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Summary So Far 

  PLCA: 
  The basic mixture-multinomial model for audio (and other 

data) 

  Sparse Decomposition: 
  The notion of sparsity and how it can be imposed on 

learning 

  Sparse Overcomplete Decomposition: 
  The notion of overcomplete basis set 

  Example-based representations 
  Using the training data itself as our representation 
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Next up: Shift/Transform Invariance 

  Sometimes the “typical” structures that 
compose a sound are wider than one 
spectral frame 
  E.g. in the above example we note multiple 

examples of a pattern that spans several frames 
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Next up: Shift/Transform Invariance 

  Sometimes the “typical” structures that compose a 
sound are wider than one spectral frame 
  E.g. in the above example we note multiple examples of a 

pattern that spans several frames 
  Multiframe patterns may also be local in frequency 

  E.g. the two green patches are similar only in the region 
enclosed by the blue box 
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Patches are more representative than frames 

  Four bars from a music example 
  The spectral patterns are actually patches 

  Not all frequencies fall off in time at the same rate 
  The basic unit is a spectral patch, not a spectrum 
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Images: Patches often form the image 

  A typical image component may be viewed as a 
patch 
  The alien invaders 
  Face like patches 
  A car like patch  

  overlaid on itself many times.. 
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Shift-invariant modelling 
  A shift-invariant model permits individual 

bases to be patches 
  Each patch composes the entire image. 
  The data is a sum of the compositions from 

individual patches 
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Shift Invariance in one Dimension 

  Our bases are now “patches” 
  Typical spectro-temporal structures 

  The urns now represent patches 
  Each draw results in a (t,f) pair, rather than only f 
  Also associated with each urn:  A shift probability distribution P(T|z) 

  The overall drawing process is slightly more complex 
  Repeat the following process: 

  Select an urn Z with a probability P(Z) 
  Draw a value T from P(t|Z) 
  Draw (t,f) pair from the urn 
  Add to the histogram at (t+T, f) 

5 
15 8 399 6 81 444 81 164 5 5 98 1 

147 224 369 47 224 99 1 327 2 74 453 1 
147 201 7 37 111 37 1 38 7 520 453 91 

127 24 69 477 203 515 101 27 411 501 502 
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Shift Invariance in one Dimension 

  The process is shift-invariant because the 
probability of drawing a shift P(T|Z) does not 
affect the probability of selecting urn Z 

  Every location in the spectrogram has 
contributions from every urn patch 

5 
15 8 399 6 81 444 81 164 5 5 98 1 

147 224 369 47 224 99 1 327 2 74 453 1 
147 201 7 37 111 37 1 38 7 520 453 91 

127 24 69 477 203 515 101 27 411 501 502 
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Shift Invariance in one Dimension 

5 
15 8 399 6 81 444 81 164 5 5 98 1 

147 224 369 47 224 99 1 327 2 74 453 1 
147 201 7 37 111 37 1 38 7 520 453 91 

127 24 69 477 203 515 101 27 411 501 502 

  The process is shift-invariant because the 
probability of drawing a shift P(T|Z) does not 
affect the probability of selecting urn Z 

  Every location in the spectrogram has 
contributions from every urn patch 
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Shift Invariance in one Dimension 

5 
15 8 399 6 81 444 81 164 5 5 98 1 

147 224 369 47 224 99 1 327 2 74 453 1 
147 201 7 37 111 37 1 38 7 520 453 91 

127 24 69 477 203 515 101 27 411 501 502 

  The process is shift-invariant because the 
probability of drawing a shift P(T|Z) does not 
affect the probability of selecting urn Z 

  Every location in the spectrogram has 
contributions from every urn patch 
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Probability of  drawing a particular (t,f) combination 

  The parameters of the model: 
  P(t,f|z) – the urns 
  P(T|z) – the urn-specific shift distribution 
  P(z) – probability of selecting an urn 

  The ways in which (t,f) can be drawn: 
  Select any urn z 
  Draw T from the urn-specific shift distribution 
  Draw (t-T,f) from the urn 

  The actual probability sums this over all shifts and urns 



11-755 MLSP: Bhiksha Raj 

Learning the Model 
  The parameters of the model are learned analogously to the manner in 

which mixture multinomials are learned 

  Given observation of (t,f), it we knew which urn it came from and the shift, 
we could compute all probabilities by counting! 
  If shift is T and urn is Z 

  Count(Z) = Count(Z) + 1 
  For shift probability: Count(T|Z) = Count(T|Z)+1 
  For urn: Count(t-T,f | Z) = Count(t-T,f|Z) + 1 

