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Overview

� Vectors and matrices
� Basic vector/matrix operations
� Vector products
� Matrix products
� Various matrix types
� Matrix inversion
� Matrix interpretation
� Eigenanalysis
� Singular value decomposition
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Book

� Fundamentals of Linear Algebra, Gilbert Strang

� Important to be very comfortable with linear algebra
� Appears repeatedly in the form of Eigen analysis, SVD, 

Factor analysis
� Appears through various properties of matrices that are 

used in machine learning, particularly when applied to 
images and sound

� Today’s lecture: Definitions
� Very small subset of all that’s used
� Important subset, intended to help you recollect
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Incentive to use linear algebra

� Pretty notation!

� Easier intuition
� Really convenient geometric interpretations
� Operations easy to describe verbally

� Easy code translation!
for i=1:n

for j=1:m
c(i)=c(i)+y(j)*x(i)*a(i,j)

end
end

C=x*A*y

y j x iaij
i
∑

j
∑yAx ⋅⋅T
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And other things you can do

� Manipulate Images
� Manipulate Sounds

Rotation + Projection +
Scaling

Time →

F
re

qu
en

cy
→

From Bach’s Fugue in Gm

Decomposition (NMF)
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Scalars, vectors, matrices, …

� A scalar a is a number
� a = 2, a = 3.14, a = -1000, etc.

� A vector a is a linear arrangement of a collection of 
scalars

� A matrix A is a rectangular arrangement of a collection 
of vectors

� MATLAB syntax: a=[1 2 3], A=[1 2;3 4]

A =
3.12 −10

10.0 2

 

 
 

 

 
 

a = 1 2 3[ ] ,  a =
3.14

−32

 

 
 

 

 
 
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Vector/Matrix types and shapes

� Vectors are either column or row vectors

� A sound can be a vector, a series of daily temperatures 
can be a vector, etc …

� Matrices can be square or rectangular

� Images can be a matrix, collections of sounds can be a 
matrix, etc …

c =
a

b

c

 

 

 
 
 

 

 

 
 
 
,   r = a b c[ ] ,  s = [ ]

S =
a b

c d

 

  
 

  
,  R =

a b c

d e f

 

  
 

  
,   M =

 

 

 
 
 
 

 

 

 
 
 
 
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Dimensions of a matrix
� The matrix size is specified by the number of 

rows and columns

� c = 3x1 matrix: 3 rows and 1 column
� r = 1x3 matrix:  1 row and 3 columns

� S = 2 x 2 matrix
� R = 2 x 3 matrix
� Pacman = 321 x 399 matrix

[ ]cba

c

b

a

=
















= rc   ,









=








=

fed

cba

dc

ba
RS   ,



11-755 MLSP: Bhiksha Raj

Representing an image as a matrix
� 3 pacmen
� A 321x399 matrix

� Row and Column = position

� A 3x128079 matrix
� Triples of x,y and value

� A 1x128079 vector
� “Unraveling” the matrix

� Note: All of these can be recast as 
the matrix that forms the image
� Representations 2 and 4 are equivalent

� The position is not represented

















1.1.00.1.11

10.10.65.1.21

10.2.22.2.11

[ ]1..000.11.11

Y

X

v

Values only; X and Y are 
implicit
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Example of a vector

� Vectors usually hold sets of 
numerical attributes
� X, Y, value

� [1, 2, 0]

� Earnings, losses, suicides
� [$0 $1.000.000 3]

� Etc …

� Consider a “relative Manhattan”
vector
� Provides a relative position by 

giving a number of avenues and 
streets to cross, e.g. [3av 33st]

[-2.5av  6st]

[2av  4st]

[1av  8st]
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Vectors
� Ordered collection of numbers

� Examples: [3 4 5], [a b c d], ..
� [3 4 5] != [4 3 5] ���� Order is important

� Typically viewed as identifying (the path from origin to) a location 
in an N-dimensional space

x

z

y

3

4

5

(3,4,5)

(4,3,5)
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Vectors vs. Matrices

� A vector is a geometric notation for how to get 
from (0,0) to some location in the space

� A matrix is simply a collection of destinations!
� Properties of matrices are average properties of the 

traveller’s path to these destinations

3

4

5

(3,4,5)
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Basic arithmetic operations

