probability that any

observation O will take value X

- l.e. That the probability that number rolled is X

EM estimates of P(Z) and P(X|Z) are such that:
P(O;, Oy, ..) = P(O4)P(O,)P(O5)..

IS maximized

This too Is a maximume-likelihood solution
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Expectation Maximization
lterative solution

Get some initial estimates for all parameters

-+ Dice shooter example: This includes probability
distributions for dice AND the probability with which
the caller selects the dice

Two steps that are iterated:

« Expectation Step: Estimate statistically, the values
of unseen variables

+ Maximization Step: Using the estimated values of
the unseen variables as truth, estimates of the
model parameters
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Expectation Maximization: Terminology

Hidden variable: Z
- Dice: The identity of the shooter whose dice roll has been called out

A priori probability distribution of hidden variable P(Z)

+ Dice: Probability that the caller will call the red shooter; probability
that he will call the blue shooter
For what fraction of a very large number of calls he calls the red shooter

Observed data: X
5 The numbers called out

Parameters that could be estimated, if the hidden variable was
known: P(X | 2) and P(Z)

- Dice: For the dice example, these would be the probabilities of the
numbers 1 — 6 for each shooter (6 values for each shooter, 12 in all)

= And, the probability that the caller selects either die
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Expectation Maximization

If we knew the value of Zfor every observation, we could estimate

P(X|2)

+ If we knew which shooter rolled each number, we could
estimate the probability of the dice for both shooters

Unfortunately, we do not know Z— it is hidden from us!

Reverse the problem: try to estimate Z after having seen X
+ Guess who rolled the dice from the number

5 If the blue shooter shoots “4” much more often than the red
shooter, and if the caller calls out “4”, then the caller has
probably called out the blue shooter

+ Thisis an a posteriori estimate: estimation posterior to the
observation
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Expectation Maximization

The Expectation step of EM attempts to estimate the hidden
variable Z from the observed data X

Since we can usually not be certain of the estimate for Z, Zis
probabilistically estimated:

+ Instead of saying “The caller called the Blue shooter”, we say “After
observing that the caller called a 4, we estimate that he may have called the
blue shooter with probability 0.667, and the red shooter with probability
0.333

¢ The post observation estimates of the probabilities of the various values of Z
are called a posteriori probabilities

The a posteriori probabilities of the various values of Z are

computed using Bayes’ rule:

P(X1Z)P(Z)
P(X)
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P(Z1X)= =CP(X12)P(2)



Expectation Maximization

Hypothetical Dice Shooter Example:

We obtain an initial estimate for the probability distribution of the
two sets of dice (somehow):

0.45
0.4 1
0.35 1
0.3 1
0.25 -
0.2 1
0.15
0.1
0.05 -
0 4

R 0.05

We obtain an initial estimate for the probability with which the
caller calls out the two shooters (somehow)

&R

117 P(Z) 3hikshaRa

P(X | red)




Expectation Maximization

Hypothetical Dice Shooter Example:

We have an initial estimate:

- caller calls blue 0.5 of the time, and red 0.5 of the time
- Probability of “4” for blue die is 0.1, for red die is 0.05”
» Caller has just called out 4

Observation X = 4. From initial estimates:
« P(X| Z=red) =0.1; P(X| Z=blue) = 0.05
« P(Z=red) = 0.5; P(Z=blue) = 0.5
P(red | X =4)=CP(X =41Z =red)P(Z =red) =C -0.05-0.5=C0.025
P(bluel X =4)=CP(X =41Z =blue)P(Z =blue) =C - 0.1 -0.5=C0.05
Normalizing : P(red | X =4)=0.33; P(bluel X =4)=0.67
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Expectation Maximization

645123452214346216

For each observation O==X, Called | P(red|X) | P(blue|X)
6 8 2
P(Z| X) must be computed for every 4 33 67
value of Zand for every observation O |5 .33 67
1 57 43
2 14 .86
- 3 .33 67
In the dice example, we must compute 1 = =
both P(red | X) and P(blue | X) for every |5 33 67
observation O==X 2 14 .86
« An observation here is a called out roll of "12 ;‘71 'ig
the dice 4 33 67
3 .33 67
4 .33 67
6 8 2
2 14 .86
1 5t 43
6 .8 2
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Expectation Maximization

G
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Collection of “blue” Collection of “red”
numbers numbers

Each call is “fragmented”
Fragment sizes are proportional to the a posteriori probabilities of
the colors

P(ZIX)
The fragments are added to the collections associated with the
different dice
ch'O a fragment of every observation ends up in the collection for any

ice

d

d
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Expectation Maximization

645123452214346216

Every observed roll of the dice
contributes to both “Red” and
“Blue”
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Expectation Maximization

6/45123452214346216

contributes to both “Red” and

“Blue”

Every observed roll of the dice @ —— /

6 (0.8) 6 (0.2)
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Expectation Maximization

6/45123452214346216

\

contributes to both “Red” and

“Blue”

Every observed roll of the dice /

6 (0.8), 4 (0.33) 6 (0.2), 4 (0.67)
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Expectation Maximization

645123452214346216

N——

contributes to both “Red” and

Every observed roll of the dice /

“Blue”

6 (0.8),4 (0.33), 6 (0.2),4 (0.67),
5(0.33), 5(0.67),
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Expectation Maximization

645123452214346216

Every observed roll of the dice
contributes to both “Red” and
“Blue”

6 (0.8), 4 (0.33),

6 (0.8), 2 (0.14),
1 (0.57), 6 (0.8)

5(0.33), 1 (0.57),
2 (0.14), 3 (0.33),
4(0.33), 5 (0.33),
2(0.14), 2 (0.14),
1 (0.57), 4 (0.33),
3(0.33), 4 (0.33),

