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Recap: Mixture-multinomial model

n The basic model: Each frame in the magnitude 

spectrogram is a histogram drawn from a mixture of 
multinomial (urns)

q The probability distribution used to draw the spectrum for 

the t-th frame is:
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Recap: Mixture-multinomial model

n The individual multinomials represent the “spectral bases” that 

compose all signals generated by the source

q E.g., they may be the notes for an instrument

q More generally, they may not have such semantic interpretation
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Recap: Learning Bases

n Learn bases from example spectrograms

n Initialize bases (P(f|z)) for all z, for all f

n For each frame, initialize Pt(z)

n Iterate
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Bases represent meaning spectral structures
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How about non-speech data

n We can use the same model to represent other data

n Images: 

q Every face in a collection is a histogram

q Each histogram is composed from a mixture of a fixed number of 
multinomials

n All faces are composed from the same multinomials, but the manner in which the 

multinomials are selected differs from face to face

q Each component multinomial is also an image

n And can be learned from a collection of faces

n Component multinomials are observed to be parts of faces

19x19 images = 361 dimensional vectors
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How many bases can we learn

n The number of bases that must be learned is a 
fundamental question

q How do we know how many bases to learn

q How many bases can we actually learn computationally

n A key computational problem in learning bases:

q The number of bases we can learn correctly is restricted by 

the dimension of the data

q I.e., if the spectrum has F frequencies, we cannot estimate 

more than F-1 component multinomials reliably

n Why?
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Indeterminacy in Learning Bases

n Consider the four histograms 

to the right

n All of them are mixtures of the 

same K component 

multinomials

n For K < 3, a single global 

solution may exist

q I.e there may be a unique set 
of component multinomials
that explain all the 
multinomials

n With error – model will not be 

perfect

n For K = 3 a trivial solution 

exists

3

2

1

2

1

3

1

3

2

1

22

B1 B2

c*B1+d*B2

e*B1+f*B2

g*B1+h*B2

i*B1+j*B2



11-755 MLSP: Bhiksha Raj

Indeterminacy
n Multiple solutions for K = 3..

q We cannot learn a non-
trivial set of “optimal” bases 
from the histograms

q The component 
multinomials we do learn tell 
us nothing about the data

n For K > 3, the problem only 

gets worse

q An inifinite set of solutions 
are possible

n E.g. the trivial solution plus 

a random basis
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Indeterminacy in signal representations

n Spectra:

q If our spectra have D frequencies (no. of unique indices in 

the DFT) then..

q We cannot learn D or more meaningful component 

multinomials to represent them

n The trivial solution will give us D components, each of which 
has probability 1.0 for one frequency and 0 for all others

n This does not capture the innate spectral structures for the 
source

n Images: Not possible to learn more than P-1 
meaningful component multinomials from a 

collection of P-pixel images
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Overcomplete Representations

n Representations where there are more bases than dimensions 

are called Overcomplete

q E.g. more multinomial components than dimensions

q More L2 bases (e.g. Eigenvectors) than dimensions

q More non-negative bases than dimensions

n Overcomplete representations are difficult to compute

q Straight-forward computation results in indeterminate solutions

n Overcomplete representations are required to represent the 

world adequately

q The complexity of the world is not restricted by the dimensionality 
of our representations!
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How many bases to represent sounds/images?

n In each case, the bases represent “typical unit structures”

q Notes

q Phonemes

q Facial features..

n To model the data well, all of these must be represented

n How many notes in music

q Several octaves

q Several instruments

n The total number of notes required to represent all “typical” sounds in 

music are in the thousands

n The typical sounds in speech –

q Many phonemes, many variations, can number in the thousands

n Images:

q Millions of units that can compose an image – trees, dogs, walls, sky, etc. 
etc. etc…
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How many can we learn

n Typical Fourier representation of sound: 513 (or less) unique 

frequencies

q I.e. no more than 512 unique bases can be learned reliably

q These 512 bases must represent everything

n Including the units of music, speech, and the other sounds in the 

world around us

q Depending on what we’re attempting to model

n Typical “tiny” image: 100x100 pixels

q 10000 pixels

q I.e. no more than 9999 distinct bases can be learned reliably

q But the number of unique entities that can be represented in a 
100x100 image is countless!