� Addition and subtraction
� Element-wise operations

� MATLAB syntax: a+b and a-b

a + b =
a1

a2

a3

 

 

 
 
 

 

 

 
 
 

+
b1

b2

b3

 

 

 
 
 

 

 

 
 
 

=
a1 + b1

a2 + b2

a3 + b3

 

 

 
 
 

 

 

 
 
 

a − b =
a1

a2

a3

 

 

 
 
 

 

 

 
 
 

−
b1

b2

b3

 

 

 
 
 

 

 

 
 
 

=
a1 − b1

a2 − b2

a3 − b3

 

 

 
 
 

 

 

 
 
 

A + B =
a11 a12

a21 a22

 

 
 

 

 
 +

b11 b12

b21 b22

 

 
 

 

 
 =

a11 + b11 a12 + b12

a21 + b21 a22 + b22

 

 
 

 

 
 
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Vector Operations

� Operations tell us how to get from ({0}) to the 
result of the vector operations
� (3,4,5) + (3,-2,-3) = (6,2,2)

3

4

5

(3,4,5)
3

-2

-3

(3,-2,-3)

(6,2,2)
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Operations example

� Adding random values to different 
representations of the image

[ ]1..000.11.11

















1.1.00.1.11

10.10.65.1.21

10.2.22.2.11

















1.1.00.1.11

10.10.65.1.21

10.2.22.2.11

+
+

Random(3,columns(M))
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Vector norm

� Measure of how big a 
vector is:
� Notated as

� In Manhattan vectors a 
measure of distance

� MATLAB syntax: 
norm(x)

[-2av  17st]

[-6av  10st]

a b ...[ ] = a2 + b2 + ...2

−2 17[ ] = 17.11

−6 10[ ] = 11.66

x



11-755 MLSP: Bhiksha Raj

Vector Norm

� Geometrically the shortest distance to travel from 
the origin to the destination
� As the crow flies
� Assuming Euclidean Geometry

3

4

5

(3,4,5)Length = sqrt(32 + 42 + 52)
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Transposition

� A transposed row vector becomes a column 
(and vice versa)

� A transposed matrix gets all its row (or column) 
vectors transposed in order

� MATLAB syntax: a’

x =
a

b

c

 

 

 
 
 

 

 

 
 
 
,   xT = a b c[ ]

X =
a b c

d e f

 

 
 

 

 
 ,   X

T =
a d

b e

c f

 

 

 
 
 

 

 

 
 
 

y = a b c[ ] ,  yT =
a

b

c

 

 

 
 
 

 

 

 
 
 

M =
 

 

 
 
 

 

 

 
 
 
,   MT =

 

 

 
 
 

 

 

 
 
 
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Vector multiplication
� Multiplication is not element-wise!
� Dot product, or inner product

� Vectors must have the same number of elements
� Row vector times column vector = scalar

� Cross product, outer product or vector direct product
� Column vector times row vector = matrix

� MATLAB syntax: a*b

a

b

c

 

 

 
 
 

 

 

 
 
 
⋅ d e f[ ] =

a ⋅ d a ⋅e a ⋅ f

b ⋅ d b ⋅e b ⋅ f

c ⋅ d c ⋅e c ⋅ f

 

 

 
 
 

 

 

 
 
 

a b c[ ] ⋅
d

e

f

 

 

 
 
 

 

 

 
 
 

= a ⋅ d + b ⋅e + c ⋅ f
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Vector dot product in Manhattan
� Multiplying the “yard” vectors

� Instead of avenue/street we’ll 
use yards

� a = [200 1600], b = [770 300] 
� The dot product of the two vectors 

relates to the length of a projection

� How much of the first vector 
have we covered by following 
the second one?

