11-755 Machine Learning for Signal Processing

Sparse Overcomplete, Shift- and
Transtorm-Invariant
Representations

Class 15. 14 Oct 2009



' Recap: Mixture-multinomial mode
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» The basic model: Each frame in the magnitude
spectrogram is a histogram drawn from a mixture of
multinomial (urns)

= The probability distribution used to draw the spectrum for
the t-th frame is:

—P(f)= ZZPt(Z)P(f | 7)—— SOURCE specific

Frame-specific
bases

spectral distribution
Frame(time) specific mixture weight
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' Recap: Mixture-multinomial model
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» The individual multinomials represent the “spectral bases” that
compose all signals generated by the source

+ E.g., they may be the notes for an instrument

+ More generally, they may not have such semantic interpretation
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Recap: Learning Bases
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_earn bases from example spectrograms
nitialize bases (P(f|z)) for all z, for all
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Bases represent meaning spectral structures

Speech Signal bases Basis-specific spectrograms
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Frequency fi

Time £
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How about non-speech data

19x19 images = 361 dimensional vectors
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We can use the same model to represent other data
Images:
- Every face in a collection is a histogram

+ Each histogram is composed from a mixture of a fixed number of
multinomials

All faces are composed from the same multinomials, but the manner in which the
multinomials are selected differs from face to face

- Each component multinomial is also an image
And can be learned from a collection of faces

Component multinomials are observed to be parts of faces
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How many bases can we learn

The number of bases that must be learned is a
fundamental question

- How do we know how many bases to learn

- How many bases can we actually learn computationally

A key computational problem in learning bases:

+ The number of bases we can learn correcily is restricted by
the dimension of the data

= l.e., if the spectrum has F frequencies, we cannot estimate
more than F-7 component multinomials reliably

Why?

11-755 MLSP: Bhiksha Raj



‘ Indeterminacy in Learning Bases

3 3 3
» Consider the four histograms . 5 s 2
to the right 1 1 1 “
All of them are mixtures of the

same K component
multinomials B B
» For K< 3, asingle global

solution may exist H -

¢ l.e there may be a unique set
of component multinomials c*B1+d*B2
that explain all the . .
multinomials e"B1+"B2

» With error — model will not be g*B1+h*B2
perfect | |
. For K = 3 a trivial solution i"B1+j"B2
exists
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Indetemnacy C*B1+C*2*B2+C*3"B3

0.5B1+0.33B2+0.17B3

- We cannot learn a non-
trivial set of “optimal” bases 0.33B1+0.582+0.1783

from the histograms 0.4B1+0.2B2+0.4B3

- The component
3 3 3
2 2 2 2 2
ol
= Aninifinite set of solutions

multinomials we do learn tell
are possible B B2 B3

us nothing about the data
For K > 3, the problem only
1 1 1
E.g. the trivial solution plus 00 I 0 l° l 00
a random basis

gets worse
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Indeterminacy in signal representations

Specitra:

-+ If our spectra have D frequencies (no. of unique indices in
the DFT) then..

+ We cannot learn D or more meaningful component
multinomials to represent them

The trivial solution will give us D components, each of which
has probability 1.0 for one frequency and 0 for all others

This does not capture the innate specitral structures for the
source

Images: Not possible to learn more than P-1
meaningful component multinomials from a
collection of P-pixel images
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Overcomplete Representations

Representations where there are more bases than dimensions
are called Overcomplete

- E.g. more multinomial components than dimensions
- More L2 bases (e.g. Eigenvectors) than dimensions
- More non-negative bases than dimensions

Overcomplete representations are difficult to compute
+ Straight-forward computation results in indeterminate solutions

Overcomplete representations are required to represent the
world adequately

+ The complexity of the world is not restricted by the dimensionality
of our representations!
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How many bases to represent sounds/images?

In each case, the bases represent “typical unit structures”
+ Notes

+ Phonemes

+ Facial features..

