11-755 Machine Learning for Signal Processing

Shift- and Transform-Invariant
Representations

Denoising Speech Signals

Class 18. 22 Oct 2009



Summary So Far

PLCA:

o The basic mixture-multinomial model for audio (and other
data)

Sparse Decomposition:

o The notion of sparsity and how it can be imposed on
learning

Sparse Overcomplete Decomposition:
o The notion of overcomplete basis set

Example-based representations
o Using the training data itself as our representation
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= Sometimes the “typical” structures that
compose a sound are wider than one
spectral frame

o E.g. in the above example we note multiple
examples of a pattern that spans several frames
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= Sometimes the “typical” structures that compose a
sound are wider than one spectral frame

o E.g. in the above example we note multiple examples of a
pattern that spans several frames

= Multiframe patterns may also be local in frequency

o E.g. the two green patches are similar only in the region
enclosed by the blue box
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‘ Patches are more representative than trames

= Four bars from a music example

= The spectral patterns are actually patches
o Not all frequencies fall off in time at the same rate

= The basic unit is a spectral patch, not a spectrum
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Images: Patches often form the image

A typical image component may be viewed as a
patch

o The alien invaders
o Face like patches

o Acar like patch
overlaid on itself many times..
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Shift-invariant modelling
A shift-invariant model permits individual
bases to be patches

Each patch composes the entire image.

The data is a sum of the compositions from
iIndividual patches
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Our bases are now “patches”
Typical spectro-temporal structures

a

The urns now represent patches

a

a

IE 1 1 1 1 1 Ll

Each draw results in a (t,f) pair, rather than only f
Also associated with each urn: A shift probability distribution P(T|z)

The overall drawing process is slightly more complex

Repeat the following process:
Select an urn Z with a probability P(Z)

a

a
a
a

Draw a value T from P(t|2)
Draw (t,f) pair from the urn
Add to the histogram at (t+T, f)
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The process is shift-invariant because the
probability of drawing a shift P(T|Z) does not
affect the probability of selecting urn Z

Every location in the spectrogram has
contributions from every urn patch
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The process is shift-invariant because the
probability of drawing a shift P(T|Z) does not
affect the probability of selecting urn Z

Every location in the spectrogram has
contributions from every urn patch
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riance 1n one Dimension

Shift Inva
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The process is shift-invariant because the
probability of drawing a shift P(T|Z) does not
affect the probability of selecting urn Z

Every location in the spectrogram has
contributions from every urn patch
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Probability of drawing a particular (t,f) combination

P(t, f) = 2 P(Z)E P(x|2)P(t-7,f|z)

The parameters of the model:

o P(t,f|z) — the urns

o P(T|z) — the urn-specific shift distribution
o P(z) — probability of selecting an urn

The ways in which (t,f) can be drawn:

o Selectany urn z

o Draw T from the urn-specific shift distribution
o Draw (t-T,f) from the urn

The actual probability sums this over all shifts and urns

11-755 MLSP: Bhiksha Raj



Learning the Model

The parameters of the model are learned analogously to the manner in
which mixture multinomials are learned

Given observation of (t,f), it we knew which urn it came from and the shift,
we could compute all probabilities by counting!
o Ifshiftis Tand urnis Z

Count(Z) = Count(Z) + 1

For shift probability: Count(T|Z) = Count(T|Z)+1

For urn: Count(t-T,f | Z) = Count(t-T,f|Z) + 1

0 Since the value drawn from the urn was t-T,f

o After all observations are counted:
Normalize Count(Z) to get P(Z)
Normalize Count(T|Z) to get P(T|Z)
Normalize Count(t,f|Z) to get P(t,f|2)

Problem: When learning the urns and shift distributions from a histogram,
the urn (Z) and shift (T) for any draw of (t,f) is not known

o These are unseen variables
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Learning the Model

Urn Z and shift T are unknown
o So (t,f) contributes partial counts to every value of T and Z
o Contributions are proportional to the a posteriori probability of Z and T,Z