 Since the value drawn from the urn was t-T,f 

  After all observations are counted: 
  Normalize Count(Z) to get P(Z) 
  Normalize Count(T|Z) to get P(T|Z) 
  Normalize Count(t,f|Z) to get P(t,f|Z) 

  Problem: When learning the urns and shift distributions from a histogram, 
the urn (Z) and shift (T) for any draw of (t,f) is not known 
  These are unseen variables 
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Learning the Model 
  Urn Z and shift T are unknown 

  So (t,f) contributes partial counts to every value of T and Z 
  Contributions are proportional to the a posteriori probability of Z and T,Z 

  Each observation of (t,f)  
   P(z|t,f) to the count of the total number of draws from the urn 

  Count(Z) = Count(Z) + P(z | t,f) 

  P(z|t,f)P(T | z,t,f) to the count of the shift T for the shift distribution 
  Count(T | Z) = Count(T | Z) + P(z|t,f)P(T | Z, t, f) 

  P(z|t,f)P(T | z,t,f) to the count of (t-T, f) for the urn 
  Count(t-T,f | Z) = Count(t-T,f | Z) + P(z|t,f)P(T | z,t,f) 



11-755 MLSP: Bhiksha Raj 

Shift invariant model: Update Rules 
  Given data (spectrogram) S(t,f) 
  Initialize P(Z), P(T|Z), P(t,f | Z) 
  Iterate 
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Shift-invariance in one time: example 
  An Example: Two distinct sounds occuring with different repetition rates 

within a signal 
  Modelled as being composed from two time-frequency bases 
  NOTE: Width of patches must be specified 

INPUT SPECTROGRAM


Discovered time-frequency  
“patch” bases (urns)


Contribution of individual bases to the recording




11-755 MLSP: Bhiksha Raj 

Shift Invariance in Two Dimensions 

5 
15 8 399 6 81 444 81 164 5 5 98 1 

147 224 369 47 224 99 1 327 2 74 453 1 
147 201 7 37 111 37 1 38 7 520 453 91 

127 24 69 477 203 515 101 27 411 501 502 

  We now have urn-specific shifts along both T and F 
  The Drawing Process 

  Select an urn Z with a probability P(Z) 
  Draw SHIFT values (T,F) from Ps(T,F|Z) 
  Draw (t,f) pair from the urn 
  Add to the histogram at (t+T, f+F) 

  This is a two-dimensional shift-invariant model 
  We have shifts in both time and frequency 

  Or, more generically, along both axes 
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Learning the Model 
  Learning is analogous to the 1-D case 

  Given observation of (t,f), it we knew which urn it came from and 
the shift, we could compute all probabilities by counting! 
  If shift is T,F and urn is Z 

  Count(Z) = Count(Z) + 1 
  For shift probability: ShiftCount(T,F|Z) = ShiftCount(T,F|Z)+1 
  For urn: Count(t-T,f-F | Z) = Count(t-T,f-F|Z) + 1 

 Since the value drawn from the urn was t-T,f-F 

  After all observations are counted: 
  Normalize Count(Z) to get P(Z) 
  Normalize ShiftCount(T,F|Z) to get Ps(T,F|Z) 
  Normalize Count(t,f|Z) to get P(t,f|Z) 

  Problem: Shift and Urn are unknown 
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Learning the Model 
  Urn Z and shift T,F are unknown 

  So (t,f) contributes partial counts to every value of T,F and Z 
  Contributions are proportional to the a posteriori probability of Z and T,F|Z 

  Each observation of (t,f)  
   P(z|t,f) to the count of the total number of draws from the urn 

  Count(Z) = Count(Z) + P(z | t,f) 

  P(z|t,f)P(T,F | z,t,f) to the count of the shift T,F for the shift distribution 
  ShiftCount(T,F | Z) = ShiftCount(T,F | Z) + P(z|t,f)P(T | Z, t, f) 

  P(T | z,t,f) to the count of (t-T, f-F) for the urn 
  Count(t-T,f-F | Z) = Count(t-T,f-F | Z) + P(z|t,f)P(t-T,f-F | z,t,f) 
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Shift invariant model: Update Rules 
  Given data (spectrogram) S(t,f) 
  Initialize P(Z), Ps(T,F|Z), P(t,f | Z) 
  Iterate 
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2D Shift Invariance: The problem of  
indeterminacy 
  P(t,f|Z) and Ps(T,F|Z) are analogous 