� The answer comes back as a 
unit of the first vector so we 
divide by its length

[200yd 1600yd]
norm ≈ 1612

[770yd  300yd]
norm ≈ 826

a ⋅bT

a
=

200 1600[ ] ⋅
770

300

 

 
 

 

 
 

200 1600[ ] ≈ 393yd

norm
≈ 393yd
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Vector dot product

� Vectors are spectra
� Energy at a discrete set of frequencies
� Actually 1x4096
� X axis is the index of the number in the vector

� Represents frequency
� Y axis is the value of the number in the vector

� Represents magnitude

frequency

S
qr

t(
en

er
gy

)

frequencyfrequency
[ ]1...1540.911 [ ]1.14.16..24.3 [ ]0.13.03.0.0

D S D2
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Vector dot product

� How much of D is also in S
� How much can you fake a D by playing an S
� D.S / |D||S| = 0.1
� Not very much

� How much of D is in D2?
� D.D2 / |D| /|D2| = 0.5
� Not bad, you can fake it

� To do this, D, S, and D2 must be the same size

frequency

S
qr

t(
en

er
gy

)

frequencyfrequency
[ ]1...1540.911 [ ]1.14.16..24.3 [ ]0.13.03.0.0

D S D2
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Vector cross product

� The column vector is the spectrum
� The row vector is an amplitude modulation
� The crossproduct is a spectrogram

� Shows how the energy in each frequency varies with time
� The pattern in each column is a scaled version of the spectrum
� Each row is a scaled version of the modulation
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Matrix multiplication

� Generalization of vector multiplication
� Dot product of each vector pair

� Dimensions must match!!
� Columns of first matrix = rows of second
� Result inherits the number of rows from the first matrix 

and the number of columns from the second matrix

� MATLAB syntax: a*b

A ⋅ B =
← a1 →
← a2 →
 

 
 

 

 
 ⋅

↑ ↑
b1 b2

↓ ↓

 

 

 
 
 

 

 

 
 
 

=
a1 ⋅b1 a1 ⋅b2

a2 ⋅b1 a2 ⋅b2

 

 
 

 

 
 
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Multiplying  a Vector by a Matrix

� Multiplication of a vector X by a matrix Y expresses the vector X 
in terms of projections of X on the row vectors of the matrix Y
� It scales and rotates the vector
� Alternately viewed, it scales and rotates the space – the 

underlying plane









=

1.0

6.0
X

[ ]9.08.0:),1( =Y[ ]9.01.0:),2( =Y









=

9.01.0

9.08.0
Y

YX
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Matrix Multiplication

� The matrix rotates and scales the space
� Including its own vectors










−
=

6.13.1

7.03.0
Y
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Matrix Multiplication

� The normals to the row vectors in the matrix become 
the new axes
� X axis = normal to the second row vector

� Scaled by the inverse of the length of the first row vector
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Matrix Multiplication is projection

� The k-th axis corresponds to the normal to the hyperplane
represented by the 1..k-1,k+1..N-th row vectors in the matrix
� Any set of K-1 vectors represent a hyperplane of dimension K-1 

or less

� The distance along the new axis equals the length of the 
projection on the k-th row vector
� Expressed in inverse-lengths of the vector
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Matrix Multiplication: Column space

� So much for spaces .. what does multiplying 
a matrix by a vector really do?

� It mixes the column vectors of the matrix 
using the numbers in the vector

� The column space of the Matrix is the 
complete set of all vectors that can be formed 
by mixing its columns









+







+







=


























f

c
z

e

b
y

d

a
x

z

y

x

fed

cba
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Matrix Multiplication: Row space

� Left multiplication mixes the row vectors of 
the matrix.

� The row space of the Matrix is the complete 
set of all vectors that can be formed by 
mixing its rows

[ ] [ ] [ ] fedycbax
fed

cba
yx +=








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Matrix multiplication: Mixing vectors

� A physical example
� The three column vectors of the matrix X are the spectra of 

three notes
� The multiplying column vector Y is just a mixing vector
� The result is a sound that is the mixture of the three notes



















1..

.249

0..

031

X

















1

2

1

Y



















2

.

.

7

=
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Matrix multiplication: Mixing vectors

� Mixing two images
� The images are arranged as columns 

� position value not included
� The result of the multiplication is rearranged as an image

200 x 200 200 x 200 200 x 200

40000 x 2










75.0

25.0

40000 x 1

2 x 1
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Administrivia

� New classroom!!
� PH 125C

� Seats 70! Bring your friends.

� Registration: All students on waitlist are registered

� TA: Not yet :-/

� Homework:  Against “class3” on mlsp.cs.cmu.edu
� Transcribing music
� Feel free to discuss amongst yourselves
� Use the discussion lists on blackboard.andrew.cmu.edu

� No class next week
� You will get email from me with updates

� Blackboard – if you are not registered on blackboard please register
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Matrix multiplication: another view

� What does this mean?



