6 (0.2), 4 (0.67),
5(0.67), 1 (0.43),
2 (0.86), 3 (0.67),
4(0.67), 5 (0.67),
2 (0.86), 2 (0.86),
1 (0.43), 4 (0.67),
3(0.67), 4 (0.67),
6 (0.2), 2 (0.86),
1(0.43), 6 (0.2)
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Expectation Maximization

Every observed roll of the dice
contributes to both “Red” and “Blue”

Total count for “Red” is the sum of
all the posterior probabilities in the
red column

g /.31

Total count for “Blue” is the sum of
all the posterior probabilities in the
blue column

¢ 10.69

- Note: 10.69 + 7.31 = 18 = the total
number of instances
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Called | P(red|X) | P(blue|X)
6 .8 2

4 .33 .67

5 .33 .67

1 57 43

2 14 .86

3 .33 .67

4 .33 .67

5 .33 .67

2 14 .86

2 14 .86

1 57 43

4 .33 .67

3 .33 .67

4 .33 .67

6 .8 2

2 14 .86

1 57 43

6 .8 2

7.31 10.69




Expectation Maximization

Total count for “Red” : 7.31
Red:

q

Total count for 1: 1.71
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Called | P(red|X) | P(blue|X)
6 .8 2

4 .33 .67

5 .33 .67

1 57 43

2 14 .86

3 .33 .67

4 .33 .67

5 .33 .67

2 14 .86

2 14 .86

1 57 43

4 .33 .67

3 .33 .67

4 .33 .67

6 .8 2

2 14 .86

1 57 43

6 .8 2

7.31 10.69




Expectation Maximization

Total count for “Red” : 7.31
Red:

q

S

Total count for 1: 1.71
Total count for 2: 0.56
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Called | P(red|X) | P(blue|X)
6 .8 2

4 .33 .67

5 .33 .67

1 57 43

2 14 .86

3 .33 .67

4 .33 .67

5 .33 .67

2 14 .86

2 14 .86

1 57 43

4 .33 .67

3 .33 .67

4 .33 .67

6 .8 2

2 14 .86

1 57 43

6 .8 2

7.31 10.69




Expectation Maximization

Total count for “Red” : 7.31
Red:

q

S

q

Total count for 1: 1.71
Total count for 2: 0.56
Total count for 3: 0.66
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Called | P(red|X) | P(blue|X)
6 .8 2

4 .33 .67

5 .33 .67

1 57 43

2 14 .86

3 .33 .67

4 .33 .67

5 .33 .67

2 14 .86

2 14 .86

1 57 43

4 .33 .67

3 .33 .67

4 .33 .67

6 .8 2

2 14 .86

1 57 43

6 .8 2

7.31 10.69




Expectation Maximization

Total count for “Red” : 7.31
Red:

+ Total count for 1: 1.71

+ Total count for 2: 0.56

+ Total count for 3: 0.66

+ Total count for 4: 1.32
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Called | P(red|X) [ P(blue|X)
6 .8 2

4 .33 .67

5 .33 .67

1 57 43

2 14 .86

3 .33 .67

4 .33 .67

5 .33 .67

2 14 .86

2 14 .86

1 57 43

4 .33 .67

3 .33 .67

4 .33 .67

6 .8 2

2 14 .86

1 57 43

6 .8 2

7.31 10.69




Expectation Maximization

Total count for “Red” : 7.31

Red:

+ Total count for 1: 1.71
+ Total count for 2: 0.56
+ Total count for 3: 0.66
+ Total count for 4: 1.32
+ Total count for 5: 0.66
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Called | P(red|X) | P(blue|X)
6 .8 2

4 .33 .67

5 .33 .67

1 57 43

2 14 .86

3 .33 .67

4 .33 .67

5 .33 .67

2 14 .86

2 14 .86

1 57 43

4 .33 .67

3 .33 .67

4 .33 .67

6 .8 2

2 14 .86

1 57 43

6 .8 2

7.31 10.69




Expectation Maximization

Total count for “Red” : 7.31

Red:

+ Total count for 1: 1.71
+ Total count for 2: 0.56
+ Total count for 3: 0.66
+ Total count for 4: 1.32
+ Total count for 5: 0.66
- Total count for 6: 2.4
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Called | P(red|X) | P(blue|X)
6 .8 2

4 .33 .67

5 .33 .67

1 57 43

2 14 .86

3 .33 .67

4 .33 .67

5 .33 .67

2 14 .86

2 14 .86

1 57 43

4 .33 .67

3 .33 .67

4 .33 .67

6 .8 2

2 14 .86

1 57 43

6 .8 2

7.31 10.69




Expectation Maximization

Total count for “Red” : 7.31

Red:

- Total count for 1:
¢ Total count for 2:
- Total count for 3:
¢ Total count for 4:
- Total count for 5:
¢ Total count for 6:

Updated probability of Red dice:

1.71
0.56
0.66
1.32
0.66
2.4

« P(1|Red)=1.71/7.31 = 0.234

+ P(2]|Red
+ P(3|Red

« P(5|Red
¢+ P(6| Red

( ) = 0.56/7.31 = 0.077
( ) = 0.66/7.31 = 0.090
. P(4 | Red) = 1.32/7.31 = 0.181
( ) = 0.66/7.31 = 0.090
( ) = 2.40/7.31 = 0.328
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Called | P(red|X) | P(blue|X)
6 .8 2

4 .33 .67

5 .33 .67

1 57 43

2 14 .86

3 .33 .67

4 .33 .67

5 .33 .67

2 14 .86

2 14 .86

1 57 43

4 .33 .67

3 .33 .67

4 .33 .67

6 .8 2

2 14 .86

1 57 43

6 .8 2

7.31 10.69




Expectation Maximization

Total count for “Blue” : 10.69
Blue:

q

Total count for 1: 1.29
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Called | P(red|X) | P(blue|X)
6 .8 2