To model the data well, all of these must be represented
How many notes in music

« Several octaves

+ Several instruments

The total number of notes required to represent all “typical” sounds in
music are in the thousands

The typical sounds in speech —
« Many phonemes, many variations, can number in the thousands
Images:

+ Millions of units that can compose an image — trees, dogs, walls, sky, etc.
etc. etc...
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How many can we learn

Typical Fourier representation of sound: 513 (or less) unique
frequencies

= |l.e. no more than 512 unique bases can be learned reliably

- These 512 bases must represent everything

Including the units of music, speech, and the other sounds in the
world around us

¢ Depending on what we’re attempting to model

Typical “tiny” image: 100x100 pixels
+ 10000 pixels
= l.e. no more than 9999 distinct bases can be learned reliably

- But the number of unique entities that can be represented in a
100x100 image is countless!

We need overcomplete representations to model these data well

11-755 MLSP: Bhiksha Raj



Learning Overcomplete Representations

Learning more multinomial components than
dimensions (frequencies or pixels) in the data leads
to indeterminate or useless solution

Additional criteria must be imposed in the learning
process to learn more components than dimensions

- Impose additional constraints that will enable us to obtain
meaningful solutions

We will require our solutions to be sparse
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SPARSE Decompos1t10ns
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Specify that for any specific frame only a small number of bases may be
used

+ Although there are many spectral structures, any given frame only has a few of
these

In other words, the mixture weights with which the bases are combined
must be sparse
¢ Have non-zero value for only a small number of bases

s Alternately, be of the form that only a small number of bases contribute
significantly
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The history of sparsity

The search for “sparse” decompositions has a long history
+ Even outside the scope of overcomplete representations

A landmark paper: Sparse Coding of Natural Images Produces Localized,

Oriented, Bandpass Receptive Fields, by Olshausen and Fields

« “The images we typically view, or natural scenes, constitute a minuscule fraction of the
space of all possible images. It seems reasonable that the visual cortex, which has
evolved and developed to effectively cope with these images, has discovered efficient
coding strategies for representing their structure. Here, we explore the hypothesis that
the coding strategy employed at the earliest stage of the mammalian visual cortex
maximizes the sparseness of the representation. We show that a learning algorithm
that attempts to find linear sparse codes for natural scenes will develop receptive fields
that are localized, oriented, and bandpass, much like those in the visual system.”

s Images can be described in terms of a small number of descriptors from a large set
E.g. a scene is “a grapevine plus grapes plus a fox plus sky”

Other studies indicate that human perception may be based on sparse
compositions of a large number of “icons”

The number of sensors (rods/cones in the eye, hair cells in the ear) is much
smaller than the number of visual / auditory objects in the world around us

« The representation is overcomplete
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‘ Representation m .2

n
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Conventional Eigen Analysis:

« Compute Eigen Vectors such that || X — EW||? is minimized
The columns of E are orthogonal to one another

Eigen analysis is an “L2” decomposition

¢ Minimizes the L2, or Euclidean error in composition

The maximum number of Eigen vectors = no. of dimensions D

We could use any set of D linearly independent vectors (e.g. a DxD matrix B); not
only the Eigen vectors

¢ The data vector could be expressed in the same manner as above

¢ The only distinction will now be that unlike E, the columns of A are no longer orthogonal
¢ The weights with which the bases must be combined are obtained by a pinv(B)*X
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‘ Overcomplete representations in [.2
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. Sparse L2 representation
«  Minimize ||X — BW||?

. Same as before, except the number of bases are much greater than the
number of dimensions
« The bases are no longer Eigen vectors

- The weights w; must now be sparse

« l.e. although the number of bases is > D, the number of non-zero weight
terms for any data X must be less than D

. Conventional dot product / psuedoinverse-based algorithms will not
give us the correct solution

+ They impose no constraint on W
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Sparse overcomplete representations in L.2

Problem:
- @Given an overcomplete set of bases B, B,, ... By
« Estimate the weights w,, w,, .. wy such that
« X=w;B; +w,B,... wyBy
X is D dimensionsal; D < N
+ And the set of weights {w} is sparse

Problem formulation:

« Argmin,, ||X—BW)||? + Constraint(W)
+ W is the set of weights in vector form

= The “constraint” is a sparsity constraint

- @Given many equivalent unconstrained solutions for W, it

forces the selection of the sparsest of these solutions
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Sparse L2 Decomposition

