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Beat Detection

Tempo Detection

Computer Accompaniment

Music Transcription
Query-By-Humming

Automatic Intelligent Audio Editor
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Accompaniment Video
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Intelligent Audio Editor

This excerpt is included in the audio examples:
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Onset Detecton

At the core of many music understanding
tasks

Machine learning can be very helpful
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Some Approaches

Features and Thresholds
High Frequency
Phase Change
Neural Networks
Hierarchical Models
HMM
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A Bootstrap Method for
Training an Accurate
Audio Segmenter

Ning Hu and
Roger B. Dannenberg
Carnegie Mellon University




Introduction

Audio segmentation is one of the major topics
in MIR research:

HMM approach (Raphael, 1999)
Neural Network approach (Marolt, et al., 2002)
Support Vector Machine (Lu, et al. 2001)

Hierarchical Model (Kapanci and Pfeffer,
2004)

In many cases, collecting training data is
time-consuming and expensive.
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Detour - Audio Alignment
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Audio Alignment Concepts

"Score"

Midi File, Note List, not necessarily "real"
notation

Similarity Matrix

Chroma Vectors
Distance/Similarity Function
Research on accurate alignment
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Segmentation and Alignment

Segmentation, audio alignment, and score-following
are related
Rely on acoustic features
Precise alignment to symbolic score provides
segmentation data
We use alignment data to train a segmenter
Alignment avoids gross errors in segmentation

Segmenter learns fine-grain features that improve
precision beyond initial alignment

— high quality segmentation and alignment
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Motivation

We need very accurate segmentation to
extract trumpet envelopes (attacks ~30ms)

(for research on capturing synthesis models)«
Alignment is based on chroma (100 — 250ms)

Orio & Schwarz (2001) also use DTW and

short-term features (5.8 ms windows), but

alignment (an O(N2) algorithm) is slow.
Our system performs alignment 25x faster.

Our small non-DTW analysis windows can
use different features.
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Audio-to-(MIDI)-Score Alignment

Chromagram features from Audio
Synthetic chromagram features for MIDI
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Acoustic Features for
Segmentation — 5.8 ms window

Log energy (dB)

FO with SNDAN’s (Beauchamp) MQ analysis

Relative strengths of first 3 harmonics:
Amplitude,/ Amplitude .,

Relative frequency deviations, first 3
harmonics:

(fi—ixF0) /f,
Zero-crossing rate
Derivatives of all of the above

15
© 2005, Ning Hu and Roger Dannenberg

Neural Network
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Segment boundary PDF
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Bootstrap learning process

Multiply neural net output by PDF

For each neighborhood around a segment
boundary, find the peak — “adjusted onset”

Retrain the neural network:
adjusted onsets are 1, other points are 0

Estimated Note Onsets from Alignment

==+ Detected Note Onsets by Segmenter w/ Bootstrap

PDF

Acoustic

Waveform
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Results

o Model Miss Rate | Spurious Rate | Av. Error | STD
= -
Ly Baseline 8.8% 10.3% 21ms |29 ms
T Segmenter
-
Z S‘ngmet”tter 0.0% 0.3% 10ms |14 ms
¢ W/ Bootstrap
Model Miss Rate | Spurious Rate | Av. Error | STD
3 gzsfr']igr‘fter 15.0% 25.0% 35ms |48 ms
I&J Jd
Segmenter | 5 o 4.0% 8gms |12ms
w/ Bootstrap
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Sound Examples

Q

Input

Output — segmenter was trained on similar
data using the bootstrap method. This input
was segmented without using any score

Q

information.
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Summary

Supervised learning often wins over hand-crafted
systems

Segmentation training data is expensive, so
supervised training is difficult

Alignment provides strong hints, but not accurate
enough for training

Bootstrapping allows segmenter to generate its own
training data

Dramatic improvements in accuracy, even when
tested without alignment “hints”
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Possible Projects

Evaluate different feature sets
Evaluate on different instruments
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