  Difficult to specify which will be the “urn” and which the 
“shift” 

  Additional constraints required to ensure that one of 
them is clearly the shift and the other the urn 

  Typical solution: Enforce sparsity on Ps(T,F|Z)  
  The patch represented by the urn occurs only in a few 

locations in the data 
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Example: 2-D shift invariance 

  Only one “patch” used to model the image (i.e. a single urn) 
  The learnt urn is an “average” face, the learned shifts show the locations 

of faces 
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Example: 2-D shift invarince 

  The original figure has multiple handwritten 
renderings of three characters 
  In different colours 

  The algorithm learns the three characters and 
identifies their locations in the figure 

Input data 

D
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Shift-Invariant Decomposition – Uses 
  Signal separation 

  The arithmetic is the same as before 
  Learn shift-invariant bases for each source 
  Use these to separate signals 

  Dereverberation 
  The spectrogram of the reverberant signal 

is simply the sum several shifted copies of 
the spectrogram of the original signal 
  1-D shift invariance 

  Image Deblurring 
  The blurred image is the sum of several 

shifted copies of the clean image 
  2-D shift invariance 
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Beyond shift-invariance: transform 
invariance 

  The draws from the urns may not only be shifted, but 
also transformed 

  The arithmetic remains very similar to the shift-
invariant model 
  We must now impose one of an enumerated set of 

transforms to (t,f), after shifting them by (T,F) 
  In the estimation, the precise transform applied is an 

unseen variable 

5 
15 8 399 6 81 444 81 164 5 5 98 1 

147 224 369 47 224 99 1 327 2 74 453 1 
147 201 7 37 111 37 1 38 7 520 453 91 

127 24 69 477 203 515 101 27 411 501 502 



Transform invariance: Generation 
  The set of transforms is enumerable 

  E.g. scaling by 0.9, scaling by 1.1, rotation right by 90degrees, rotation 
left by 90 degrees, rotation by 180 degrees, reflection 

  Transformations can be chosen by draws from a distribution over 
transforms 
  E.g. P(rotation by 90 degrees) = 0.2.. 
  Distributions are URN SPECIFIC 

  The drawing process: 
  Select an urn Z (patch) 
  Select a shift (T,F) from Ps(T, F| Z) 
  Select a transform from P(txfm | Z) 
  Select a (t,f) pair from P(t,f | Z) 
  Transform (t,f) to txfm(t,f) 
  Increment the histogram at txfm(t,f) + (T,F) 
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Transform invariance 
  The learning algorithm must now estimate 

 P(Z) – probability of selecting urn/patch in any draw 
 P(t,f|Z) – the urns / patches 
 P(txfm | Z) – the urn specific distribution over transforms 
 Ps(T,F|Z) – the urn-specific shift distribution 

  Essentially determines what the basic shapes are, where they occur in 
the data and how they are transformed 

  The mathematics for learning are similar to the maths for shift 
invariance 
 With the addition that each instance of a draw must be fractured into urns, shifts 

AND transforms 

  Details of learning are left as an exercise 
 Alternately, refer to Madhusudana Shashanka’s PhD thesis at BU 

11-755 MLSP: Bhiksha Raj 
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Example: Transform Invariance 

  Top left: Original figure 
  Bottom left – the two bases discovered 
  Bottom right –  

  Left panel, positions of “a” 
  Right panel, positions of “l” 

  Top right: estimated distribution underlying original figure 



Transform invariance: model limitations 
and extensions 
  The current model only allows one transform to be 

applied at any draw 
  E.g. a basis may be rotated or scaled, but not scaled and 

rotated 
  An obvious extension is to permit combinations of 

transformations 
  Model must be extended to draw the combination from 

some distribution 
  Data dimensionality: All examples so far assume 

only two dimensions (e.g. in spectrogram or image) 
  The models are trivially extended to higher-

dimensional data 
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Transform Invariance: Uses and 
Limitations 

  Not very useful to analyze audio 
  May be used to analyze images and video 

  Main restriction: Computational complexity 
  Requires unreasonable amounts of memory and 

CPU 
  Efficient implementation an open issue 
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Example: Higher dimensional data 
  Video example 
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Summary 
  Shift invariance 

  Multinomial bases can be “patches” 
  Representing time-frequency events in audio or other 

larger patterns in images 

  Transform invariance 
  The patches may further be transformed to 

compose an image 
  Not useful for audio 
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De-noising Audio Signals 



De-noising 

  Multifaceted problem 
  Removal of unwanted artifacts 
  Clicks, hiss, warps, interfering sounds, … 

  For now 
  Constant noise removal 

  Wiener filters, spectral/power subtraction 
  Click detection and restoration 

  AR models for abnormality detection 
  AR models for making up missing data 



The problem with audio recordings 
  Recordings are inherently messy!! 
  Recordings capture room resonances, air conditioners, street 

ambience, etc … 
  Resulting in low frequency rumbling sounds (the signature quality of a low-

budget recording!) 