Problem formulation:
« Argmin,, ||X—BW)||? + Constraint(W)

The LO constraint

q

q

Objective to minimize = || X — BW||? + |[W]|,
Minimizes error of reconstruction AND minimizes the
number of non-zero terms in W

LO norm |W]|, = the number of non-zero terms by definition
Computationally intractable for large basis sets

Needs a combinatorial search
Approximate solutions:

COSamp

L2 solution with flooring

Etc.
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Sparse L2 Decomposition

Problem formulation:
« Argminy |[|[X—=BW]||? + |W|,
|W]|, is the L1 norm of W
i.e. the sum of the magnitude of all entries in W

The L1 constraint
= Minimization of LO is computationally intractable

= Under certain generic conditions, it is sufficient to minimize the L1 norm
instead
“Restricted Isometry” of B
The optimal L1 solution will also be the optimal LO solution

L1 minimization is a standard convex optimization problem
- Downloadable code is available from Caltech (the L1 magic package):
¢ http://www.acm.caltech.edu/I1magic/
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[earning Overcomplete L2 Representations

We have seen how to estimate weights given bases
How about learning the optimal set of bases?
Sparse PCA:

- Learn Orthogonal Eigen-like vectors that can be combined
sparsely

+ Cannot be overcomplete
Random projections

Other techniques for learning “dictionaries” for
overcomplete bases

Good information on Dave Donoho’s Stanford page
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‘ Sparsity and Overcompleteness for
Multinomial Models

h < W1‘+W2L+W3J+W4H ot

» Histograms are composed from more multinomials than bins
« X w,B;+w,B+w;B;+w,B, ...

»  The mixture weights combining the multinomials are sparse
« lLe{w}is sparse
« A different subset of weights w, are high for different data

- Over a large collection of data vectors, all bases will eventually
be used
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Estimating Mixture Weights given Multinomials

Basic estimation: Maximum likelihood
« Argmaxy log P(X;B,W) = Argmax,, Sy X(f)log(s; w; B(f))

Modified estimation: Maximum a posteriori
« Argmax,, Sy X(f)(s; w; B(f)) + blog P(W)

Sparsity obtained by enforcing an a priori probability
distribution P(W) over the mixture weights that
favors sparse mixture weights

The algorithm for estimating weights must be
modified to account for the priors

11-755 MLSP: Bhiksha Raj



The a priori distribution
A variety of a priori probability distributions all
provide a bias towards “sparse” solutions

The Dirichlet prior:
. P(W)=Z*p wat

The entropic prior:

o P(W) =Z"exp(-aH(W))
H(W) = entropy of W = -S, w, log(w,)
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A simplex view of the world

0.0.1) (1,0,0)

1,0)
(1,00 (0,0,1) (0,1,0)

The mixture weights are a probability distribution
q Si Wi = 10

They can be viewed as a vector
a W=[w,w,w,w;w, ...]
- The vector components are positive and sumto 1.0

All probability vectors lie on a simplex

= A convex region of a linear subspace in which all vectors sum to
1.0

11-755 MLSP: Bhiksha Raj



Probability Simplex

(1,0,0)

(0,0,1) (0,1,0)

The sparsest probability vectors lie on the vertices of the simplex
The edges of the simplex are progressively less sparse
- Two-dimensional edges have 2 non-zero elements

+ Three-dimensional edges have 3 non-zero elements
Etc
q .
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‘ Sparse Priors: Dirichlet

2d Dirichlet Distribution Visualization Tool

A

P(W) = Z* P, wa'

a=0.5

» For alpha < 1, sparse probability vectors are
more likely than dense ones
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Sparse Priors: The entropic prior

Entropic Distribution

A

P(W) = Z*exp(-aH(W))

a=0.5

A A

Vectors (probability distributions) with low entropy
are more probable than those with high entropy
- Low-entropy distributions are sparse!
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The Entropic Prior

The entropic prior “controls” the desired level
of sparsity in the mixture weights through a

