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Recognition

e Let’'s agree on some terminology
— object detection
— recognition — instance vs. category
— localization
— classification vs. retrieval

« Examples of such tasks in vision and audio
« Key research challenges for each task

Intel Labs Rahul Sukthankar ~ 11-761 Guest Lecture Carnegie Mellon



Popular Vision Technigues

e Recent successes in computer vision
— Windowed object detectors
— Local features for object recognition (e.g., SIFT)
— Boosted classifiers (e.g., Viola-Jones face detector)
— Sub-image retrieval
— RANSAC geometric verification
— Structure from motion
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Computer Vision for Audio?!

e Recent successes in computer vision in audio domain

— Windowed object detectors sound obj det, music vs sound
— Local feature object recognition MusiclD, sound object detect
— Boosted classifiers MusiclD, sound object detect
— Sub-image retrieval MusicID

— RANSAC geometric verification MusiclD

— Structure from motion affine structure from sound

[Thrun, NIPS 2005]

e Claim: many vision ideas map naturally to audio domain
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Outline

e Sound object detection
(localizing a known sound in audio stream)

e Music identification
(match audio snippet against large DB of songs)
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Sound Object Detection In Movies

* Applications of sound object detection
— “Tell me if you hear a gunshot.” (monitoring)
— “Fast forward to the swordfight” (search and retrieval)
 Computer vision analogy: object detection/localization in images
— Learn classifier from instances of the object
— Scan windowed classifier over all possible locations

H*- Clip 1\,
- : . — >
\ Classifier
Audio stream * Clip N / Classify each clip as Return locations of
_ object or non-object detected sound object

[Hoiem, Ke, Sukthankar, 2005]
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Sound Object Detection: Clip Classifier

 [Feature extraction

QE % — _D —> 1138 Features

« Weak classifier — small decision trees on features
/ Decision nodes

» Learn classifier cascade using Adaboost

......

[Hoiem, Ke, Sukthankar, 2005]
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Sound Object Detection: Results

stage 1 stage 2 stage 3 PR S —
pos neg pos neg pos neg 1 ' | | =tges :
meow 0.0% | 1.4% | 00% | 1.2% | 22% | 0.8% - 1
phone 0.0% | 04% | 43% | 01% | 59% | 0.0% ]
carhorn | 0.0% | 3.9% | 06% | 22% | 3.6% | 1.3% T |
doorbell | 1.4% | 2.1% | 21% | 0.4% | 6.3% | 0.1%
swords 6.1% | 1.3% | 67% | 01% | 6.7% | 0.0% I |
scream 03% | 55% | 27% | 1.4% | 53% | 1.1% 5 @2 mE 9 28 B
dogbark | 0.7% | 1.0% | 6.0% | 03% | 7.7% | 0.2%
lasergun | 0.0% | 6.8% 44% | 51% | 6.7% | 0.9% Exp”f“’“ TP‘R“@ - i i rour
explosion | 4.1% | 52% | 7.5% | 1.5% | 12.0% | 0.5% i
light
saber 48% | 6.8% | 97% | 1.0% | 13.9% | 0.2%
Worst gunshot | 8.1% | 6.1% | 125% | 2.3% | 14.5% | 1.1%
Performance close
door 7.9% | 7.8% | 14.5% | 4.8% | 17.6% | 2.3%
male
laugh 43% | 14.7% | 95% | 9.7% | 13.3% | 7.0%
average | 2.9% | 4.4% | 6.0% | 22% | 85% | 1.1%
[Hoiem, Ke, Sukthankar, 2005]
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Music ldentification
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Music Identification: Challenges

 Query sample
— 1s small (can’t match complete song signatures)
— can be taken from anywhere in the song
— IS typically noisy, distorted and occluded

e Database
— contains large numbers of songs of varying genres
— can be incrementally updated with new songs

e Performance:
— demand high accuracy (in both precision and recall)
— Interactive guery times
— compact storage requirements
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Live demo

£ Music Retrieval Demo v1.0

Ready...