=
















⋅



















=⋅

∑∑

∑∑

k
kKMk

k
kMk

k
kKk

k
kk

NKN

NK

MNM

N

N

baba

baba

bb

bb

aa

aa

aa

.

...

.

.

...

.

..

....

..

..

1

111

1

11

1

221

111

BA

[ ] [ ] [ ]NKN

MN

N

K

M

K

M
NKN

NK

MNM

N

N

bb

a

a

bb

a

a

bb

a

a

bb

bb

aa

aa

aa

.
.

.
....

.

.
.

.

.

.

...

.

..

....

..

..

1

1

221

2

12

111

1

11

1

11

1

221

111



















++



















+



















=
















⋅



















� The outer product of the first column of A and the first 
row of B + outer product of the second column of A and 
the second row of B + ….
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Why is that useful?

� Sounds: Three notes modulated 
independently



















1..

.249

0..

031

X

















.....195.09.08.07.06.05.0

......5.005.07.09.01

.....05.075.0175.05.00

Y
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Matrix multiplication: Mixing modulated 

spectra

� Sounds: Three notes modulated 
independently



















1..

.249

0..

031

X

















.....195.09.08.07.06.05.0

......5.005.07.09.01

.....05.075.0175.05.00

Y
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� Sounds: Three notes modulated 
independently



















1..

.249

0..

031

X

















.....195.09.08.07.06.05.0

......5.005.07.09.01

.....05.075.0175.05.00
Y

Matrix multiplication: Mixing modulated 

spectra
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















.....195.09.08.07.06.05.0

......5.005.07.09.01

.....05.075.0175.05.00

� Sounds: Three notes modulated 
independently



















1..

.249

0..

031

X

Matrix multiplication: Mixing modulated 

spectra



11-755 MLSP: Bhiksha Raj

















.....195.09.08.07.06.05.0

......5.005.07.09.01

.....05.075.0175.05.00

� Sounds: Three notes modulated 
independently



















1..

.249

0..

031

X

Matrix multiplication: Mixing modulated 

spectra
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� Sounds: Three notes modulated 
independently

Matrix multiplication: Mixing modulated 

spectra
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� Image1 fades out linearly
� Image 2 fades in linearly























..

..

..
22

11

ji

ji










19.8.7.6.5.4.3.2.1.0

01.2.3.4.5.6.7.8.9.1

Matrix multiplication: Image transition
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








19.8.7.6.5.4.3.2.1.0

01.2.3.4.5.6.7.8.9.1

� Each column is one image
� The columns represent a sequence of images of 

decreasing intensity

� Image1 fades out linearly
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� Image 2 fades in linearly
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� Image1 fades out linearly
� Image 2 fades in linearly
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Matrix multiplication: Image transition
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The Identity Matrix

� An identity matrix is a square matrix where
� All diagonal elements are 1.0
� All off-diagonal elements are 0.0

� Multiplication by an identity matrix does not change vectors
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Diagonal Matrix

� All off-diagonal elements are zero
� Diagonal elements are non-zero
� Scales the axes

� May flip axes









=

10

02
Y



11-755 MLSP: Bhiksha Raj

Diagonal matrix to transform images

� How?
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Stretching

� Location-based 
representation

� Scaling matrix – only 
scales the X axis
� The Y axis and pixel value 

are scaled by identity

� Not a good way of scaling.
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Stretching

� Better way

D =
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Modifying color

� Scale only Green
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Permutation Matrix

� A permutation matrix simply rearranges the axes
� The row entries are axis vectors in a different order
� The result is a combination of rotations and reflections

� The permutation matrix effectively permutes the 
arrangement of the elements in a vector
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Permutation Matrix

� Reflections and 90 degree rotations of 
images and objects
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Permutation Matrix

� Reflections and 90 degree rotations of images and objects
� Object represented as a matrix of 3-Dimensional “position”

vectors
� Positions identify each point on the surface
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Rotation Matrix

� A rotation matrix rotates the vector by some angle θ
� Alternately viewed, it rotates the axes

� The new axes are at an angle θ to the old one
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Rotating a picture

� Note the representation: 3-row matrix
� Rotation only applies on the “coordinate” rows
� The value does not change
� Why is pacman grainy?
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3-D Rotation

� 2 degrees of freedom
� 2 separate angles

� What will the rotation matrix be?