4 .33 .67

5 .33 .67

1 57 43

2 14 .86

3 .33 .67

4 .33 .67

5 .33 .67

2 14 .86

2 14 .86

1 57 43

4 .33 .67

3 .33 .67

4 .33 .67

6 .8 2

2 14 .86

1 57 43

6 .8 2

7.31 10.69




Expectation Maximization

Total count for “Blue” : 10.69
Blue:

q

S

Total count for 1: 1.29
Total count for 2: 3.44
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Called | P(red|X) | P(blue|X)
6 .8 2

4 .33 .67

5 .33 .67

1 57 43

2 14 .86

3 .33 .67

4 .33 .67

5 .33 .67

2 14 .86

2 14 .86

1 57 43

4 .33 .67

3 .33 .67

4 .33 .67

6 .8 2

2 14 .86

1 57 43

6 .8 2

7.31 10.69




Expectation Maximization

Total count for “Blue” : 10.69
Blue:

q

S

q

Total count for 1: 1.29
Total count for 2: 3.44
Total count for 3: 1.34
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Called | P(red|X) | P(blue|X)
6 .8 2

4 .33 .67

5 .33 .67

1 57 43

2 14 .86

3 .33 .67

4 .33 .67

5 .33 .67

2 14 .86

2 14 .86

1 57 43

4 .33 .67

3 .33 .67

4 .33 .67

6 .8 2

2 14 .86

1 57 43

6 .8 2

7.31 10.69




Expectation Maximization

Total count for “Blue” : 10.69
Blue:

+ Total count for 1: 1.29

+ Total count for 2: 3.44

+ Total count for 3: 1.34

+ Total count for 4: 2.68
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Called | P(red|X) | P(blue|X)
6 .8 2

4 .33 .67

5 .33 .67

1 57 43

2 14 .86

3 .33 .67

4 .33 .67

5 .33 .67

2 14 .86

2 14 .86

1 57 43

4 .33 .67

3 .33 .67

4 .33 .67

6 .8 2

2 14 .86

1 57 43

6 .8 2

7.31 10.69




Expectation Maximization

Total count for “Blue” : 10.69

Blue:

+ Total count for 1: 1.29
+ Total count for 2: 3.44
+ Total count for 3: 1.34
+ Total count for 4: 2.68
+ Total count for 5: 1.34
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Called | P(red|X) [ P(blue|X)
6 .8 2

4 .33 .67

5 .33 .67

1 57 43

2 14 .86

3 .33 .67

4 .33 .67

5 .33 .67

2 14 .86

2 14 .86

1 57 43

4 .33 .67

3 .33 .67

4 .33 .67

6 .8 2

2 14 .86

1 57 43

6 .8 2

7.31 10.69




Expectation Maximization

Total count for “Blue” : 10.69

Blue:

+ Total count for 1: 1.29
+ Total count for 2: 3.44
+ Total count for 3: 1.34
+ Total count for 4: 2.68
+ Total count for 5: 1.34
- Total count for 6: 0.6

11-755 MLSP: Bhiksha Raj

Called | P(red|X) [ P(blue|X)
6 .8 2

4 .33 .67

5 .33 .67

1 57 43

2 14 .86

3 .33 .67

4 .33 .67

5 .33 .67

2 14 .86

2 14 .86

1 57 43

4 .33 .67

3 .33 .67

4 .33 .67

6 .8 2

2 14 .86

1 57 43

6 .8 2

7.31 10.69




Expectation Maximization

Total count for “Blue” : 10.69 galled F;(redIX) Pz(blueIX)
Blue: 4 .33 67
- Total count for 1: 1.29 5 33 67
« Total count for 2: 3.44 1 57 43
¢ Total count for 3: 1.34 2 14 .86
- Total count for 4: 2.68 3 .33 .67
. Total count for 5: 1.34 4 .33 .67
- Total count for 6: 0.6 2 .33 .67
2 14 .86
2 14 .86
Updated probability of Blue dice: 1 57 43
¢ P(1]|Blue) =1.29/11.69 = 0.122 4 .33 .67
. P(2|Blue) = 0.56/11.69 = 0.322 2 .33 -g;
. P(3|Blue) = 0.66/11.69 = 0.125 : :g?’ 2
¢ P(4|Blue) =1.32/11.69 = 0.250 > 14 86
. P(5|Blue) = 0.66/11.69 = 0.125 1 57 43
5 P(6 | Blue) =2.40/11.69 = 0.056 6 .8 2

11-755 MLSP: Bhiksha Raj 731 1069



Expectation Maximization

Total count for “Red” : 7.31 ga”ed F;(red|x) F;(b'“e|x)
Total count for “Blue” : 10.69 4 33 67
: 5 33 67
Total instances = 18 1 = 13
- Note 7.31+10.69 = 18 2 14 .86
We also revise our estimate for the 2 gg :g;
probability that the caller calls out 5 .33 67
Red or Blue g -12 -gg
- i.e the fraction of times that he ] 57 43
calls Red and the fraction of times |4 .33 67
he calls Blue 3 .33 ol
4 33 67
6 8 2
P(Z=Red) = 7.31/18 = 0.41 : ;‘7‘ jg
P(Z=Blue) = 10.69/18 = 0.59 6 8 2

11-755 MLSP: Bhiksha Raj 731 1069



The updated values

Probability of Red dice:

Q Q9 Q9 Q9 Q9 Q9

Probability of Blue dice:

P(1 | Blue) = 1.29/11.69 = 0.122
0.56/11.69 = 0.322
0.66/11.69 = 0.125

= 1.32/11.69 = 0.250

= 0.66/11.69 = 0.125

P(6 | Blue) = 2.40/11.69 = 0.056

Q Q Q Q .Q .Q

P(1 | Red) = 1.71/7.31

P(2 | Red) = 0.56/7.31
P(3 | Red) = 0.66/7.31
P(4 | Red) = 1.32/7.31
P(5 | Red) = 0.66/7.31

P(6 | Red) = 2.40/7.31

P(2 | Blue) =
(3 | Blue) =
(4 | Blue
(5 | Blue

N S N S

P
P
P

P(Z=Red) = 7.31/18 = 0.41

P(Z=Blue) = 10.69/18 = 0.59
THE UPDATED VALUES CAN BE USED TO REPEAT THE

= 0.234
= 0.077
= 0.090
= 0.181
= 0.090
= 0.328

Called | P(red|X) | P(blue|X)
6 8 2
4 .33 .67
5 .33 .67
1 o/ 43
2 14 .86
3 .33 .67
4 .33 .67
5 .33 .67
2 14 .86
2 14 .86
1 o7 43
4 .33 .67
3 .33 .67
4 .33 .67
6 8 2
2 14 .86
1 o7 43
6 .8 2

PROCESS. ESTIMATION IS AN ITERATIVE PROCESS




The Dice Shooter Example

63154124 .. 44163212..

Initialize P(2), P(X| 2

Estimate P(Z | X) for each Z, for each called out number
Associate X with each value of Z, with weight P(Z| X)

Re-estimate P(X | £) for every value of Xand Z

Re-estimate P(2)

If not converged, return to 2

11=700 IVILOI'. DINIKSIId IRd]



In Squiggles

Given a sequence of observations O,, O,, ..
« Ny IS the number of observations of color X
Initialize P(Z), P(X|Z) for dice Z and numbers X

lterate:

P(X|1Z2)P(Z
- For each number X: P(Z|X) = ( )P(Z)

ZP(Z')P(X 1Z")
=

ZP(ZIX) ZNXP(ZIX)

P(X |Z) O such that O==X NXP(Z | X)

> > PEix) ZNXP(ZIX) Ho= ZZNXP(ZIX)

Z' Osuch that O==X

11-755 MLSP: Bhiksha Raj



Expectation Maximization

The EM algorithm is used whenever proper statistical
analysis of a phenomenon requires the knowledge of a
hidden or missing variable (or a set of hidden/missing
variables)

- The hidden variable is often called a “latent” variable

Some examples:

- Estimating mixtures of distributions

Only data are observed. The individual distributions and mixing
proportions must both be learnt.

- Estimating the distribution of data, when some attributes are
missing

- Estimating the dynamics of a system, based only on
observations that may be a complex function of system state
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The Mad Caller

The EM algorithm will give us one of many solutions,
all equally valid!

+ The probability of 6 being called out:
P(6) =aP(6lred) + bP(6|blue) = aP. + bh,

Assigns P, as the probability of 6 for the red die
Assigns P, as the probability of 6 for the blue die

= The following too is a valid solution [FIX]
P(6) =1.0 aP. + bP, )+ 0.0anything

Assigns 1.0 as the a priori probability of the red die
Assigns 0.0 as the probability of the blue die

The solution is NOT unique
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A mild shift of metaphor

Replacing the caller with a picker

«  Who picks balls from Urns

Replacing the Dice with an Urn

« Has 6 types of balls, marked “1”, “2”, “3”, “4”, “5”, “6”

¢ The probability of randomly drawing a ball marked “6” = P(6 | urn)

Picker draws a ball from the urn, calls out the number and replaces the ball in
the urn

Exactly the same model as the dice

Problem: From the sequence of numbers called by the picker, determine the
fraction of balls in the urns that are marked with each number.
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More complex: TWO pickers

Two different pickers are drawing balls from the same pots
- After each draw they call out the number and replace the ball
They select the pots with different probabilities
From the numbers they call we must determine

- Probabilities with which each of them select pots
= The distribution of balls within the pots
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Solution

Analyze each of the callers separately

Compute the probability of selecting pots
separately for each caller

But combine the counts of balls in the pots!!
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Recap with only one picker and two pots

Probability of Red urn:
P(1 | Red) =1.71/7.31 = 0.234

g

« P(2|Red) =0.56/7.31 = 0.077
« P(3|Red)=0.66/7.31 =0.090
¢ P(4|Red)=1.32/7.31 = 0.181
« P(5|Red)=0.66/7.31 =0.090
« P(6|Red) =2.40/7.31 = 0.328

Probability of Blue urn:
P(1 | Blue) = 1.29/11.69 = 0.122

g

« P(2|Blue) =0.56/11.69 = 0.322
+ P(3|Blue) =0.66/11.69 = 0.125
5 P(4|Blue) =1.32/11.69 = 0.250
+ P(5|Blue) =0.66/11.69 = 0.125
5 P(6 | Blue) =2.40/11.69 = 0.056

P(Z=Red) = 7.31/18 = 0.41
P(Z=Blue) = 10.69/18 = 0.59

Called | P(red|X) | P(blue|X)
6 8 2

4 .33 .67

5 .33 .67

1 o/ 43

2 14 .86

3 .33 .67

4 .33 .67

5 .33 .67

2 14 .86

2 14 .86

1 o7 43

4 .33 .67

3 .33 .67

4 .33 .67

6 8 2

2 14 .86

1 o7 43

6 .8 2

7.31  10.69




Two pickers

Probability of drawing a number X for the first picker:
« Py(X) = P,(red)*P(X|red) + P,(blue)*P(X|blue)
Probability of drawing X for the second picker
1 P5(X) = Py(red)*P(X|red) + P,(blue)*P(X|blue)

Note: P(X|red) and P(X|blue) are the same for both pickers

- The pots are the same, and the probability of drawing a ball
marked with a particular number is the same for both