Level
mv Record Playback Load| H

[----------------------------------------------------------]

210A590B 08 R.E.M. Out of Time Half a World Away

Signal Analysis

Recording Original
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Similar Vision Task — Sub-Image Retrieval

3. Feature Extraction

5. Retrieval

4. Search 6. Robust verification

Originals

1. Feature Extraction

2. Index /\
N

3. e S W m==P> | Database of compact &
Ve, i robust representations

-~

[Ke & Sukthankar, ACM MM 2004]
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Keypoints for Image Matching

a8 )

SIFT images from [Lowe 1999]
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MusiclD Algorithm

 Transform audio into spectrogram (2D image)

« Compute distinctive local descriptors (learned by pairwise boosting)
* Retrieve candidates using efficient index (near-neighbor in high-dim)
» |dentify song using robust alignment (RANSAC + noise model)

[Ke, Hoiem, Sukthankar, CVPR 2005]
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MusiclD Algorithm

 Transform audio into spectrogram (2D image)

 Compute distinctive local descriptors (learned by pairwise boosting)
* Retrieve candidates using efficient index (near-neighbor in high-dim)
» |dentify song using robust alignment (RANSAC + noise model)
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[Ke, Hoiem, Sukthankar, CVPR 2005]
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Name That Tune

“{;‘. Noisy recording
a-l.{ll_ John Mellencamp — Suzanne and the Jewels
ﬂ{ll_ Waterworld soundtrack
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Name That Tune: Raw Audio

Quer
(Mellencamp)

Q

Mellencamp

Superficial similarity

9

Waterworld

amplitude vs. time
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Spectrogram Representation

o 2D time-frequency image
e Short-term Fourier Transform

on overlapping windows of
372ms at 11.6ms intervals

* Intensity shows power content
In 33 logarithmically-spaced
frequency bands

Spectrograms are popular and
have demonstrated good
performance in several audio
processing applications

Raw audio

1 2

Spectrogram .

Frequency (Hz)

Time (frames)
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Name That Tune: Spectrogram

Que;y
(Mellencamp) !
IIII n ]

! -Im ="= -| R |
' : -ll'll.ql-l'ﬂ'“u-f-l 'y #1_ iI:.'-I 5 1'_H|.i.i.'."|l k-

_E: 2 13_,5 h_,r- i 25

I *ﬂﬂm _ h I--III | i1 I [ . __“I I

Mellencamp

Waterworld

Spectrograms (frequency VS. time)
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MusiclD Algorithm

 Transform audio into spectrogram (2D image)

 Compute distinctive local descriptors (learned by pairwise boosting)
* Retrieve candidates using efficient index (near-neighbor in high-dim)
» |dentify song using robust alignment (RANSAC + noise model)

Correct match
IS close in
Hamming dist

100100010001...

100100110001...

32-bit descriptor
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Motivation: [Haltsma & Kalker]

IE.I : IIII I I' L II III 'I | 1 IL" .lL - |
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- -l.l'l'.'.ql-l'rr ..u.'l'. 1.. | s et AR
! r ll' Ill | '- f ' L] "l---
F .Ihlrllt m ‘ -I-
-I ' l II Ill- |r--'1 |‘|1 -I-l$l
“-'II lI h " mEmEmiil | | Il -. ]
2
« At every frame & frequency band, compute: d°E
dTdF

 Threshold at O to get a 32-bit descriptor at every time frame
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[Haitsma & Kalker] Descriptor

- . -
—— I
— _—
n el
| J | h
—-I —
00000010100011000...
2
» Atevery frame & frequency band, compute: dd dE
TadF

 Threshold at O to get a 32-bit descriptor at every time frame

o) [Haitsma & Kalker]'s choice of corner filter was arbitrary
N E Could we build much better descriptors using machine learning?
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Boosting a Better Descriptor

o
Viola-Jones W
features!