P, f,7) = P(Z)E P(T|2)Pt-T,f|Z) P(T,t,f|Z)=P(T | Z)Pt-T,f|Z)
T

P(Z |1, f) = o] 1 2) P 2., )= PEA=T:112)

zP(t,f,Z') EP(T',t—T',fIZ)
/ T

Each observation of (t,f)

o P(z|t,f) to the count of the total number of draws from the urn
Count(Z) = Count(Z) + P(z | t,f)

o P(z|t,H)P(T | z,t,f) to the count of the shift T for the shift distribution
Count(T | Z) = Count(T | Z) + P(z|t,)P(T | Z, t, f)

o P(z|t,H)P(T | z,t,f) to the count of (t-T, f) for the urn
Count(t-T,f | Z) = Count(t-T,f | Z) + P(z|t,))P(T | z,t,f)
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Shift invariant model: Update Rules

Given data (spectrogram) S(t,f)
Initialize P(Z), P(T|Z2), P(t,f | 2)
lterate
P, f,Z) = P(Z)E P(T|\Z)P(t-T,f|Z) P(T,t,f|Z)=P(T|2)P(t-T,f|Z)
T

P(T,t-T,f|2)
EP(T',t—T’,f|Z)
-

P(Z|t,f) = 2] 1 2) P(T|Z.t, 1) -
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‘ Shift-invariance 1in one time: example

i

g

Dis

o =
covered time-frequency Contribution of individual bases to the recording

An Example: Two distinct sounds occuring with different repetition rates
within a signal

o Modelled as being composed from two time-frequency bases

o NOTE: Width of patches must be specified
INPUT SPECTROGRAM

malized Frequency (xaracisample)  Nomalzed Frequency (xxradisample

“patch” bases (urns)



Shift Invariance in Two Dimensions

We now have urn-specific shifts along both T and F
The Drawing Process

o Select an urn Z with a probability P(Z)

o Draw SHIFT values (T,F) from P(T,F|Z)

o Draw (t,f) pair from the urn

o Add to the histogram at (t+T, f+F)

This is a two-dimensional shift-invariant model

o We have shifts in both time and frequency
Or, more generically, along both axes
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Learning the Model

Learning is analogous to the 1-D case

Given observation of (t,f), it we knew which urn it came from and
the shift, we could compute all probabilities by counting!
a Ifshiftis T,Fand urnis Z

Count(Z) = Count(Z) + 1

For shift probability: ShiftCount(T,F|Z) = ShiftCount(T,F|Z)+1

For urn: Count(t-T,f-F | Z) = Count(t-T,f-F|Z) + 1

0 Since the value drawn from the urn was t-T,f-F

o After all observations are counted:
Normalize Count(Z) to get P(2)
Normalize ShiftCount(T,F|Z) to get P(T,F|Z)
Normalize Count(t,f|Z) to get P(t,f|2)

Problem: Shift and Urn are unknown
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Learning the Model

Urn Z and shift T,F are unknown
o So (t,f) contributes partial counts to every value of T,F and Z
o Contributions are proportional to the a posteriori probability of Z and T,F|Z

P, f,7) = P(Z)E P(T,F|Z)P(t-T,f -F|Z) P(T,F.t,f|Z)=P(T,F|Z)P(t-T,f -F|Z)
T.F

P(TaFat_Taf_F|Z)
EP(T’,F’,t _T', f - F'|Z)

TF'

P(Z |1, f) =~ ) P(T,F|Z.t,f) =
zP(t,f,Z’)
A

Each observation of (t,f)

o P(z|t,f) to the count of the total number of draws from the urn
Count(Z) = Count(Z) + P(z | t,f)

o P(z|t,f)P(T,F | z,t,f) to the count of the shift T,F for the shift distribution
ShiftCount(T,F | Z) = ShiftCount(T,F | Z) + P(z|t,)P(T | Z, t, f)

o P(T | zt,[f) to the count of (t-T, f-F) for the urn
Count(t-T,f-F | Z) = Count(t-T,f-F | Z) + P(z|t,f)P(t-T,f-F | z,t,f)