The probability of selecting a particular pot is different for both
pickers
« P4(X) and P,(X) are not related
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Two pickers

Probability of drawing a number X for the first picker:
«  Py{(X) =P,(red)*P(X|red) + P,(blue)*P(X|blue)
Probability of drawing X for the second picker

c  Py(X) = Py(red)*P(X|red) + P,(blue)*P(X|blue)

Problem: Given the set of numbers called out by both pickers estimate
+ P4(color) and P,(color) for both colors
« P(X|red) and P(X | blue) for all values of X
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‘ For the First Picker

0.45
Q 0.3

0.4 -
25 _"? 0.35 1
] 0.3
| e 0.25 -
) _ 0.2 1
-1 3¢ 0.15 -
1 ~ 01
] O 005
1 2 3 4 5 6 0 -

1 2 3 4 5 6

Py(Z)

P.(2)
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With TWO pickers: The first picker

Picker 1 calls:
6,451,2,3,4,5,2,2.1,43,4,6,2,1,6

The table to the right is computed
as before

- Each instance of a number called
Is “split” between the two urns

= The fraction of the instance going
to any urn is the a posteriori
probability of the urn, given the
number called

P(observation| color)P,(color)
ZP(observation | color") P, (color")

color'

P(color | observation) =

11-755 MLSP: Bhiksha Raj

Called | P(red|X) | P(blue|X)
6 8 2

4 33 67

5 33 67

1 57 43

2 14 .86

3 33 67

4 33 67

5 33 67

2 14 .86

2 14 .86

1 57 43

4 33 67

3 33 67

4 33 67

6 8 2

2 14 .86

1 57 43

6 8 2

7.31 10.69




With TWO pickers: The SECOND picker

Picker 2 calls:

4.4, 3,2,1,6,5

- Note: The number of observations is different from
that for picker 1

« In general, the number of observations for the two
need not be the same

We get the table to the right for the calls by
picker 2

The table is computed exactly as we computed
the table for the first picker

Called | P(red|X) | P(blue|X)
4 57 43
4 57 43
3 57 43
2 27 73
1 75 25
6 .90 10
5 57 43
4.20 2.80

P(observation | color) P, (color)

P(color | observation) =

color'

ZP(observation | color") Py (color")
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With TWO pickers: The SECOND picker

Called | P(red|X) | P(blue|X)
6 .8 2

4 .33 .67

5 .33 .67

1 57 43

2 14 .86

3 .33 .67

4 .33 .67

5 .33 .67

2 14 .86

2 14 .86

1 57 43

4 .33 .67

3 .33 .67

4 .33 .67

6 .8 2

2 14 .86

1 57 43

6 .8 2

PICKER1 7.31 10.69

PICKER 2
Called | P(red|X) | P(blue|X)
4 57 .43
4 57 .43
3 D57 .43
2 27 73
1 .75 .25
6 90 .10
5 57 .43
4.20 2.80
Two tables

The probability of
selecting pots is
iIndependently computed
for the two pickers
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With TWO pickers: The SECOND picker

Called | P(red|X) | P(blue|X)
6 .8 2

4 .33 .67

5 .33 .67

1 57 43

2 14 .86

3 .33 .67

4 .33 .67

5 .33 .67

2 14 .86

2 14 .86

1 57 43

4 .33 .67

3 .33 .67

4 .33 .67

6 .8 2

2 14 .86

1 57 43

6 .8 2

PICKER1 _ 7.31 10.69

PICKER 2

Called | P(red|X) | P(blue|X)

4 57 43

4 57 43

3 57 43

2 27 73

1 75 25

6 .90 10

5 57 43
4.20 2.80

5(RED | PICKER1) = 7.31/ 18
P(BLUE | PICKER1) = 10.69 / 18

P(RED | PICKER2) = 4.2/ 7
P(BLUE | PICKER2) =2.8/7
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With TWO pickers: The SECOND picker

Called | P(red|X) | P(blue|X) Called | P(red|X) | P(blue|X)
6 .8 2 4 57 43

4 .33 .67 4 57 43

5 .33 .67 3 57 43

1 57 43 2 27 73

2 14 .86 1 75 25

3 .33 .67 6 90 10

4 .33 .67 5 57 43

5 .33 .67

2 14 .86 R

2 13 86 To compute probabilities

] -3 23 of numbers combine the
3 33 67 tables

4 .33 .67

6 8 2 Total count of Red: 11.51
2 14 .86

1 57 43 Total count of Blue: 13.49
6 .8 2
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With TWO pickers: The SECOND picker

Called | P(red|X) | P(blue|X)
6 .8 2
4 33 .67
5 33 .67
1 57 43
2 14 .86
3 33 .67
4 33 .67
5 33 .67
2 14 .86
2 14 .86
1 57 43
4 33 .67
3 33 .67
4 .33 .67
6 .8 2
2 14 .86
1 57 43
6 .8 2

Called | P(red|X) | P(blue|X)
4 .57 43
4 .57 43
3 .57 43
2 27 73
1 .75 .25
6 90 10
5 .57 43

Total count for “Red” : 11.51

Red:
Total count for 1: 2.46
Total count for 2: 0.83
Total count for 3: 1.23
Total count for 4: 2.46
Total count for 5: 1.23
Total count for 6: 3.30

Q Q Q Q Q Q

q

P(6|RED) = 3.3/ 11.51 = 0.29

11-755 MLSP: Bhiksha Raj




In Squiggles
Given a sequence of observations O, ;, Oy ,, .. from the k" picker
= N x is the number of observations of color X drawn by the k™" picker
Initialize P, (Z), P(X|Z) for pots Z and colors X

lterate:

+ For each Color X, for each
pot Z and each observer k: |P(Z1X.k)=

P(X 1Z,k)P.(Z)
D R(ZHP(X1Z',k)
-

+ Update probability of

numbers for the pots: Zk:Nk,XP(Z'X,@
P(X|Z2)=
H DN N xPZIX K

+ Update the mixture k 7
weights: probability
of urn selection for each ;Nk,XP(Z'X”‘)
I P.(Z)=
picker «(Z) ZZNk,XP(zwx,k)
zZ' X
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Signal Separation with the Urn model

What does the probability of drawing balls
from Urns have to do with sounds?