(popular for

—~ E faﬁeiflitection)

O

o 1

L .I 33 bands,

Ly log scale
h00 S e

Time (in frames)

A descriptor is composed from the outputs of the chosen set of binary filters.
Our goal is to pick a good set of filters
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What Is a Filter?

« Generates one bit from box sums/differences

* Intuition: filters should generate the same output for similar snippets
« Parameters: filter type, corner locations (in time & freq.), threshold

e If (sum >=threshold) then filter output = 1, else filter output = 0

* One filter is weak indicator, so we use several independent ones
 How to select good filters from a pool of 30,0007 Boosting
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Candidate Filters

e Learning parameters: time width, band
width, start band, filter type, threshold.

e Times: 1, 2, 4, 8,... frames, up to 1 second

 Filter types:| - H ] E I

e ~ 30,000 filters total to choose from

Goal: select best 32-element subset of filters
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Generating Training Data

‘ Original Song. i\

Synthetic distortions and
aligned noisy recordings

> ‘ Degraded Song \

extract
frames 9 extract
c
) 8 frames
™
o™
n
e
S e
O
™
o™
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Generating Training Data

‘ Original Song . i\

Synthetic distortions and
aligned noisy recordings

> ‘ Degraded Song \

extract
frames extract
) frames
:h le
Filter1 O
]
Filter 2
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Generating Training Data

‘ Original Song . i\

Synthetic distortions and
aligned noisy recordings

> ‘ Degraded Song \

extract
frames extract
) frames
] le
Filter1 00O
[
Filter 2
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Generating Training Data

‘ Original Song I\ > ‘ Degraded Song \

Synthetic distortions and
aligned noisy recordings

extract
frames extract

frames

Filter 1 OOO
EEE

Filter 2
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Generating Training Data

Original Song > ‘ Degraded Song \

Synthetic distortions and
aligned noisy recordings
extract
frames extract
N frames
i¢
Fiter1 O00000000000000000000000000O00000O0000000000O0000000O
(N [ [ (N (N0 (N [ [N (N [ [N [N [ [N [N [ [N [N [ [N [N [N [N N [N [N N [ N [ IO M I
Filter 2
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Generating Training Data

Original Song . > ‘ Degraded Song \

Synthetic distortions and
aligned noisy recordings
extract
frames extract
N frames
i¢
Fiter1 O00000000000000000000000000O00000O0000000000O0000000O
(N [ [ (N (N0 (N [ [N (N [ [N [N [ [N [N [ [N [N [ [N [N [N [N N [N [N N [ N [ IO M I
Fiter 2

Intel Labs Rahul Sukthankar ~ 11-761 Guest Lecture Carnegie Mellon



Generating Training Data

Original Song > ‘ Degraded Song \

Synthetic distortions and
aligned noisy recordings
extract
frames extract
N frames
i¢
Fiter1 O00000000000000000000000000O00000O0000000000O0000000O
(N [ [ (N (N0 (N [ [N (N [ [N [N [ [N [N [ [N [N [ [N [N [N [N N [N [N N [ N [ IO M I
i oo
Filter 2 -
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Generating Training Data

‘ Original Song i\ > ‘ Degraded Song \

Synthetic distortions and
aligned noisy recordings
extract
frames extract
N frames
i¢
Fiter1 O00000000000000000000000000O00000O0000000000O0000000O
(N [ [ (N (N0 (N [ [N (N [ [N [N [ [N [N [ [N [N [ [N [N [N [N N [N [N N [ N [ IO M I
i ood
Filter 2 g
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Choosing Filters with Adaboost

Training Data

(pos. and neg. pairs)

Examples Weights

Filters

A 4

Choose a filter that minimizes

—» weighted classification error.

(A filter that minimally splits
positive pairs and maximally

splits negative pairs.)

Update weights after
each iteration. Give
misclassified examples
more weight in the next
iteration.