n We need overcomplete representations to model these data well
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Learning Overcomplete Representations

n Learning more multinomial components than 
dimensions (frequencies or pixels) in the data leads 
to indeterminate or useless solution

n Additional criteria must be imposed in the learning 
process to learn more components than dimensions

q Impose additional constraints that will enable us to obtain 
meaningful solutions

n We will require our solutions to be sparse
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SPARSE Decompositions

n Allow any arbitrary number of bases (urns)

q Overcomplete

n Specify that for any specific frame only a small number of bases may be 

used

q Although there are many spectral structures, any given frame only has a few of 
these

n In other words, the mixture weights with which the bases are combined 
must be sparse

q Have non-zero value for only a small number of bases

q Alternately, be of the form that only a small number of bases contribute 
significantly
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The history of sparsity
n The search for “sparse” decompositions has a long history

q Even outside the scope of overcomplete representations

n A landmark paper: Sparse Coding of Natural Images Produces Localized, 
Oriented, Bandpass Receptive Fields, by Olshausen and Fields

q “The images we typically view, or natural scenes, constitute a minuscule fraction of the 

space of all possible images. It seems reasonable that the visual cortex, which has 

evolved and developed to effectively cope with these images, has discovered efficient 

coding strategies for representing their structure. Here, we explore the hypothesis that 

the coding strategy employed at the earliest stage of the mammalian visual cortex 

maximizes the sparseness of the representation. We show that a learning algorithm 

that attempts to find linear sparse codes for natural scenes will develop receptive fields 

that are localized, oriented, and bandpass, much like those in the visual system.”

q Images can be described in terms of a small number of descriptors from a large set

n E.g. a scene is “a grapevine plus grapes plus a fox plus sky”

n Other studies indicate that human perception may be based on sparse 
compositions of a large number of “icons”

n The number of sensors (rods/cones in the eye, hair cells in the ear) is much 
smaller than the number of visual / auditory objects in the world around us

q The representation is overcomplete
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Representation in L2

n Conventional Eigen Analysis:

q Compute Eigen Vectors such that ||X – EW||2 is minimized

n The columns of E are orthogonal to one another

n Eigen analysis is an “L2” decomposition

q Minimizes the L2, or Euclidean error in composition

n The maximum number of Eigen vectors = no. of dimensions D

n We could use any set of D linearly independent vectors (e.g. a DxD matrix B); not 
only the Eigen vectors

q The data vector could be expressed in the same manner as above

q The only distinction will now be that unlike E, the columns of A are no longer orthogonal

q The weights with which the bases must be combined are obtained by a pinv(B)*X

= w1 +  w2 +  w3
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Overcomplete representations in L2

n Sparse L2 representation

q Minimize ||X – BW||2

n Same as before, except the number of bases are much greater than the 

number of dimensions

q The bases are no longer Eigen vectors

n The weights wi must now be sparse

q I.e. although the number of bases is > D, the number of non-zero weight 
terms for any data X must be less than D

n Conventional dot product / psuedoinverse-based algorithms will not 

give us the correct solution

q They impose no constraint on W

= Linear combination of More bases than

Pixels
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Sparse overcomplete representations in L2

n Problem:

q Given an overcomplete set of bases B1, B2, … BN

q Estimate the weights w1, w2, .. wN such that

q X = w1B1 + w2B2… wNBN

n X is D dimensionsal; D < N

q And the set of weights {wi} is sparse

n Problem formulation:

q ArgminW ||X – BW||2 + Constraint(W)

q W is the set of weights in vector form

q The “constraint” is a sparsity constraint

q Given many equivalent unconstrained solutions for W, it 
forces the selection of the sparsest of these solutions
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Sparse L2 Decomposition

n Problem formulation:

q ArgminW ||X – BW||2 + Constraint(W)

n The L0 constraint

q Objective to minimize = ||X – BW||2 + |W|0
q Minimizes error of reconstruction AND minimizes the 

number of non-zero terms in W

n L0 norm |W|0 = the number of non-zero terms by definition

q Computationally intractable for large basis sets

n Needs a combinatorial search

q Approximate solutions:

n COSamp

n L2 solution with flooring

n Etc.
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Sparse L2 Decomposition

n Problem formulation:

q ArgminW ||X – BW||2 + |W|1
n |W|1 is the L1 norm of W

n i.e. the sum of the magnitude of all entries in W

n The L1 constraint

q Minimization of L0 is computationally intractable

q Under certain generic conditions, it is sufficient to minimize the L1 norm 
instead

n “Restricted Isometry” of B

n The optimal L1 solution will also be the optimal L0 solution

n L1 minimization is a standard convex optimization problem

q Downloadable code is available from Caltech (the L1 magic package):

q http://www.acm.caltech.edu/l1magic/



11-755 MLSP: Bhiksha Raj

Learning Overcomplete L2 Representations

n We have seen how to estimate weights given bases

n How about learning the optimal set of bases?

n Sparse PCA:

q Learn Orthogonal Eigen-like vectors that can be combined 

sparsely

q Cannot be overcomplete

n Random projections

n Other techniques for learning “dictionaries” for 
overcomplete bases

n Good information on Dave Donoho’s Stanford page
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Sparsityand Overcompleteness for 
Multinomial Models

n Histograms are composed from more multinomials than bins

q X ß w1B1 + w2B2+ w3B3 + w4B4 …

n The mixture weights combining the multinomials are sparse

q I.e {wi } is sparse

q A different subset of weights wi are high for different data

q Over a large collection of data vectors, all bases will eventually 
be used

w1 + w2 + w3 + w4 +
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Estimating Mixture Weights given Multinomials

n Basic estimation: Maximum likelihood

q ArgmaxW log P(X ; B,W)  = ArgmaxW SX X(f)log(Si wi Bi(f))

n Modified estimation: Maximum a posteriori

q ArgmaxW SX X(f)(Si wi Bi(f)) + blog P(W)

n Sparsity obtained by enforcing an a priori probability 
distribution P(W) over the mixture weights that 

favors sparse mixture weights

n The algorithm for estimating weights must be 
modified to account for the priors
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The a priori distribution
n A variety of a priori probability distributions all 

provide a bias towards “sparse” solutions

n The Dirichlet prior:

q P(W) = Z* P i wi
a-1

n The entropic prior:

q P(W) = Z*exp(-aH(W))

n H(W) = entropy of W = -Si wi log(wi)
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A simplex view of the world

n The mixture weights are a probability distribution

q Si wi = 1.0

n They can be viewed as a vector

q W = [w0 w1 w2 w3 w4 …]

q The vector components are positive and sum to 1.0

n All probability vectors lie on a simplex

q A convex region of a linear subspace in which all vectors sum to
1.0

(1,0,0)

(0,1,0)(0,0,1)
(1,0,0)

(0,1,0)

(0,0,1)
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Probability Simplex

n The sparsest probability vectors lie on the vertices of the simplex

n The edges of the simplex are progressively less sparse

q Two-dimensional edges have 2 non-zero elements

q Three-dimensional edges have 3 non-zero elements

q Etc.

(1,0,0)

(0,1,0)(0,0,1)
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Sparse Priors: Dirichlet

n For alpha < 1, sparse probability vectors are 

more likely than dense ones

P(W) = Z* P i wi
a-1

a=0.5
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Sparse Priors: The entropic prior

n Vectors (probability distributions) with low entropy 

are more probable than those with high entropy

q Low-entropy distributions are sparse!