5 Or Images?

We shall see..
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The representation

AMPL FREQIEES - b —Sett
TIME : TIME >

We represent signals spectrographically

5 Sequence of magnitude spectral vectors estimated from (overlapping)
segments of signal

+ CGomputed using the short-time Fourier transform

= Note: Only retaining the magnitude of the STFT for our operations

- We will, however need the phase later for conversion to a signal
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A Multinomial Model for Spectra

» A generative model for one frame of a spectrogram

¢ A magnitude spectral vector obtained from a DFT represents
spectral magnitude against discrete frequencies

¢ This may be viewed as a histogram of draws from a multinomial

FRAME {
HISTOGRAM

.lla.“lh.“hu s /
/" The balls are

7 f g marked with
discrete frequency
indices from the DFT

Probability distribution underlying the t-th spectral vector
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FRAME t Power spectrum of frame t




A more complex model

» A “picker” has multiple urns

» In each draw he first selects an urn, and then a ball
from the urn
« QOverall probability of drawing fis a mixture multinomial
» Since several multinomials (urns) are combined

¢ Two aspects — the probability with which he selects any
urn, and the probability of frequencies with the urns

HISTOGRAM

|
multiple draws > m
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The Picker Generates a Spectrogram

The picker has a fixed set of Urns

- Each urn has a different probability distribution over f

He draws the spectrum for the first frame

« In which he selects urns according to some probability P,(z2)
Then draws the spectrum for the second frame

« In which he selects urns according to some probability P,(2)
And so on, until he has constructed the entire spectrogram
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The Picker Generates a Spectrogram

> |

4.|Ld..mhu .

The picker has a fixed set of Urns

- Each urn has a different probability distribution over f

He draws the spectrum for the first frame

« In which he selects urns according to some probability P,(z2)
Then draws the spectrum for the second frame

« In which he selects urns according to some probability P,(2)
And so on, until he has constructed the entire spectrogram
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The Picker Generates a Spectrogram

——— >

Bas uu“..l.h] W}

The picker has a fixed set of Urns

- Each urn has a different probability distribution over f

He draws the spectrum for the first frame

« In which he selects urns according to some probability P,(z2)
Then draws the spectrum for the second frame

« In which he selects urns according to some probability P,(2)
And so on, until he has constructed the entire spectrogram
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The Picker Generates a Spectrogram

T
£
i E
F
J.lellll —l -

The picker has a fixed set of Urns

- Each urn has a different probability distribution over f

He draws the spectrum for the first frame

« In which he selects urns according to some probability P,(z2)
Then draws the spectrum for the second frame

« In which he selects urns according to some probability P,(2)
And so on, until he has constructed the entire spectrogram



The Picker Generates a Spectrogram

-

(W

Bas uu“..l.h] W}

The picker has a fixed set of Urns

- Each urn has a different probability distribution over f

He draws the spectrum for the first frame

« In which he selects urns according to some probability P,(z2)
Then draws the spectrum for the second frame

« In which he selects urns according to some probability P,(2)
And so on, until he has constructed the entire spectrogram
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The Picker Generates a Spectrogram

] =%} 1% =
= |
-
E o i
b
3

|
wan}
P
T

s
L

The picker has a fixed set of Urns

- Each urn has a different probability distribution over f

He draws the spectrum for the first frame

< In which he selects urns according to some probability P(z)

Then draws the spectrum for the second frame

< In which he selects urns according to some probability P,(z)

And so on, until he has constructed the entire spectrogram

= The number of draws in each frame represents the rms energy in
that frame
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‘The Picker Generates a Spectro gram

+ The URNS are the same for every frame

¢ These are the component multinomials or bases for the source
that generated the signal

» The only difference between frames is the probability with which
he selects the urns

Frame-specific —P(f)= Z P (2)P(f | z)—— SOURCE specific

spectral distribution bases
Frame(time) specific mixture weight
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Spectral View of Comzponent Multinomials

Each component multinomial (urn) is actually a normalized
histogram over frequencies P(f|z)

< l.e. aspectrum

Component multinomials represent latent spectral structures
(bases) for the given sound source

The spectrum for every analysis frame is explained as an
additive combination of these latent spectral structures
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Spectral View of Comzponent Multinomials

By “learning” the mixture multinomial model for any
sound source we “discover” these latent spectral
structures for the source

The model can be learnt from spectrograms of a
small amount of audio from the source using the EM

algorithm
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EM learning of bases

Initialize bases

+ P(f|z) for all z, for all f
Must decide on the number of urns

For each frame
« Initialize P(z)
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EM Update E quations

lterative process:

+~ Compute a posteriori probability of the z" urn for
the source for each f

P(2)P(f12z)

Pzl f)=
t(Z f) ZPt(Z')P(f|Z')

+ Compute mixture weight of z"" urn

> Pzl £)S.(f)

P(7)=—1
@ 2.2 BN, (f)
2 f

+ Compute the probabilities of the frequencies for
the zt" urn > B(zI £)S,(f)

P(flz) = L
N eSS s ()
-, flot

LV . lJJ.I.Ll\DlI.DlL\LlJ




‘How the bases compose the signal

. The overall signal simply the sum of the contributions of each of the
urns to the signal