X
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Xnew

Ynew
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α



11-755 MLSP: Bhiksha Raj

Projections

� What would we see if the cone to the left were transparent if we
looked at it along the normal to the plane
� The plane goes through the origin
� Answer: the figure to the right

� How do we get this?  Projection
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Projection Matrix

� Consider any plane specified by a set of vectors W1, W2..
� Or matrix [W1 W2 ..]
� Any vector can be projected onto this plane
� The matrix A that rotates and scales the vector so that it becomes 

its projection is a projection matrix

90degrees

projectionW1

W2
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Projection Matrix

� Given a set of vectors W1, W2, which form a matrix W = [W1 W2.. ]
� The projection matrix that transforms any vector X to its projection on the plane is

� P = W (WTW)-1 WT

� We will visit matrix inversion shortly

� Magic – any set of vectors from the same plane that are expressed as a matrix will give 
you the same projection matrix

� P = V (VTV)-1 VT

90degrees

projectionW1

W2
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Projections

� HOW?
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Projections

� Draw any two vectors W1 and W2 that lie on the plane
� ANY two so long as they have different angles

� Compose a matrix W = [W1 W2]
� Compose the projection matrix P = W (WTW)-1 WT

� Multiply every point on the cone by P to get its projection
� View it ☺

� I’m missing a step here – what is it?
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Projections

� The projection actually projects it onto the plane, but you’re still seeing 
the plane in 3D
� The result of the projection is a 3-D vector
� P = W (WTW)-1 WT = 3x3,  P*Vector = 3x1
� The image must be rotated till the plane is in the plane of the paper

� The Z axis in this case will always be zero and can be ignored
� How will you rotate it? (remember you know W1 and W2)
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Projection matrix properties

� The projection of any vector that is already on the plane is the vector itself
� Px = x if x is on the plane
� If the object is already on the plane, there is no further projection to be performed

� The projection of a projection is the projection
� P (Px) = Px
� That is because Px is already on the plane

� Projection matrices are idempotent
� P2 = P

� Follows from the above
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Projections: A more physical meaning

� Let W1, W2 .. Wk be “bases”
� We want to explain our data in terms of these 

“bases”
� We often cannot do so
� But we can explain a significant portion of it

� The portion of the data that can be expressed in 
terms of our vectors W1, W2, .. Wk,  is the projection 
of the data on the W1 .. Wk (hyper) plane
� In our previous example, the “data” were all the points on a 

cone
� The interpretation for volumetric data is obvious
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Projection : an example with sounds

� The spectrogram (matrix) of a piece of music

� How much of the above music was composed of the 
above notes
� I.e. how much can it be explained by the notes
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Projection: one note

� The spectrogram (matrix) of a piece of music

� M = spectrogram;   W = note
� P = W (WTW)-1 WT

� Projected Spectrogram = P * M

M = 

W = 
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Projection: one note – cleaned up

� The spectrogram (matrix) of a piece of music

� Floored all matrix values below a threshold to zero

M = 

W = 
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Projection: multiple notes

� The spectrogram (matrix) of a piece of music

� P = W (WTW)-1 WT

� Projected Spectrogram = P * M

M = 

W = 
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Projection: multiple notes, cleaned up

� The spectrogram (matrix) of a piece of music

� P = W (WTW)-1 WT

� Projected Spectrogram = P * M

M = 

W = 
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Projection and Least Squares
� Projection actually computes a least squared error estimate
� For each vector V in the music spectrogram matrix

� Approximation:  Vapprox = a*note1 + b*note2 + c*note3..