P(W) = Z*exp(-aH(W))

a=0.5
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The Entropic Prior

n The entropic prior “controls” the desired level 

of sparsity in the mixture weights through a

n Changing the sign of alpha can bias us 

towards either higher entropies or lower 

entropies
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Optimization with the entropic prior

n The objective function

ArgmaxW SX X(f)(Si wi Bi(f)) - aH(W)

n By estimating W such that the above 

equation is maximized, we can derive 

minimum entropy solutions

q Jointly optimize W for predicting the data while 

minimizing its entropy
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The Expectation Maximization Algorithm

n The parameters are actually learned using the Expectation 
Maximization (EM) algorithm

n The EM algorithm actually optimizes the following objective 
function

q Q = SX P(Z | f) X(f)log(P(Z) P(f|Z)) - aH(P(Z))

n The second term here is derived from the entropic prior

n Optimization of the above needs a solution to the following

n The solution requires a new function: 

q The lambert W function
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Lambert’s W Function

n Lambert’s W function is the solution to:

W + log(W) = X

q Where W = F(X) is the Lambert function

n Alternately, the inverse function of

q X = W exp(W)

n In general, a multi-valued function

n If X is real, W is real for X > -1/e

q Still multi-valued

n If we impose the restriction W > -1 and W == real we get the zeroth
branch of the W function

q Single valued

n For W < -1 and W == real we get the -1th branch of the W function

q Single valued

W0(x)
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Estimating W0(z)

n An iterative solution
q Newton’s Method

q Halley Iterations

q Code for Lambert’s W function is available on 
wikipedia
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Solutions with entropic prior

n The update rules are the same as before, with one minor modification

n To estimate the mixture weights, the above two equations must be
iterated 

q To convergence

q Or just for a few iterations

n Alpha is the sparsity factor

n Pt(z) must be initialized randomly
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Learning Rules for Overcomplete Basis Set

n Exactly the same as earlier, with the 

modification that Pt(z) is now estimated to be 

sparse

q Initialize Pt(z) for all t and P(f|z)

q Iterate
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A Simplex Example for Overcompleteness

n Synthetic data: Four clusters of data within the probability simplex

n Regular learning with 3 bases learns an enclosing triangle

n Overcomplete solutions without sparsity restults in meaningless 
solutions

n Sparse overcomplete model captures the distribution of the data
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Sparsitycan be employed without 
overcompleteness

n Overcompleteness requires sparsity

n Sparsity does not require overcompleteness

q Sparsity only imposes the constraint that the data 
are composed from a mixture of as few 

multinomial components as possible

q This makes no assumption about 

overcompleteness



11-755 MLSP: Bhiksha Raj

Examples without overcompleteness

n Left panel, Regular learning: most bases have significant energy in all frames
n Right panel, Sparse learning: Fewer bases active within any frame

q Sparse decomposiions result in more localized activation of bases
q Bases, too, are better defined in their structure
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Face Data: The effect of sparsity

n As solutions get more sparse, bases 
become more informative

q In the limit, each basis is a complete 
face by itself.

q Mixture weights simply select face

n Solution also allows for mixture 
weights to have maximum entropy

q Maximally dense, i.e. minimally sparse

q The bases become much more 
localized components

n The sparsity factor allows us to tune 
the bases we learn

High-entropy mixture weights

Sparse mixture weights

No sparsity
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Benefit of overcompleteness

n 19x19 pixel images (361 pixels)

n Up to1000 bases trained from 2000 faces

n SNR of reconstruction from overcomplete basis set more than 

10dB better than reconstruction from corresponding “compact”

(regular) basis set
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Signal Processing: How

n Exactly as before

n Learn an overcomplete set of bases

n For each new data vector to be processed, 

compute the optimal mixture weights

q Constrainting the mixture weights to be sparse 
now

n Use the estimated mixture weights and the 

bases to perform additional processing
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n Learn overcomplete bases for each source

n For each frame of the mixed signal 

q Estimate prior probability of source and mixture weights for each source

n Constraint: Use sparse learning for mixture weights

n Estimate separated signals as  

Signal Separation with Overcomplete Bases
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Sparse Overcomplete Bases: Separation
n 3000 bases for each of the speakers

q The speaker-to-speaker ratio typically doubles (in dB) w.r.t “compact” bases

Panels 2 and 3: Regular learning

Panels 4 and 5: Sparse learning

Regular bases

Sparse bases
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The Limits of Overcompleteness

n How many bases can we learn?