Filter #1

p| Filter #2

Filter #32

Intel Labs
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Why Boosting?

e Benefits:

— Chooses a set of filters that works well together
— Successive filters minimize bound on error

— Selected filters tend to be independent

 What's new (our contribution):

— Trained on pairs of positive & negative exemplars.

— Filter output used as descriptor, not as a classifier
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Pairwise Boosting

b

Lt

Pairwise Boosting

input: sequence of n examples
(211, 221))..( (210, 225, )), each with label y; € {—1,1}

1

initialize: w; = <,i=1..n

for m=1..M
l.

find the hypothesis h,,(x1,22) that minimizes
weighted  error over distribution  w,  where
(21, 20) = sgn[( fr (1) — tn)(fn(22) — t,,)]
for filter f,,, and threshold ¢,,

calculate weighted error:

erry, = S g Wi - 8(hon (214, 72;) # ;)

assign confidence to h,,,: c,, = log[%&]
update weights for matching pairs:

it y; = Land h,,(x1;, x2;) & ;. then

w; — w; - erple,,]

normalize weights such that

L3
|
|
—
g
!
I
o
=
[ ] o

final hypothesis:
i f ._',ljr - % )
H{zy,29) = sgn(d 1 Comhm(®1. 22))

Observations

e Standard Adaboost doesn’t work
on this multi-class problem

» Two snippets match if they fall
on same side of the threshold

o Asymmetry: No weak classifier
can do better than chance on
non-matching pairs — can only
learn from the matching pairs

* Median response is optimal
threshold for non-matching pairs
— greatly reduces training time
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Name That Tune: Our Descriptors

IS close In
Hamming dist

* 100100010001... )Correctmatch

100100110001...

A 4

!

Mellencamp

A 4

001010101000...

Descriptor is robust vs.
* noise & distortion
* band equalization
e sporadic signal drops

W

Waterworld
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Descriptor-level Matching Results

1
09 |
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

0 1 L1 1 L 1 L 1 L1
1e-05 0.0001 0.001 0.01 0.1 1

FP Rate

H-K = [Haitsma & Kalker 2002]
H-K Wide = our improvements on H-K
Boosted = our pairwise boosted features (32-bits)

TP Rate
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Descriptors vs. Distance Metrics

« Alternate view: pose the descriptor learning problem as
supervised distance metric learning

o Given pairs of similar/dissimilar snippets, can we directly

learn a good Hamming space where similar songs are
near while dissimilar songs are far?
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MusiclD Algorithm

 Transform audio into spectrogram (2D image)

 Compute distinctive local descriptors (learned by pairwise boosting)
* Retrieve candidates using efficient index (near-neighbor in high-dim)
» |dentify song using robust alignment (RANSAC + noise model)

* Near-neighbor for similar descriptors in high-dimensions is painful
e Sub-image retrieval [MM2004] used locality-sensitive hashing

* MusiclD employs direct hashing with extra probes
— Threshold = 0 needs 1 hash probe
— Threshold = 1 needs 1 + 32 hash probes
— Threshold =2 needs 1 + 32 + 32*31/2 = 529 probes
— Threshold = 3 needs 1+32+32*31/2+32*31*30/6 = 5489 probes
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Direct Hashing:
Recall vs. Computation Tradeoff

Distance Threshold

0 ] 2 3
Boosted [.1% 54% | 14.0% | 25.2%
H-K Wide | < 0.01% | 0.09% | 0.64% | 2.5%
H-K < 0.01%

* Recall for a snippet with given Hamming threshold

 Threshold = 0 needs 1 hash probe

 Threshold =1 needs 1 + 32 hash probes
 Threshold =2 needs 1 + 32 + 32*31/2 = 529 probes
e Threshold = 3 needs 1+32+32*31/2+32*31*30/6 = 5489

Intel Labs
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MusiclD Algorithm

 Transform audio into spectrogram (2D image)