� Error vector E =  V – Vapprox

� Squared error energy for V     e(V) = norm(E)2

� Total error = sum_over_all_V { e(V) } = ΣV e(V)

� Projection computes Vapprox for all vectors such that Total error is 
minimized
� It does not give you “a”, “b”, “c”.. Though

� That needs a different operation – the inverse / pseudo inverse
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Orthogonal and Orthonormal matrices

� Orthogonal Matrix  :  AAT = diagonal
� Each row vector lies exactly along the normal to the plane 

specified by the rest of the vectors in the matrix

� Orthonormal Matrix: AAT = ATA = I
� In additional to be orthogonal, each vector has length exactly =

1.0
� Interesting observation: In a square matrix if the length of the row 

vectors is 1.0, the length of the column vectors is also 1.0
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Orthogonal and Orthonormal Matrices

� Orthonormal matrices will retain the relative angles 
between transformed vectors
� Essentially, they are combinations of rotations, reflections 

and permutations
� Rotation matrices and permutation matrices are all 

orthonormal matrices
� The vectors in an orthonormal matrix are at 90degrees to 

one another.

� Orthogonal matrices are like Orthonormal matrices 
with stretching
� The product of a diagonal matrix and an orthonormal matrix
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Matrix Rank and Rank-Deficient Matrices

� Some matrices will eliminate one or more dimensions during 
transformation
� These are rank deficient matrices
� The rank of the matrix is the dimensionality of the trasnsformed

version of a full-dimensional object

P * Cone = 
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Matrix Rank and Rank-Deficient Matrices

� Some matrices will eliminate one or more dimensions during 
transformation
� These are rank deficient matrices
� The rank of the matrix is the dimensionality of the transformed version of a 

full-dimensional object

Rank = 2 Rank = 1
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Projections are often examples of rank-deficient transforms

� P = W (WTW)-1 WT ; Projected Spectrogram = P * M
� The original spectrogram can never be recovered

� P is rank deficient

� P explains all vectors in the new spectrogram as a 
mixture of only the 4 vectors in W
� There are only 4 independent bases
� Rank of P is 4

M = 

W = 
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Non-square Matrices

� Non-square matrices add or subtract axes
� More rows than columns � add axes

� But does not increase the dimensionality of the data
� Fewer rows than columns � reduce axes

� May reduce dimensionality of the data
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Non-square Matrices

� Non-square matrices add or subtract axes
� More rows than columns � add axes

� But does not increase the dimensionality of the data
� Fewer rows than columns � reduce axes

� May reduce dimensionality of the data
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The Rank of  a Matrix

� The matrix rank is the dimensionality of the transformation of a full-
dimensioned object in the original space

� The matrix can never increase dimensions
� Cannot convert a circle to a sphere or a line to a circle

� The rank of a matrix can never be greater than the lower of its two 
dimensions
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The Rank of Matrix

� Projected Spectrogram = P * M
� Every vector in it is a combination of only 4 bases

� The rank of the matrix is the smallest no. of bases 
required to describe the output
� E.g. if note no. 4 in P could be expressed as a combination of 

notes 1,2 and 3, it provides no additional information
� Eliminating note no. 4 would give us the same projection
� The rank of P would be 3!

M = 
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Matrix rank is unchanged by transposition

� If an N-D object is compressed to a K-D 
object by a matrix, it will also be compressed 
to a K-D object by the transpose of the matrix
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Matrix Determinant

� The determinant is the “volume” of a matrix
� Actually the volume of a parallelepiped formed from 

its row vectors
� Also the volume of the parallelepiped formed from its 

column vectors

� Standard formula for determinant: in text book

(r1)

(r2) (r1+r2)

(r1)

(r2)
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Matrix Determinant: Another Perspective

� The determinant is the ratio of N-volumes
� If V1 is the volume of an N-dimensional object “O” in N-

dimensional space
� O is the complete set of points or vertices that specify the object

� If V2 is the volume of the N-dimensional object specified by A*O,  
where A is a matrix that transforms the space

� |A| = V2 / V1

Volume = V1 Volume = V2
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Matrix Determinants

� Matrix determinants are only defined for square matrices
� They characterize volumes in linearly transformed space of the 

same dimensionality as the vectors

� Rank deficient matrices have determinant 0
� Since they compress full-volumed N-D objects into zero-volume 

N-D objects
� E.g. a 3-D sphere into a 2-D ellipse:  The ellipse has 0 volume 

(although it does have area)

� Conversely, all matrices of determinant 0 are rank deficient
� Since they compress full-volumed N-D objects into zero-volume 

objects
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Multiplication properties

� Properties of vector/matrix products
� Associative

� Distributive

� NOT commutative!!!