Lo o aramaca v oaea |



Shift invariant model: Update Rules

Given data (spectrogram) S(t,f)
Initialize P(Z), P((T,F|Z), P(t,f | Z2)
lterate

P(t,f,7) = P(Z)E P(T,F|Z)P(t-T, f -F|Z) P(T,F.t,f|Z)=P(T,F|Z)P(t-T,f-F|Z)
T.F

P(Z|t,f)=
(Z|t.1) EP(t,f,Z')

P(T,F,t-T,f -F|Z)
EP(T',F',t _T,f-F'|2Z)

T F'

Pt f,7) P(T,F|Z,t,f)=

P(Z) =

A
E Zmz 14, 1S ) E ZP(Z 4, [)P(T, F | Z,t, /)S(t, f)
t {

P(T,F|Z) =

; EZP(Z'I .1)S(t. 1) Z ; Z Z P(Z 1. /)P F'| Z.1 NS 1)

E P(Z|T,F)P(T -t,F - £ | Z,T,F)S(T,F)
T F

P(t,f1Z)=
o EEP(ZIT,F)P(T—t',F—f'|Z»T»F)S(T’F)
& T F
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2D Shift Invariance: The problem of

indeterminacy
P(t,f|Z) and P, (T,F|Z) are analogous

o Difficult to specify which will be the “urn” and which the
“shift”

Additional constraints required to ensure that one of
them is clearly the shift and the other the urn

Typical solution: Enforce sparsity on P(T,F|Z)

o The patch represented by the urn occurs only in a few
locations in the data
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Example: 2-D shift invariance

Original Reconstruction
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Weights
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Only one “patch” used to model the image (i.e. a single urn)

o Thelearnturn is an "average’ face, the learned shifts show the locations
of faces



Example: 2-D shift invarince

The original figure has multiple handwritten
renderings of three characters

o In different colours

The algorithm learns the three characters and
identifies their locations in the figure

Input data

0

J ’ Y

{ £ . ki
: | Y' 4/

j}

Discovered
Patches

=

Patch
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Shift-Invariant Decomposmon Uses

I

Bluring kemel

Signal separation
o The arithmetic is the same as before
o Learn shift-invariant bases for each source

o Use these to separate signals

Dereverberation & —

Deconvolution result

20
40/
2y
£0)
00|

0 Thg spectrogram of the reve_rberant §|gnal T
is simply the sum several shifted copies of 846264338327950288

. . 419716939937510582
the spectrogram of the original signal 097494459230781640
1-D shift invariance S T

8 8 & 8

628620899862803482

Image Deblurring

o The blurred image is the sum of several
shifted copies of the clean image
2-D shift invariance
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Beyond shift-invariance: transtorm
invariance

The draws from the urns may not only be shifted, but
also transformed

The arithmetic remains very similar to the shift-
invariant model

o We must now impose one of an enumerated set of
transforms to (t,f), after shifting them by (T,F)

o In the estimation, the precise transform applied is an
unseen variable
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Transform invariance: Generation

The set of transforms is enumerable

o E.g. scaling by 0.9, scaling by 1.1, rotation right by 90degrees, rotation
left by 90 degrees, rotation by 180 degrees, reflection

o Transformations can be chosen by draws from a distribution over
transforms
E.g. P(rotation by 90 degrees) = 0.2..
Distributions are URN SPECIFIC

The drawing process:

Select an urn Z (patch)

Select a shift (T,F) from P(T, F| Z)

Select a transform from P(txfm | Z)

Select a (t,f) pair from P(t,f | Z)

Transform (t,f) to txfm(t,f)

Increment the histogram at txfm(t,f) + (T,F)

o 0O o O O o
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Transform invariance

The learning algorithm must now estimate

0 P(Z) — probability of selecting urn/patch in any draw

o P(t,f|Z) — the urns / patches

o P(txfm | Z) — the urn specific distribution over transforms
0 P(T,F|Z) — the urn-specific shift distribution

Essentially determines what the basic shapes are, where they occur in
the data and how they are transformed

The mathematics for learning are similar to the maths for shift
invariance

o With the addition that each instance of a draw must be fractured into urns, shifts
AND transforms