Changing the sign of alpha can bias us
towards either higher entropies or lower
entropies
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Optimization with the entropic prior

The objective function
Argmax,, Sy X(f)(s; w; Bi(f)) - aH(W)

By estimating W such that the above
equation is maximized, we can derive
minimum entropy solutions

-+ Jointly optimize W for predicting the data while
minimizing its entropy
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The Expectation Maximization Algorithm

The parameters are actually learned using the Expectation
Maximization (EM) algorithm

The EM algorithm actually optimizes the following objective
function

. Q= s, PZ|f) X(Hlog(P(Z) P(f|2)) - aH(P(2))

The second term here is derived from the entropic prior
Optimization of the above needs a solution to the following

PIRIIPIACIFD
f

1+logP, =0
P Q) +a(l+logF(z)) + 1

The solution requires a new function:
+ The lambert W function
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Lambert’'s W Function

Lambert’s W function is the solution to: W, (X)

W + log(W) = X
«  Where W = F(X) is the Lambert function 1 —
Alternately, the inverse function of 0.5

« X=Wexp(W) 1 / .
In general, a multi-valued function 5

If X'is real, W is real for X > -1/e .

5 Still multi-valued

If we impose the restriction W > -1 and W == real we get the zeroth
branch of the W function

+ Single valued
For W < -1 and W == real we get the -1th branch of the W function
+ Single valued
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Estimating W,,(z)

An iterative solution
- Newton’s Method

wje’”*’i' — =z

ewi + w;evs |

- Halley lterations

wjewi — =z

ei(w; 4+ 1) — ':

Wi+ = Wy — w;+2)(w;ed —2)

2w ;42

- Code for Lambert’s W function is available on
wikipedia
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Solutions with entropic prior

—gl a

P(z)= ;
( ) W(_gel+_Z/a /a)

g=> S,(fIP(zl f)
f

= [P;(Jz) +a ( +log (P’(Z)))J

The update rules are the same as before, with one minor modification

To estimate the mixture weights, the above two equations must be
iterated

- To convergence
« Orjust for a few iterations

Alpha is the sparsity factor
P.(z) must be initialized randomly
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Learning Rules for Overcomplete Basis Set

Exactly the same as earlier, with the
modification that P,(z) is now estimated to be

sparse
« Initialize P,(z) for all t and P(f|z)

5 lterate
Pzl )= P(z)P(f 1z) . Z[:Pt(zlf)St(f)
| 2 REP(F12) S S e 8.
z' e
—gl a
F(z) = ) = > S.(f)P(zl
D= ey 9T LSDRED

F,(z)
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A Simplex Example for Overcompleteness

3 Hasis Vectors (010}

(100} -
p
1 / i —-Simplax Boundary
! m [Diata Points
oot W Easis Vactors
o) —Comeex Hull

Synthetic data: Four clusters of data within the probability simplex
Regular learning with 3 bases learns an enclosing triangle

Overcomplete solutions without sparsity restults in meaningless
solutions

Sparse overcomplete model captures the distribution of the data
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Sparsity can be employed without
overcompleteness

Overcompleteness requires sparsity

Sparsity does not require overcompleteness

5 Sparsity only imposes the constraint that the data
are composed from a mixture of as few
multinomial components as possible

« This makes no assumption about
overcompleteness
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E xamples without overcompleteness
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Left panel, Regular learning: most bases have significant energy in all frames

Right panel, Sparse learning: Fewer bases active within any frame
¢ Sparse decomposiions result in more localized activation of bases
. Bases, too, are better defined in their structure




Face Data: The etfect of sparsity

As solutions get more sparse, bases
become more informative

s Inthe limit, each basis is a complete
face by itself.