n The limit is: as many bases as the number of 

vectors in the training data

q Or rather, the number of distinct histograms in the 

training data

n Since we treat each vector as a histogram

n It is not possible to learn more than this 

number regardless of sparsity

q The arithmetic supports it, but the results will be 
meaningless
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Working at the limits of overcompleteness: 
The “Example-Based” Model

n Every training vector is a basis

q Normalized to be a distribution

n Let S(t,f) be the tth training vector

n Let T be the total number of training vectors

n The total number of bases is T

n The kth basis is given by

q B(k,f) = S(k,f) / SfS(k,f) = S(k,f) / |S(k,f)|1

n Learning bases requires no additional learning steps 

besides simply collecting (and computing spectra 
from) training data
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The example based model – an illustration

n In the above example all training data lie on the curve shown (Left 

Panel)

q Each of them is a vector that sums to 1.0

n The learning procedure for bases learns multinomial components that 

are linear combinations of the data (Middle Panel)

q These can lie anywhere within the area enclosed by the data

q The layout of the components hides the actual structure of the layout of the 
data

n The example based representation captures the layout of the data

perfectly (right panel)

q Since the data are the bases
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Signal Processing with the Example Based 
Model

n All previously defined operations can be 

performed using the example based model 

exactly as before

q For each data vector, estimate the optimal mixture 

weights to combine the bases

n Mixture weights MUST be estimated to be sparse

n The example based representation is simply 

a special case of an overcomplete basis set
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Illustrations of separation with example-
based representation

n Top panel: Separation from learned bases

n Bottom panel: Separation with example-based representation
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Speaker Separation Example

n Speaker-to-interference ratio of separated 
speakers
q State-of-the-art separation results
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Example-based model: All the training 
data?

n In principle, no need to use all training data 

as the model

q A well-selected subset will do

q E.g. – ignore spectral vectors from all pauses and 

non-speech regions of speech samples

q E.g. – eliminate spectral vectors that are nearly 
identical

n The problem of selecting the optimal set of 

training examples remains open, however
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Summary So Far

n PLCA:
q The basic mixture-multinomial model for audio (and other 

data)

n Sparse Decomposition:
q The notion of sparsity and how it can be imposed on 

learning

n Sparse Overcomplete Decomposition:
q The notion of overcomplete basis set

n Example-based representations
q Using the training data itself as our representation
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Next up: Shift/Transform Invariance

n Sometimes the “typical” structures that 

compose a sound are wider than one spectral 

frame

q E.g. in the above example we note multiple 
examples of a pattern that spans several frames
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Next up: Shift/Transform Invariance

n Sometimes the “typical” structures that compose a 
sound are wider than one spectral frame

q E.g. in the above example we note multiple examples of a 
pattern that spans several frames

n Multiframe patterns may also be local in frequency

q E.g. the two green patches are similar only in the region 

enclosed by the blue box
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Patches are more representative than frames

n Four bars from a music example

n The spectral patterns are actually patches

q Not all frequencies fall off in time at the same rate

n The basic unit is a spectral patch, not a spectrum
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Images: Patches often form the image

n A typical image component may be viewed as a 
patch

q The alien invaders

q Face like patches

q A car like patch 

n overlaid on itself many times..
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Shift-invariant modelling

n A shift-invariant model permits individual 

bases to be patches

n Each patch composes the entire image.