Details of learning are left as an exercise
o Alternately, refer to Madhusudana Shashanka’s PhD thesis at BU
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Example: Transform Invariance

Top left: Original figure

Bottom left — the two bases discovered
Bottom right —

o Left panel, positions of “a”
o Right panel, positions of “I”

Top right: estimated distribution underlying original figure
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Transform invariance: model limitations

and extensions

The current model only allows one transform to be
applied at any draw

o E.g. a basis may be rotated or scaled, but not scaled and
rotated

An obvious extension is to permit combinations of
transformations

o Model must be extended to draw the combination from
some distribution

Data dimensionality: All examples so far assume
only two dimensions (e.g. in spectrogram or image)

The models are trivially extended to higher-
dimensional data
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Transform Invariance: Uses and
Limitations

Not very useful to analyze audio
May be used to analyze images and video

Main restriction: Computational complexity

o Requires unreasonable amounts of memory and
CPU

o Efficient implementation an open issue
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Example: Higher dimensional data
Video example

Description of Input Kemesl 1

Kemsl 3




Summary

Shift invariance

2 Multinomial bases can be “patches”

Representing time-frequency events in audio or other
larger patterns in images

Transform invariance

o The patches may further be transformed to
compose an image
Not useful for audio
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11-755 Machine Learning for Signal Processing

De-noising Audio Signals




De-noising

Multifaceted problem
o Removal of unwanted artifacts

o Clicks, hiss, warps, interfering sounds, ...

For now
o Constant noise removal
Wiener filters, spectral/power subtraction

o Click detection and restoration

AR models for abnormality detection
AR models for making up missing data



The problem with audio recordings

Recordings are inherently messy!!

Recordings capture room resonances, air conditioners, street

ambience, etc ...

o Resulting in low frequency rumbling sounds (the signature quality of a low-
budget recording!)

Magnetic recording media get demagnetized
o Results in high frequency hissing sounds (old tapes)

Mechanical recording media are littered with debris

o Results in clicking and crackling sounds (ancient vinyl disks, optical film
soundtracks)

Digital media feature sample drop-outs

o Results in gaps in audio which when short are perceived as clicks, otherwise
it is an audible gap (damaged CDs, poor internet streaming, bad bluetooth
headsets)



Restoration of audio

People don't like noisy recordings!!
o There is a need for audio restoration work

Early restoration work was an art form

o Experienced engineers would design filters to best cover defects, cut
and splice tapes to remove unwanted parts, etc.

o Results were marginally acceptable

Recent restoration work Is a science

o Extensive use of signal processing and machine learning
o Results are quite impressive!



Audio Restoration 1

Constant noise removal

Noise is often inherent in a recording or
slowly creeps in the recording media

Hiss, rumbling, ambience, ...

Approach
o Figure out noise characteristics
o Spectral processing to make up for noise



Describing additive noise

Assume additive noise
x(t) = s(t) + n(t) L — L

In the frequency domain = —
X(taf) = S(taf)+N(t9f)

AT Y Ml
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Find the spots where we have
only isolated noise

o Average them and get noise
spectrum
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M =number of noise frames

Sections of isolated noise
(or at least no useful signal)



Spectral subtraction methods

We can now (perhaps)
estimate the clean sound

o We know the characteristics of
the noise (as described from the
spectrum u(f))

______________

But, we will assume:

o The noise source is constant

If the noise spectrum
changes u(f) is not a valid

noise description anymore \ /
o The noise is additive @

Sections of isolated noise
(or at least no useful signal)




Spectral subtraction

Magnitude subtraction

o Subtract the noise
magnitude spectrum from
the recording’s

X(t,/)=8,f)+N(, f)=
ISt )] =[xt ] -

We can then modulate the
magnitude of the original
iInput to reconstruct

S /) =[x e n|-uen kxa. )
Sounds pretty good ...