« Mixture weights simply select face

High-entropy mixture weights

Solution also allows for mixture
weights to have maximum entropy

« Maximally dense, i.e. minimally sparse

s The bases become much more
localized components

- -

. o SR =P el Sos

No sparsity — E=RSSsE===S=k=
ol S = ofe ste sfe &

The sparsity factor allows us to tune B e i

the bases we learn Sparse mixture weights
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‘Benefit of overcompleteness

& D-:i:b.l-:hd Facas E. Becaoratnsclons

C. Ongiral Test Images

A. Reconstruction Experiment

Mean SNR
5 2 o3 o> 03

-~ 19x19 pixel images (361 pixels)
» Up to1000 bases trained from 2000 face . ™ fmweroreazcomoned

»  SNR of reconstruction from overcomplete basis set more than
10dB better than reconstruction from corresponding “compact”
(regular) basis set
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Signal Processing: How

Exactly as before
Learn an overcomplete set of bases

For each new data vector to be processed,
compute the optimal mixture weights

+ Constrainting the mixture weights to be sparse
now

Use the estimated mixture weights and the
bases to perform additional processing
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Signal Separation with Overcomplete Bases

Learn overcomplete bases for each source

For each frame of the mixed signal

¢ Estimate prior probability of source and mixture weights for each source
Constraint: Use sparse learning for mixture weights

Estimate separated signals as §, (1) - St(f)ZPt(z,S | f)

<

F(f)=F (DB (f 1s) + F(s)B(f 1sp)

7N\ N 7N\ N\
R) Q@E@q 250 @Z@q 25)
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Sparse Overcomplete Bases: Separation

» 3000 bases for each of the speakers
+ The speaker-to-speaker ratio typically doubles (in dB) w.r.t “compact” bases
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The Limits of Overcompleteness

How many bases can we learn?

The limit is: as many bases as the number of

vectors in the training data
-+ Or rather, the number of distinct histograms in the

training data
Since we treat each vector as a histogram

It is not possible to learn more than this

number regardless of sparsity
-+ The arithmetic supports it, but the results will be
meaningless
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Working at the limits of overcompleteness:
The “Example-Based” Model

Every training vector is a basis
+ Normalized to be a distribution

Let S(i,f) be the t™" training vector
Let T be the total number of training vectors
The total number of basesis T

The ki basis is given by

s B(k,f) = S(k,f) / 5S(k,f) = S(k,f) / |S(k,f)|

Learning bases requires no additional learning steps
besides simply collecting (and computing spectra
from) training data
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The example based model — an illustration

AAA AAA AAA
A A A A, A A A
A A A A A
A A A A AA A A
A
A Ats A A AtL A A aAt, a
A A A A AA AAAAA A A A A
A A A 4L A A
A A A N A% Al A A
A A A A A A A
A A A A A A
A A A A A A

In the above example all training data lie on the curve shown (Left
Panel)

- Each of them is a vector that sums to 1.0

The learning procedure for bases learns multinomial components that
are linear combinations of the data (Middle Panel)

= These can lie anywhere within the area enclosed by the data

s The layout of the components hides the actual structure of the layout of the
data

The example based representation captures the layout of the data
perfectly (right panel)
+ Since the data are the bases

11-755 MLSP: Bhiksha Raj



Signal Processing with the Example Based
Model

All previously defined operations can be
performed using the example based model
exactly as before

+ For each data vector, estimate the optimal mixture
weights to combine the bases
Mixture weights MUST be estimated to be sparse

The example based representation is simply
a special case of an overcomplete basis set
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Tllustrations of separation with example-
based representation

ourse A Source A
Source B Source B
\ Mixture O Mixture
v Convex Hul - — ~Ciomex Hul
L A onvee Hull == Comex Hul
e shate for A « Estimate for
-+ Esfmate for + Estimate for
Approximation - Approximation
e xre e = of mixture
R 0
; +
o
urce _
mmmmmmmm
Source B
il o Mixdure
% e ":z Estimate for A
.-!'.:prnx'maﬁnn - Eaimate 8
* of midure . 5 .".ppr\:l__ roximation
of mixture
e,
+ n]

» Top panel: Separation from learned bases
» Bottom panel: Separation with example-based representation
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‘ Speaker Separation Example

Signal to Intararanca Hatio

-+ Speaker-to-interference ratio of separated
speakers

; State-of-the-art separation results
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Example-based model: .4/ the training
data?