n The data is a sum of the compositions from 

individual patches
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Shift Invariance in one Dimension

n Our bases are now “patches”

q Typical spectro-temporal structures

n The urns now represent patches

q Each draw results in a (t,f) pair, rather than only f

q Also associated with each urn:  A shift probability distribution P(T|z)

n The overall drawing process is slightly more complex

n Repeat the following process:

q Select an urn Z with a probability P(Z)

q Draw a value T from P(t|Z)

q Draw (t,f) pair from the urn

q Add to the histogram at (t+T, f)
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Shift Invariance in one Dimension

n The process is shift-invariant because the 

probability of drawing a shift P(T|Z) does not 

affect the probability of selecting urn Z

n Every location in the spectrogram has 

contributions from every urn patch
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Shift Invariance in one Dimension

5
15

83996
81
444

81164
5 598 1

147
22436947

224
99

1327
274453 1

147
201737

111
37

138
7520453 91

127
2469477

203
515

10127
411501502

n The process is shift-invariant because the 

probability of drawing a shift P(T|Z) does not 

affect the probability of selecting urn Z

n Every location in the spectrogram has 

contributions from every urn patch
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Shift Invariance in one Dimension
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n The process is shift-invariant because the 

probability of drawing a shift P(T|Z) does not 

affect the probability of selecting urn Z

n Every location in the spectrogram has 

contributions from every urn patch
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Probability of drawing a particular (t,f) combination

n The parameters of the model:

q P(t,f|z) – the urns

q P(T|z) – the urn-specific shift distribution

q P(z) – probability of selecting an urn

n The ways in which (t,f) can be drawn:

q Select any urn z

q Draw T from the urn-specific shift distribution

q Draw (t-T,f) from the urn

n The actual probability sums this over all shifts and urns
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Learning the Model
n The parameters of the model are learned analogously to the manner in 

which mixture multinomials are learned

n Given observation of (t,f), it we knew which urn it came from and the shift, 

we could compute all probabilities by counting!

q If shift is T and urn is Z

n Count(Z) = Count(Z) + 1

n For shift probability: Count(T|Z) = Count(T|Z)+1

n For urn: Count(t-T,f | Z) = Count(t-T,f|Z) + 1

q Since the value drawn from the urn was t-T,f

q After all observations are counted:

n Normalize Count(Z) to get P(Z)

n Normalize Count(T|Z) to get P(T|Z)

n Normalize Count(t,f|Z) to get P(t,f|Z)

n Problem: When learning the urns and shift distributions from a histogram, 

the urn (Z) and shift (T) for any draw of (t,f) is not known

q These are unseen variables
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Learning the Model
n Urn Z and shift T are unknown

q So (t,f) contributes partial counts to every value of T and Z

q Contributions are proportional to the a posteriori probability of Z and T,Z

n Each observation of (t,f) 

q P(z|t,f) to the count of the total number of draws from the urn

n Count(Z) = Count(Z) + P(z | t,f)

q P(z|t,f)P(T | z,t,f) to the count of the shift T for the shift distribution

n Count(T | Z) = Count(T | Z) + P(z|t,f)P(T | Z, t, f)

q P(z|t,f)P(T | z,t,f) to the count of (t-T, f) for the urn

n Count(t-T,f | Z) = Count(t-T,f | Z) + P(z|t,f)P(T | z,t,f)
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Shift invariant model: Update Rules

n Given data (spectrogram) S(t,f)

n Initialize P(Z), P(T|Z), P(t,f | Z)

n Iterate
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Shift-invariance in one time: example
n An Example: Two distinct sounds occuring with different repetition rates 

within a signal

q Modelled as being composed from two time-frequency bases

q NOTE: Width of patches must be specified

INPUT SPECTROGRAM

Discovered time-frequency 
“patch” bases (urns)

Contribution of individual bases to the recording
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Shift Invariance in Two Dimensions
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n We now have urn-specific shifts along both T and F

n The Drawing Process

q Select an urn Z with a probability P(Z)

q Draw SHIFT values (T,F) from Ps(T,F|Z)

q Draw (t,f) pair from the urn

q Add to the histogram at (t+T, f+F)

n This is a two-dimensional shift-invariant model

q We have shifts in both time and frequency

n Or, more generically, along both axes
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Learning the Model
n Learning is analogous to the 1-D case

n Given observation of (t,f), it we knew which urn it came from and 

the shift, we could compute all probabilities by counting!