  Magnetic recording media get demagnetized 
  Results in high frequency hissing sounds (old tapes) 

  Mechanical recording media are littered with debris 
  Results in clicking and crackling sounds (ancient vinyl disks, optical film 

soundtracks) 

  Digital media feature sample drop-outs 
  Results in gaps in audio which when short are perceived as clicks, otherwise 

it is an audible gap (damaged CDs, poor internet streaming, bad bluetooth 
headsets) 



Restoration of  audio 
  People don’t like noisy recordings!! 

  There is a need for audio restoration work 

  Early restoration work was an art form 
  Experienced engineers would design filters to best cover defects, cut 

and splice tapes to remove unwanted parts, etc. 
  Results were marginally acceptable 

  Recent restoration work is a science 
  Extensive use of signal processing and machine learning 
  Results are quite impressive! 



Audio Restoration I 
Constant noise removal 
  Noise is often inherent in a recording or 

slowly creeps in the recording media 

  Hiss, rumbling, ambience, … 
  Approach 

  Figure out noise characteristics 
  Spectral processing to make up for noise 



Describing additive noise 

  Assume additive noise 

 x(t) = s(t) + n(t)  

  In the frequency domain 

  Find the spots where we have 
only isolated noise 
  Average them and get noise 

spectrum 

Sections of isolated noise 
(or at least no useful signal) 



Spectral subtraction methods 
  We can now (perhaps) 

estimate the clean sound 
  We know the characteristics of 

the noise (as described from the 
spectrum µ(f)) 

  But, we will assume: 
  The noise source is constant 

  If the noise spectrum 
changes µ(f) is not a valid 
noise description anymore 

  The noise is additive 
Sections of isolated noise 
(or at least no useful signal) 



Spectral subtraction 
  Magnitude subtraction 

  Subtract the noise 
magnitude spectrum from 
the recording’s 

  We can then modulate the 
magnitude of the original 
input to reconstruct 

  Sounds pretty good … 
Original input 

After spectral subtraction 
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Estimating the noise spectrum 

  Noise is usually not stationary 
  Although the rate of change with time may be slow 

  A running estimate of noise is required 
  Update noise estimates at every frame of the audio 

  The exact location of “noise-only” segments is never 
known 
  For speech signals we use an important characteristic of speech to 

discover speech segments (and, consequently noise-only 
segments) in the audio 

  The onset of speech is always indicated by a sudden increase in 
the energy level in the signal 



A running estimate of  noise 
  The initial T frames in any recording are assumed to be 

free of the speech signal 
  Typically T = 10 

  The noise estimate N(T,f) is estimated as 
      N(T,f) = (1/T) Σt |X(t,f)| 

  Subsequent estimates are obtained as follows 
  Assumption: The magnitude spectrum increases suddenly in 

value at the onset of speech 
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A running estimate of  noise 

•  p is an exponent term that is typically set to either 2 or 1 
o  p = 2 : power spectrum; p = 1 : magnitude spectrum 

•  λ is a noise update factor 
o  Typically set in the range 0.1 – 0.5 
o  Accounts for time-varying noise 

•  β is a thresholding term 
o  A typical value of β is 5.0 
o  If the signal energy jumps by a factor of β, speech onset has 

occurred 

o  Other more complex rules may be applied to detect speech offset 



Cancelling the Noise 

  Simple Magnitude Subtraction 
  |S(t,f)| = |X(t,f)| - |N(t,f)| 

  Power subtraction 
  |S(t,f)| 2 = |X(t,f)| 2 - |N(t,f)|2 

  Filtering methods: S(t,f) = H(t,f)X(t,f)  
  Weiner Filtering: build an optimal filter to remove the 

estimated noise 
  Maximum-likelihood estimation.. 