In principle, no need to use all training data
as the model
- A well-selected subset will do

+ E.g.—Ignore spectral vectors from all pauses and
non-speech regions of speech samples

+ E.g.— eliminate spectral vectors that are nearly
identical

The problem of selecting the optimal set of
training examples remains open, however
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Summary So Far

PLCA:

+ The basic mixture-multinomial model for audio (and other
data)

Sparse Decomposition:

= The notion of sparsity and how it can be imposed on
learning

Sparse Overcomplete Decomposition:
= The notion of overcomplete basis set

Example-based representations
+ Using the training data itself as our representation
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‘Next up: Shift/Transtorm Invariance

, i 5 =g g -
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S000

S5000
Clelels] = ,":_ =1

3000

peiolelals

» Sometimes the “typical” structures that
compose a sound are wider than one spectral
frame

+ E.g. in the above example we note multiple
examples of a pattern that spans several frames
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‘Next up Shlft / Transform Invarlance

SO00

4000 EEE————

2000 =

» Sometimes the “typical” structures that compose a
sound are wider than one spectral frame

+ E.g.in the above example we note multiple examples of a
pattern that spans several frames

» Multiframe patterns may also be local in frequency

+ E.g. the two green patches are similar only in the region
enclosed by the blue box

11-755 MLSP: Bhiksha Raj



Patches are more representative than frames

» Four bars from a music example

» The spectral patterns are actually patches
= Not all frequencies fall off in time at the same rate

» The basic unit is a spectral patch, not a spectrum
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Images Patches often form the image

A typical image component may be viewed as a
patch

- The alien invaders

- Face like patches

- A car like patch
overlaid on itself many times..

11-755 MLSP: Bhiksha Raj



Shift-invariant modelling
A shift-invariant model permits individual
bases to be patches

Each patch composes the entire image.

The data is a sum of the compositions from
individual patches
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‘ Shift Invariance in one Dimension

i —
Rl 11111

» Our bases are now “patches”
¢ Typical spectro-temporal structures

» The urns now represent patches
¢ Each draw results in a (t,f) pair, rather than only f
¢«  Also associated with each urn: A shift probability distribution P(T|z)

» The overall drawing process is slightly more complex
»  Repeat the following process:

¢ Select an urn Z with a probability P(Z)

o Draw avalue T from P(t|2)

¢ Draw (t,f) pair from the urn

¢ Add to the histogram at (t+T, f)
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Shift Invariance in one Dimension
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The process is shift-invariant because the
probability of drawing a shift P(T|Z) does not
affect the probability of selecting urn Z

Every location in the spectrogram has
contributions from every urn patch
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Shift Invariance in one Dimension

oo 1

The process is shift-invariant because the
probability of drawing a shift P(T|Z) does not
affect the probability of selecting urn Z

Every location in the spectrogram has
contributions from every urn patch
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Shift Invariance in one Dimension
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The process is shift-invariant because the
probability of drawing a shift P(T|Z) does not
affect the probability of selecting urn Z

Every location in the spectrogram has
contributions from every urn patch
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Probability of drawing a particular (t,f) combination

P, f) = ZP(z)ZP(tI Pt f12)
Z t

The parameters of the model:

« P(t,f|z) —the urns

« P(T|z) —the urn-specific shift distribution
+ P(z) — probability of selecting an urn

The ways in which (t,f) can be drawn:

+ Selectany urn z

+ Draw T from the urn-specific shift distribution

+ Draw (t-T,f) from the urn

The actual probability sums this over all shifts and urns
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Learning the Model

The parameters of the model are learned analogously to the manner in
which mixture multinomials are learned

Given observation of (,f), it we knew which urn it came from and the shift,
we could compute all probabilities by counting!
« IfshiftisTandurnis Z

Count(Z) = Count(Z) + 1

For shift probability: Count(T|Z) = Count(T|Z)+1

For urn: Count(t-T,f | Z) = Count(t-T,f|Z) + 1

« Since the value drawn from the urn was t-T f

- After all observations are counted:
Normalize Count(Z) to get P(2)
Normalize Count(T|Z) to get P(T|2)
Normalize Count(t,f|Z) to get P(t,f|Z)

Problem: When learning the urns and shift distributions from a histogram,
the urn (Z) and shift (T) for any draw of (t,f) is not known