Original input @
After spectral subtraction @
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Estimating the noise spectrum

Noise is usually not stationary
o Although the rate of change with time may be slow

A running estimate of noise is required
o Update noise estimates at every frame of the audio

The exact location of “noise-only” segments is never
Known

o For speech signals we use an important characteristic of speech to
discover speech segments (and, consequently noise-only
segments) in the audio

o The onset of speech is always indicated by a sudden increase in
the energy level in the signal

41



A running estimate of noise

The initial T frames in any recording are assumed to be
free of the speech signal
o Typically T=10

The noise estimate N(T,f) is estimated as
N(T.H) = (UT) Z, | X(t.D)|

Subsequent estimates are obtained as follows

o Assumption: The magnitude spectrum increases suddenly in
value at the onset of speech

A-MDINE-LHI" +A[X @ )P i | X(@ )< BIN(E-L )

[N 1) ’”"{ IN(t-1, /)]  otherwise



A running estimate of noise

A-A)[NE-LHI" +A[X (@ P 1f [X (@ f)<BIN(E-L 1)
IN(t-1,1)|”  otherwise

* pis an exponent term that is typically set to either 2 or 1
o p =2 :power spectrum; p =1 : magnitude spectrum

|N(r,f)f’={

® )\ is a noise update factor
o Typically setin the range 0.1 — 0.5
o Accounts for time-varying noise

®* B is a thresholding term

o Atypical value of is 5.0

o If the signal energy jumps by a factor of 3, speech onset has
occurred

o Other more complex rules may be applied to detect speech offset

43



Cancelling the Noise

Simple Magnitude Subtraction
o [SEH] = (X)) - [N

Power subtraction
o |S(L,f)] 2 = [X(L,F)] 2 - IN(t,)]2

Filtering methods: S(t,f) = H(t,f)X(t,f)
o Weiner Filtering: build an optimal filter to remove the
estimated noise

o Maximum-likelihood estimation..
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The Filter Functions

We have a source plus noise spectrum

X(taf) =S(tnf)+N(taf)

The desired output is some function of the input
and the noise spectrum

S(, f)=g(X (0. /)N, f))
Let's make it a “gain function”
H(. f) = fX @ )N /)
S(t, f)=H(t, /)X (1, f)
For spectral subtraction the gain function is:

Ve f)
H(t, f)=1-127]
D=



Filters for denoising

Magnitude subtraction:
Power subtraction:
Wiener filter:

Maximum likelihood:

H(f)=\/1— N

H(f)=1-

N

1-
=Tl

X))

N(f)
Beeal

1 N*(f)
H(f) =1+ 1o
2[ \/ x| }



‘ Filter function comparison

Comparison of gain functions
1 T ! T T

0.9 frovesrerssmrssneesen ................. T T T _____________________________ |
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03 L

Magnitude subtraction

Power subtraction
01 e O P AP ............................... ............................. .

— Wiener filter

: : — Max Likelihood
0 | i ] ]
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Examples ot various filter functions

Frequency

Frequency

Time

Frequency

Frequency

1.5

—

05|

Power subtraction

05 1
Time

Maximum likelihood

G

Original

Magnitude

subtraction

G

Power

subtraction

filter

O

Maximum
likelihood



“Musical noise”

What was that weirdness with
the Wiener filter???

o An artifact called musical noise N
2 The other approaches had it too —— ==

Takes place when the signal to
noise ratio is small
o Ends up on the steep part of the
gain curve
Small fluctuations are then
magnified
o Results in complex or negative
gain
An awkward situation!
The result is sinusoids popping
in and out
o Hence the tonal overload

Noise reduced noise!
(lots of musical noise)



Reducing musical noise

Thresholding
H'(f)= {H(f) if [X(N)>N(S)

0 otherwise

o The gain curve is steeper on the negative side this
removes effects in that area

Scale the noise spectrum
N(f)=a Nf),a>1
o (Linearly) increases gain in the new location