q If shift is T,F and urn is Z

n Count(Z) = Count(Z) + 1

n For shift probability: ShiftCount(T,F|Z) = ShiftCount(T,F|Z)+1

n For urn: Count(t-T,f-F | Z) = Count(t-T,f-F|Z) + 1

q Since the value drawn from the urn was t-T,f

q After all observations are counted:

n Normalize Count(Z) to get P(Z)

n Normalize ShiftCount(T,F|Z) to get Ps(T,F|Z)

n Normalize Count(t,f|Z) to get P(t,f|Z)

n Problem: Shift and Urn are unknown
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Learning the Model
n Urn Z and shift T,F are unknown

q So (t,f) contributes partial counts to every value of T,F and Z

q Contributions are proportional to the a posteriori probability of Z and T,F|Z

n Each observation of (t,f) 

q P(z|t,f) to the count of the total number of draws from the urn

n Count(Z) = Count(Z) + P(z | t,f)

q P(z|t,f)P(T,F | z,t,f) to the count of the shift T,F for the shift distribution

n ShiftCount(T,F | Z) = ShiftCount(T,F | Z) + P(z|t,f)P(T | Z, t, f)

q P(T | z,t,f) to the count of (t-T, f-F) for the urn

n Count(t-T,f-F | Z) = Count(t-T,f-F | Z) + P(z|t,f)P(t-T,f-F | z,t,f)
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Shift invariant model: Update Rules

n Given data (spectrogram) S(t,f)

n Initialize P(Z), Ps(T,F|Z), P(t,f | Z)

n Iterate
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2D Shift Invariance: The problem of 
indeterminacy
n P(t,f|Z) and Ps(T,F|Z) are analogous

q Difficult to specify which will be the “urn” and which the 

“shift”

n Additional constraints required to ensure that one of 
them is clearly the shift and the other the urn

n Typical solution: Enforce sparsity on Ps(T,F|Z) 

q The patch represented by the urn occurs only in a few 

locations in the data
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Example: 2-D shift invariance

n Only one “patch” used to model the image (i.e. a single urn)
q The learnt urn is an “average” face, the learned shifts show the locations 

of faces
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Example: 2-D shift invarince

n The original figure has multiple handwritten 

renderings of three characters

q In different colours

n The algorithm learns the three characters and 

identifies their locations in the figure

Input data

D
is

c
o
v
e
re

d

P
a
tc

h
e
s

P
a
tc

h

L
o
c
a
ti
o
n
s
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Shift-Invariant Decomposition – Uses

n Signal separation

q The arithmetic is the same as before

q Learn shift-invariant bases for each source

q Use these to separate signals

n Dereverberation

q The spectrogram of the reverberant signal 
is simply the sum several shifted copies of 
the spectrogram of the original signal

n 1-D shift invariance

n Image Deblurring

q The blurred image is the sum of several 
shifted copies of the clean image

n 2-D shift invariance
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Beyond shift-invariance: transform 
invariance

n The draws from the urns may not only be shifted, 
but also transformed

n The arithmetic remains very similar to the shift-
invariant model

q We must now impose one of an enumerated set of 

transforms to (t,f), after shifting them by (T,F)

q In the estimation, the precise transform applied is an 

unseen variable
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Example: Transform Invariance

n Top left: Original figure

n Bottom left – the two bases discovered

n Bottom right –

q Left panel, positions of “a”

q Right panel, positions of “l”

n Top right: estimated distribution underlying original figure
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Transform Invariance: Uses and 
Limitations

n Not very useful to analyze audio

n May be used to analyze images and video

n Main restriction: Computational complexity

q Requires unreasonable amounts of memory and 

CPU

q Efficient implementation an open issue
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Example: Higher dimensional data
n Video example
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Summary

n Shift invariance

q Multinomial bases can be “patches”

n Representing time-frequency events in audio or other 

larger patterns in images

n Transform invariance

q The patches may further be transformed to 
compose an image

n Not useful for audio