5 These are unseen variables
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Learning the Model

Urn Z and shift T are unknown
« So (t,f) contributes partial counts to every value of T and Z
+ Contributions are proportional to the a posteriori probability of Zand T,Z

P, f.Z) = P(Z)ZP(T | Z)P(t -T, £ 12) P(T.t, f1Z)=P(T | Z)P(t T, f17)
T
P, f,7) P(T,t-T,f1Z)
P(Z I\t f) = P(T|Z.t. f)=
ol ZP(t,f,Z') ( 7 ZP(T',t—T’,fIZ)
Z' T'

Each observation of (t,f)
+  P(z|t,f) to the count of the total number of draws from the urn
Count(Z) = Count(Z) + P(z | t,f)

«  Pzt,H)P(T | z,t,f) to the count of the shift T for the shift distribution
Count(T | Z) = Count(T | Z) + P(z|t,f)P(T | Z, t, f)

«  P(zt,H)P(T | z,t,f) to the count of (t-T, f) for the urn
Count(t-T,f | Z) = Count(t-T.f | Z) + P(z[t,))P(T | z,t.f)



Shift invariant model: Update Rules

Given data (spectrogram) S(t,f)
Initialize P(2), P(T|Z), P(t,f | 2)

lterate
P, f.Z) = P(Z)ZP(T | Z)P(t -T, £ 12) P(T.t, f12)=P(T|Z)P(t -T, f 1Z)
T
P, f.7) P(T,t-T,f1Z)
P(ZIt, )= P(TZ,t, )=
&ling) ZP(t,fZ) ( g ZP(T',t—T’,fIZ)
yA T'
ZZP(Z £, £)S(t, £) ZZP(Z 't, FYP(T 1 Z,t, )S(t, f)
P(Z) = —'. P(T1Z) =———2.
& ZZZP(Z’It,f)S(t,f) S ZZZP(ZIt,f)P(T'IZ,t,f)S(t,f)
zZ' t f T t f

ZP(Z \'T, FYP(T -t1Z,T, f)S(T, f)

P(t, f1Z) = =k
.512) ' P@IT.PT 1127, )ST. f)
T

t'




Shift-invariance in one time: example
+An Example: Two distinct sounds occuring with different repetition rates

within a signal

+ Modelled as being composed from two time-frequency bases
« NOTE: Width of patches must be specified

INPUT SPECTROGRAM

malzed Frequency (varacisample)  Nomelized Fraquency (::xradisample

Discovered time-frequency Contribution of individual bases to the recording
“patch” bases (urns) ’



‘ Shift Invariance in Two Dimensions

md

>
-l

- We now have urn-specific shifts along both T and F

» The Drawing Process
« Select an urn Z with a probability P(Z)
« Draw SHIFT values (T,F) from P (T,F|Z)
« Draw (1,f) pair from the urn
- Add to the histogram at (t+T, f+F)

. This is a two-dimensional shift-invariant model

= We have shifts in both time and frequency
» Or, more generically, along both axes
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Learning the Model

Learning is analogous to the 1-D case

Given observation of (i,f), it we knew which urn it came from and
the shift, we could compute all probabilities by counting!
+ Ifshiftis T,Fand urnis Z

Count(Z) = Count(Z) + 1

For shift probability: ShiftCount(T,F|Z) = ShiftCount(T,F|Z)+1

For urn: Count(t-T,f-F | Z) = Count(t-T,f-F|Z) + 1

¢ Since the value drawn from the urn was t-T,f

- After all observations are counted:
Normalize Count(Z) to get P(Z)
Normalize ShiftCount(T,F|Z) to get P((T,F|Z)
Normalize Count(t,f|Z) to get P(t,f|Z)

Problem: Shift and Urn are unknown
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Learning the Model

Urn Z and shift T,F are unknown
« So (t,f) contributes partial counts to every value of T,F and Z
- Contributions are proportional to the a posteriori probability of Z and T,F|Z