- Each urn contributes a different amount to each frame

-~ The contribution of the z-th urn to the t-th frame is given by P(f|z)P(z)S;
q St = SfSt (f)
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pectrograms:

Frequency fi

Time £
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‘How meaningful are these structures

- If bases capture data structure they must

+ Allow prediction of data

» Hearing only the low-frequency components of a
note, we can still know the note

»  Which means we can predict its higher frequencies

+ Be resolvable in complex sounds

» Must be able to pull them out of complex mixtures
¢ Denoising
¢ Signal Separation from Monaural Recordings
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Prediction

The full basis is known A, J
The presence of the basis is
identified from the observation UL

of a part of it

The obscured remaining spectral MM
pattern can be guessed

Bandwidth Expansion

+ Problem: A given speech signal only has frequencies in the
300Hz-3.5Khz range

Telephone quality speech

+ Can we estimate the rest of the frequencies
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‘Bandwidth E Xpansion

» The picker has drawn the histograms for every frame in the
signal

—
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‘Bandwidth E Xpansion

» The picker has drawn the histograms for every frame in the
signal
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‘Bandwidth E Xpansion

» The picker has drawn the histograms for every frame in the
signal

I o

oy
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‘Bandwidth E Xpansion

» The picker has drawn the histograms for every frame in the
signal

N A

11-755 MLSP: Bhiksha Raj



‘Bandwidth E Xpansion

» The picker has drawn the histograms for every
frame in the signa

» However, we are only able to observe the number
of draws of some frequencies and not the others

. We must estimate the number of draws of the
unseen frequencies



Bandwidth Expansion: Step 1 — Learning

From a collection of full-bandwidth training
data that are similar to the bandwidth-
reduced data, learn spectral bases

= Using the procedure described earlier

Each magnitude spectral vector is a mixture of a
common set of bases

Use the EM to learn bases from them
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‘Bandwidth E Xpansion: Step 2 — Estimation

-+ Using only the observed frequencies in the
bandwidth-reduced data, estimate mixture
weights for the bases learned in step 1.
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Step 2
lterative process:

+~ Compute a posteriori probability of the z" urn for
the speaker for each f
P()P(f1z)
> P()P(f1z)

P(zlf)=

+ Compute mixture weight of zt" urn for each frame ¢

PACIATY

f . (observed frequencies)

> D REINSY

z' f .(observed frequencies)

F(z) =

s P(f|z) was obtained from training data and will not
be reestimated
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Step 3 and Step 4

Compose the complete probability distribution for each
frame, using the mixture weights estimated in Step 2

B(f)=) B@P(f12)

Note that we are using mixture weights estimated from
the reduced set of observed frequencies

= This also gives us estimates of the probabilities of the
unobserved frequencies

Use the complete probability distribution 7.(£) to predict
the unobserved frequencies!
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Predicting from P,(f ): Simplified Example

=9

-

A single Urn with only red and blue balls

Given that out an unknown number of draws,
exactly m were red, how many were blue?

One Simple solution:

« Total number of draws N = m / P(red)

« The number of tails drawn = N*P(blue)

+ Actual multinomial solution is only slightly more complex
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Estimating unobserved frequencies

Expected value of the number of draws:

D S

& f . (observed frequencies)

" D ()

f . (observed frequencies)

Estimated spectrum in unobserved
frequencies

S,(f)=N,P(f)
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‘ Overall Solution

» Learn the “urns” for the signal source
from broadband training data

» For each frame of the reduced
bandwidth test utterance, find mixture =
weights for the urns

= lgnore (marginalize) the unseen
frequencies

-+ Given the complete mixture multinomial
distribution for each frame, estimate 5 |
spectrum (histogram) at unseen L ph =
frequencies P(2) e M
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‘ Some Results

8000

4000

Frequency

« Reasonable reconstructions are achieved
« The reconstruction is speaker specific however
(since the urns represent spectral structures for the speaker)
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Signal Separation from Monaural

Recordings

The problem:

- Multiple sources are producing sound
simultaneously

+ The combined signals are recorded over a single
microphone

- The goal is to selectively separate out the signal
for a target source in the mixture

Or at least to enhance the signals from a selected
source
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Problem Specification

The mixed signal contains
components from multiple
sources

Each source has its own “bases”

In each frame

- Each source draws from its own
collection of bases to compose a
spectrum

Bases are selected with a frame
specific mixture weight

« The overall spectrum is a mixture
of the spectra of individual
sources

l.e. a histogram combining draws
from both sources

Underlying model: Spectra are

histograms over frequencies
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Ball-and-urn model for a mixed signal

The caller!! <

Each sound source is represented by its own picker and urns
« Urns represent the distinctive spectral structures for that source
s Assumed to be known beforehand (learned from some separate training data)

The caller selects a picker at random
« The picker selects an urn randomly and draws a ball
s The caller calls out the frequency on the ball

A spectrum is a histogram of frequencies called out
¢ The total number of draws of any frequency includes contributions from both sources
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Separating the sources

Goal: Estimate number of draws from each source

+ The probability distribution for the mixed signal is a linear
combination of the distribution of the individual sources

- The individual distributions are mixture multinomials
- And the urns are known

F(f)=F (DB (f 1s) + F(s)B(f 1sp)

R(f)=R(s) ) BGEIsOP( 1 2,5) + B(s) ) BIs)P(f 12.8)
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Separating the sources

Goal: Estimate number of draws from each source

+ The probability distribution for the mixed signal is a linear
combination of the distribution of the individual sources

- The individual distributions are mixture multinomials
- And the urns are known

F(f)=F (DB (f 1s) + F(s)B(f 1sp)

B(f)=B(s) ) BEISDP(F12,5)+ Bi(s3) Y B(z1s)P(f12,5)
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Separating the sources