11-755 MLSP: Bhiksha Raj 



The Filter Functions 
  We have a source plus noise spectrum 

  The desired output is some function of the input 
and the noise spectrum 

  Let’s make it a “gain function” 

  For spectral subtraction the gain function is: 



Filters for denoising 

  Magnitude subtraction: 

  Power subtraction: 

  Wiener filter: 

  Maximum likelihood: 



Filter function comparison 



Examples of  various filter functions 

Original 

Magnitude 

subtraction 

Power 

subtraction 

Wiener 

filter 

Maximum 

likelihood 



“Musical noise” 
  What was that weirdness with 

the Wiener filter??? 
  An artifact called musical noise 
  The other approaches had it too 

  Takes place when the signal to 
noise ratio is small 
  Ends up on the steep part of the 

gain curve 
 Small fluctuations are then 

magnified 
  Results in complex or negative 

gain 
 An awkward situation! 

  The result is sinusoids popping 
in and out 
  Hence the tonal overload Noise reduced noise! 

(lots of musical noise) 



Reducing musical noise 
  Thresholding 

  The gain curve is steeper on the negative side this 
removes effects in that area 

  Scale the noise spectrum 

  N( f ) = α  N(f), α > 1 
  (Linearly) increases gain in the new location 

  Smoothing 
 e.g. H(t,f) = .5H(t,f) + .5H (t-1,f) 
  Or some other time averaging 
  Reduces sudden tone on/offs 
  But adds a slight echo 

Wiener filter 

With thresholding 

With thresholding & smoothing 
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Reducing musical noise 

  Thresholding : Moves the operating point to a less sloped region 
of the curve 

  Oversubtraction: Increases the slope in these regions for better 
differential gain 

  Smoothing: H(t,f) = 0.5H(t,f) + 0.5H(t-1,f) 
  Adds an echo 

Wiener filter 

With thresholding and oversub 

With thresholding, oversub, 
         and smoothing 



Audio restoration II 
Click/glitch/gap removal 

  Two step process 
  Detection of abnormality 
  Replacement of corrupted data 

  Detection stuff 
  Autoregressive modeling for 

abnormality detection 
  Data replacement 

  Interpolation of missing data using 
autoregressive interpolation 



Starting signal 

  Can you spot the glitches? 



Autoregressive (AR) models 

  Predicting the next sample of a series using a 
weighted sum of the past samples 

  The weights a can be estimated upon 
presentation of a training input 
  Least squares solution of above equation 
  Fancier/faster estimators, e.g. aryule in MATLAB 



Matrix formulation 

  Scalar version 

  Matrix version 



Measuring prediction error 

  As Convolution 

 e = x - a * x 

  As matrix operation 

  Overall error variance: eTe 



Measuring prediction error 

  Convolution 

 e = x - a * x 

  Solution for a must minimize error variance: 
eTe

  While maintaining the Toeplitz structure of a! 

  A variety of solution techniques are available 
  The most popular one is the “Levinson Durbin” 

algorithm 



Discovering abnormalities 

  The AR models smooth and predictable 
things, e.g. music, speech, etc 

  Clicks, gaps, glitches, noise are not very 
predictable (at least in the sense of a 
meaningful signal) 

  Methodology 
  Learn an AR model on your signal type 
  Measure prediction error on the noisy data 
  Abnormalities appear as spikes in error 



Glitch detection example 

  Glitches are clearly detected as spikes in 
the prediction error 

  Why?  Glitches are unpredictable! 



Now what? 

  Detecting the glitches is 
only one step! 

  How to we remove 
them? 

  Information is lost! 
  We need to make up data! 

  This is an interpolation 
problem 
  Filling in missing data 
  Hints provided from 

neighboring samples 



Interpolation formulation 

xk


xu


  Detection of spikes defines 
areas of missing samples 
  ± N samples from glitch point 

  Group samples to known and 
unknown sets according to 
spike detection positions 
  xk = K·x, xu = U·x

  x = (U·x + K·x) 
  Transforms U and K maintain only 

specific data ( = unit matrices with 
appropriate missing rows) 



Picking sets of  samples 



Making up the data 

  AR model error is 
  e = A·x = A·(U·xu + 
K·xk)


  We can solve for xu 
  Ideally e is 0 

  Hence zero error 
estimate for missing 
data is:

  A·U·xu = -A·K·xk

  xu = -(A·U)+ ·A·K·xk 
  (A·U)+  is pseudo-

inverse 

xk


xu




Reconstruction zoom in 
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Restoration recap 

  Constant noise removal 
  Spectral subtraction/Wiener filters 
  Musical noise and tricks to avoid it 

  Click/glitch/gap detection 
  Music/speech is very predictable 
  AR models to detect abnormalities 

  Missing sample interpolation 
  AR model for creating missing data 