P@.f.Z)=P(Z)Y P(T.FIZ)P(~T.f~F1Z)  P(T,F.t,f1Z)=P(T,F\Z)P(t~T.f ~F12)
T.F
P(ZI1, f) =l 2) P F 121, fy =L OF =T f ~F12)

ZP(T',F',t—T',f ~F12)
T.F'

Each observation of (t,f)
+  P(z|t,f) to the count of the total number of draws from the urn
Count(Z) = Count(Z) + P(z | t,f)

«  P(zt,))P(T,F | z,t,f) to the count of the shift T,F for the shift distribution
ShiftCount(T,F | Z) = ShiftCount(T,F | Z) + P(z|t,))P(T | Z, 1, )

« P(T | zt,f) to the count of (t-T, f-F) for the urn
Count(t-T,f-F | Z) = Count(t-T,f-F | Z) + P(z|t,))P(t-T f-F | z,t,f)



Shift invariant model: Update Rules

Given data (spectrogram) S(t,f)
Initialize P(Z), P,(T,F|2), P(t,f | Z2)

lterate
P, f,Z) = P(Z)ZP(T,F | Z)P(t ~T, f —F1Z) P(T,F,t,f1Z)=P(T,F|Z)P(t-T, f - F|Z)
T,F
P (Y £ PT.F 121 f) o PEFot =T, ~F12Z)
ZP(t,f VA ZP(T',F',t ~T',f - F'1Z)
Z' T .F'
ZZP(Z ', £)S(t, f) ZZP(Z 't, F)YP(T,F1Z,t, f)S(, f)
P(Z) = == P(T,F1Z) =L
SN P@1 S 1) SNYNUN Pz £PA FU 2 £)S G f)
AR f TW F' t f
ZP(Z \'T,F)P(T —t,F — f1Z,T,F)S(T,F)
P, f12) =

T,F
ZZP(Z \'T,F)P(T —1',F - f1Z,T,F)S(T,F)

t'.f'T.F
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2D Shift Invariance: The problem of
indeterminacy
P(t,flZ) and P,(T,F|Z) are analogous

- Difficult to specify which will be the “urn” and which the
“shift”

Additional constraints required to ensure that one of
them is clearly the shift and the other the urn

Typical solution: Enforce sparsity on P(T,F|Z)

= The patch represented by the urn occurs only in a few
locations in the data
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E xample: 2-D shift invarince

- The original figure has multiple handwritten
renderings of three characters

+ In different colours

-+ The algorithm learns the three characters and
identifies their locations in the figure

Input data
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-~ Signal separation
+ The arithmetic is the same as before
s Learn shift-invariant bases for each source
. Use these to separate signals e

2 8 2 &8 i

-~ Dereverberation i
q Thg spectrogram of the reve.rberant glgnal T et

is simply the sum several shifted copies of e A

. e . F 11093 21UDBL

the spectrogram of the original signal 097494459230781640

» 1-D shift invariance R

8 2 & B

628620899862803482

» Image Deblurring

« The blurred image is the sum of several
shifted copies of the clean image
»  2-D shift invariance
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Beyond shift-invariance: transtorm
Invariance

- [l

S’ ..
S » i

The draws from the urns may not only be shifted,
but also transformed

The arithmetic remains very similar to the shift-
invariant model

- We must now impose one of an enumerated set of
transforms to (t,f), after shifting them by (T,F)

= In the estimation, the precise transform applied is an
unseen variable
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Example: Transform Invariance

Top left: Original figure

Bottom left — the two bases discovered
Bottom right —

- Left panel, positions of “a”

= Right panel, positions of “I”

Top right: estimated distribution underlying original figure
11-755 MLSP: Bhiksha Raj




Transform Invariance: Uses and
Limitations

Not very useful to analyze audio
May be used to analyze images and video

Main restriction: Computational complexity

- Requires unreasonable amounts of memory and
CPU

- Efficient implementation an open issue
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Example: Higher dimensional data

Video example

Descriplion of Inprut Kemel 1




Summary
Shift invariance

- Multinomial bases can be “patches”

Representing time-frequency events in audio or other
larger patterns in images

Transform invariance

- The patches may further be transformed to
compose an image
Not useful for audio
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