SmOOthing @ Wiener filter
e.g. H(t,f) = .5H(t,f) + .5H (t-1,f)
o Or some other time averaging @ With thresholding
o Reduces sudden tone on/offs @ With thresholding & smoothing

o But adds a slight echo



Reducing musical noise

Comparison of gain functions

|
LI e ,__j~jiji
0.9k H T //{.».ii’.///'/-/i/,,/f"'//;,:r.i’ ....... i ) .
I @ Wiener filter
08 y /I - ///’—
c“ // // - . .
07t frof ] T : 1 With thresholding and oversub
L P
06F fof | i
I With thresholding, oversub,
051 1 / - .
|7 / and smoothing
’ f // _
Qb ‘ / I .............. R .
[/
0af l“ // you | i
1/ / Noise level at 0.5
02 I ~ .
I ,( I Magnitude subtraction
/‘ I Power subtraction
0 T‘o B Wiener fiter _
| Max Likelihood
0 r/ l | 1 | 1
05 oy 15 2 25 3

Thresholding : Moves the operating point to a less sloped region
of the curve

Oversubtraction: Increases the slope in these regions for better
differential gain

Smoothing: H(t,f) = 0.5H(t,f) + 0.5H(t-1,1)
o Adds an echo
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Audio restoration 11
Click/glitch/gap removal

Two step process

o Detection of abnormality

o Replacement of corrupted data
Detection stuff

o Autoregressive modeling for
abnormality detection

Data replacement

o Interpolation of missing data using
autoregressive interpolation



Starting signal

0.06

0.04 -

0.02r-

-0.02

-0.04 |-

-0.06

| | | | | | | |
0 2 4 6 8 10 12 14 16 18
4
x 10

Can you spot the glitches?



Autoregressive (AR) models

Predicting the next sample of a series using a
weighted sum of the past samples

x(f) = 2 a(i)x(t - i) + e()

l

The weights a can be estimated upon
presentation of a training input

o Least squares solution of above equation
o Fancier/faster estimators, e.g. aryule in MATLAB



Matrix formulation

Scalar version

x(t) = E a(i)x(t - i) + e()

Matrix version

(. a 0 0 X,
0 a 0 X,
x=| 0 0 a,
0 0 O
0O 0 0 0 ay,| |xy,




Measuring prediction error

As Convolution
e=x-a*x

As matrix operation

—a, - -aq 1 0
0O -a, - -q 1
. 0 0 -a,
0 0 0 -a,
0 0 0 0

Overall error variance: ele




Measuring prediction error

Convolution
e=x-a”x
Solution for a must minimize error variance:
ele
2 While maintaining the Toeplitz structure of a!

A variety of solution techniques are available

o The most popular one is the “Levinson Durbin”
algorithm



Discovering abnormalities

The AR models smooth and predictable
things, e.g. music, speech, etc

Clicks, gaps, glitches, noise are not very
predictable (at least in the sense of a
meaningful signal)

Methodology
o Learn an AR model on your signal type

o Measure prediction error on the noisy data
2 Abnormalities appear as spikes in error



Glitch detection example

Glitches are clearly detected as spikes In

the prediction error
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Now what?

Detecting the glitches is
only one step!

How to we remove
them?

Information is lost!

2 We need to make up data!

This is an interpolation

problem

o Filling in missing data

o Hints provided from
neighboring samples
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Interpolation formulation

Detection of spikes defines
areas of missing samples
o = N samples from glitch point

Group samples to known and
unknown sets according to
spike detection positions

o0 x,=Kx,x, =Ux

0 x=(Ux+Kx)

o Transforms U and K maintain only

specific data ( = unit matrices with
appropriate missing rows)
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Picking sets of samples
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Making up the data

AR model error is

0 e=Ax=AUx, +
K-x,)

We can solve for x,

0 ldeally eis 0

Hence zero error

estimate for missing
data is:

0 A'Ux, =-AKx,

0 x,=-(A'U)"-A'Kx,

0 (A-U)* is pseudo-
inverse




‘ Reconstruction zoom 1n
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Restoration recap

Constant noise removal
o Spectral subtraction/Wiener filters
o Musical noise and tricks to avoid it

Click/glitch/gap detection
o Music/speech is very predictable
2 AR models to detect abnormalities

Missing sample interpolation
2 AR model for creating missing data