Goal: Estimate number of draws from each source

= The probability distribution for the mixed signal is a linear
combination of the distribution of the individual sources

- The individual distributions are mixture multinomials
- And the urns are known
- Estimate remaining terms using EM

F(f)=F (DB (f 1s) + F(s)B(f 1sp)

7N\ N 7N\ N\
A Q@E@q 251 @Z@q 25)
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Algorithm

For each frame:
« Initialize Py(s)
The fraction of balls obtained from source s
Alternately, the fraction of energy in that frame from source s

« Initialize P(z|s)
The mixture weights of the urns in frame tfor source s

- Reestimate the above two iteratively

Note: P(f|z,s) is not frame dependent
- It is also not re-estimated

- Since it is assumed to have been learned from separately
obtained unmixed training data for the source
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[terative algorithm

lterative process:

+ Compute a posteriori probability of the combination of
speaker s and the zt" urn for each speaker for each f
P(s.2l f) = s BHOREIDPU 12.9)
ZP,(S')ZP,(zw SYP(f17,s")

+ Compute the a priori weight of speaker s
> > B(s.zl F)S,(f)

z f
SN P, S (f)
s' 7' f

- Compute mixture weight of zt" urn for speaker s

F(s) =

> P(s,z1 )S,(f)

P(zls)=—1
) eSS G 21 S
2 f

T 7o IVIDOT - DITTOI I8




What is P,(s,z | f)
Compute how each ball (frequency) is split between the urns of

the various sources
The ball is first split between the sources

P.(s)
Bis1f) =
t > B(s)

The fraction of the ball attributed to any source s is split between
its urns:

P(zI$)P(f1z,s)

P(zls, f)=
t D REISHP(f12,5)

The portion attributed to any urn of any source is a product of the
two

P(s)P(zls)P(f |z,s)
F(s,zl f) = —
’ Zg(s')ZE(zws')P(f|z',s')
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Reestimation
The reestimate of source weights is simply

the proportion of all balls that was attributed
to the sources

ZZP(S z1f)S,(f)
ZZZP(S 2’1 )S,(f)

F(s) =

The reestimate of mixture weights is the
proportion of all balls attributed to each urn

ZP<s z1 £)S,(f)
ZZP<S 2'1 S, (f)

VLV . 1 LLNOL I.DlL\LlJ

P(zls)=



Separating the Sources

For each frame:

Given
« S(f) — The spectrum at frequency f of the mixed
signal

Estimate

+ Sy(f) — The spectrum of the separated signal for
the i-th source at frequency f

A simple maximum a posteriori estimator
Sei(H) =S Bzs| f)
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[t we have only have bases for one source?

Only the bases for one of the two sources is
given
+ Or, more generally, for N-1 of N sources

F(f)=F (DB (f 1s) + F(s)B(f 1sp)

R(f)=R(s) ) BGEIsOP( 1 2,50) + B(sp) ) BzIs)P(f 12.8)
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[t we have only have bases for one source?

Only the bases for one of the two sources is given
« Or, more generally, for N-1 of N sources

+ The unknown bases for the remaining source must also be
estimated!

F(f)=F (DB (f 1s) + F(s)B(f 1sp)

77N\ N 77N\ TN TN
B Q@E@(ﬂwﬂ@})mzw (f 125
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Partial information: bases for one source
unknown

P(f|z,s) must be initialized for the additional
source

Estimation procedure now estimates bases
along with mixture weights and source
probabilities

« From the mixed signal itself
The final separation is done as before
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[terative algorithm

lterative process:

+ Compute a posteriori probability of the combination of
speaker s and the zt" urn for the speaker for each f

P(s)P(zls)P(f |z,s)
F(s,zl f) = e
t ZP,(S')ZP,(zw SYP(f17,s")

« Compute the a priori weight of speaker s and mixture
> > P(s.zl S, (f) 2 B (s, 21 ))S,(f)

= P(zls) =<1
YD P2 S, (f) S P(s,2' 1S, (f)
s' ' f f

Zl

E(s)=

P(s.z1 £)S
- Compute unknown bases D B2l )S,(f)

P(f12,5) = =+
D Bzl 5.
ot
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Partial information: bases for one source
unknown

P(f|z,s) must be initialized for the additional
source

Estimation procedure now estimates bases
along with mixture weights and source
probabilities

« From the mixed signal itself
The final separation is done as before

S =S Bzsl f)

11-755 MLSP: Bhiksha Raj



L RNRL . H
T | MWW\.W " WMIW

Separatmg M]xed S1gnals Examples

“Raise my rent” by David

Gilmour Norah Jones singing “Sunrise”
Background music “bases” A more difficult problem:
learnt from 5-seconds of + Original audio clipped!
music-only segments within .

the song Background music bases

learnt from 5 seconds of

Lead guitar “bases” bases music-only segments

learnt from the rest of the song
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Where it works

When the spectral structures of the two
sound sources are distinct

+ Don’t look much like one another
+ E.g. Vocals and music
- E.g. Lead guitar and music

Not as effective when the sources are similar
- Voice on voice
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Separate overlapping speech

™

o = N W

=2 N W

il
‘m fi

vlized Frequency (x hcseafipted Frequency (s Nefselipbe) Frequency (xnrad

Bases for both speakers learnt from 5 second
recordings of individual speakers

Shows improvement of about 5dB in Speaker-to-
Speaker ratio for both speakers

+ Improvements are worse for same-gender mixtures
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Can it be improved?

Yes!
More training data per source

More bases per source
= Typically about 40, but going up helps.

Adjusting FFT sizes and windows in the
signal processing

And / Or..
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More on the topic

Sparse overcomplete representations
Nearest-neighbor representations
Convolutive basis decompositions
Transform invariance

Etc..
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