 Compute distinctive local descriptors (learned by pairwise boosting)
* Retrieve candidates using efficient index (near-neighbor in high-dim)
» Identify song using robust alignment (RANSAC + noise model)

e el AT g e :
ER P B [RansAC
-t e e ey oyeg T -Sample minimal set
R, I -Generate transform

-Snippet matches “vote”
-Best song wins

Incorporate HMM
“occlusion” model
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Simple “Occlusion” Model

Music vs. Noise Label @—r@ ®—. @
Descriptor Distance @ @ @ @

Bit difference on descriptors Transition
for one snippet probability

l l
P(x"|2?) = P(z"™°) H P(r;lyi) P(yilyi—1)
v

66 parameters, trained
easily using EM

Independent, non-identically
distributed Bernoulli random variables
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Music ldentification Results

0.95 —
-
o

2 09} -
@

O 085 | -

0.8 10 seconds —+— |

15 seconds ——-x%——-
0?5 | | | |
0 0.2 04 0.6 0.8 1

Recall

Test set: ~300 clips played at low volume with significant background noise
Drawn from database with 1862 songs (classical, vocal, rock, pop).
Random guess accuracy is 1/1862 = 0.05%
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MusiclD Summary

* This system accurately and efficiently identifies music from a
5-10 second sample taken in noisy conditions

* Our pairwise boosted descriptors outperform traditional ones
 Geometric verification adds robustness to “occlusions”

Ready...

evel

mv I Record ] [ Playback ] [ Load l LH

]

Download demo, video,
’ CVPR paper, source code from
http://www.cs.cmu.edu/~rahuls/

Signal Analysis
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Application of Music Identification:
Google’s Ambient Audio Identification

» Applies and extends audio fingerprinting from MusiclID to detect
current TV channel based on ambient audio in living room

View Go Gockmarks Iocls Help

Ele Edt View
G - 8 O [ ot corp o0l comi-conliaumryViTpreveramaind=17100[¥] @0 (G
vind BBL ”

AudioSurf |/

.....

M. Fink, M. Covell, S. Baluja, “Social and Interactive TV
using Ambient-Audio Identification”, EurolTV 2006.
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Conclusion

 Machine learning approaches developed for vision often
translate nicely to audio tasks (and vice versa).

* Interesting relationships between learning feature
descriptors and distance metrics

 Download papers, code and video from:
http://www.cs.cmu.edu/~rahuls/
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Related work:
Music vs. Speech Classification

* Problem: classify clip as either “music” or “speech”
 Analogy: VJ binary classifier using Haar-like features

| ,
| | | | Speech
© ! ' ' ' e Aet g Oa O gndiErh o epeeen
- 100 ' | | | | 1 ™ = e il e v
2 | | 0or YR THELLH +  music
7;1 “H :'| : : ' RO $ = = = threshold
+ B F O 4 0 & o
(I PR oot ot il B
AT | 07l ot ek
ol M P WMoy oy . S o, O
0 2000 4000 6000 8000 06| +0 O
0sp g Dl
150 04t
' | | | | Music 03 _‘- o o) +
| [ [ [
g 100f oo 02
= | [ [ [
g | |. 0.1 0
E 50:||i Ww | | | C
f"“ “ X ’I‘ | | O o
J LRI P I o 0" 400
LA Lo B R A A e Feature 1 output
0 2000 4000 6000 8000

Frequency (H2z)

 N. Casagrande et al., “Frame-level speech/music
discrimination using AdaBoost”, ISMIR 2005
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Related work:

Structure from Sound

* Problem: localize microphones from sound events
e Analogy: structure from motion with affine camera model

mwl—rog

»
°
°

.

O

o)

U’/ |
“o sounds .
L
':T} or v ?
®
¢ MoOftCs

e S. Thrun, “Affine structure from sound”, NIPS 2005

Intel Labs

Rahul Sukthankar

11-761 Guest Lecture

Carnegie Mellon