� left multiplications ≠ right multiplications
� Transposition

A ⋅ (B ⋅C) = (A ⋅ B) ⋅ C

A ⋅B ≠ B ⋅A

A ⋅ (B + C) = A ⋅ B + A ⋅ C

( ) TTT ABBA ⋅=⋅
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Determinant properties

� Associative for square matrices

� Scaling volume sequentially by several matrices is equal to 
scaling once by the product of the matrices

� Volume of sum != sum of Volumes

� The volume of the parallelepiped formed by row vectors of the 
sum of two matrices  is not the sum of the volumes of the 
parallelepipeds formed by the original matrices

� Commutative for square matrices!!!

� The order in which you scale the volume of an object is irrelevant

CBACBA ⋅⋅=⋅⋅

BAABBA ⋅=⋅=⋅

CBCB +≠+ )(
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Matrix Inversion

� A matrix transforms an N-
D object to a different N-
D object

� What transforms the new 
object back to the 
original?
� The inverse transformation

� The inverse 
transformation is called 
the matrix inverse
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Matrix Inversion

� The product of a matrix and its inverse is the 
identity matrix
� Transforming an object, and then inverse 

transforming it gives us back the original object

T T-1

T-1T = I
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Inverting rank-deficient matrices

� Rank deficient matrices “flatten” objects
� In the process, multiple points in the original object get mapped to the same point in the 

transformed  object

� It is not possible to go “back” from the flattened object to the original object
� Because of the many-to-one forward mapping

� Rank deficient matrices have no inverse
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Revisiting Projections and Least Squares
� Projection computes a least squared error estimate
� For each vector V in the music spectrogram matrix

� Approximation:  Vapprox = a*note1 + b*note2 + c*note3..

� Error vector E =  V – Vapprox

� Squared error energy for V     e(V) = norm(E)2

� Total error = Total error + e(V)

� Projection computes Vapprox for all vectors such that Total error is 
minimized

� But WHAT ARE “a” “b” and “c”?
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The Pseudo Inverse (PINV)

� We are approximating spectral vectors V as the 
transformation of the vector [a b c]T

� Note – we’re viewing the collection of bases in T as a 
transformation

� The solution is obtained using the pseudo inverse
� This give us a LEAST SQUARES solution

� If T were square and invertible Pinv(T) = T-1, and V=Vapprox
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Explaining music with one note

� Recap:  P = W (WTW)-1 WT, Projected Spectrogram = P*M

� Approximation:  M = W*X
� The amount of W in each vector = X = PINV(W)*M
� W*Pinv(W)*M = Projected Spectrogram

� W*Pinv(W) = Projection matrix!!

M = 

W = 

X =PINV(W)*M

PINV(W) = (WTW)-1WT
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Explanation with multiple notes

� X =  Pinv(W) * M;   Projected matrix = W*X = W*Pinv(W)*M

M = 

W = 

X=PINV(W)*M
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How about the other way?

� WV \approx M              W = M * Pinv(V)       U = WV

M = 

W = ??

V = 

U = 
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Pseudo-inverse (PINV)

� Pinv()  applies to non-square matrices
� Pinv ( Pinv (A))) = A
� A*Pinv(A)= projection matrix!

� Projection onto the columns of A

� If A = K x N matrix and K > N, A projects N-D 
vectors into a higher-dimensional K-D space

� Pinv(A)*A = I  in this case
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Matrix inversion (division)
� The inverse of matrix multiplication

� Not element-wise division!!

� Provides a way to “undo” a linear transformation
� Inverse of the unit matrix is itself
� Inverse of a diagonal is diagonal
� Inverse of a rotation is a (counter)rotation (its transpose!)
� Inverse of a rank deficient matrix does not exist!

� But pseudoinverse exists

� Pay attention to multiplication side!

� Matrix inverses defined for square matrices only
� If matrix not square use a matrix pseudoinverse:

� MATLAB syntax: inv(a), pinv(a)

A ⋅B = C,  A = C ⋅B−1,  B = A −1 ⋅C

A ⋅B = C,  A = C ⋅B+,  B = A + ⋅ C
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What is the  Matrix   ?

� Duality in terms of the matrix identity
� Can be a container of data

� An image, a set of vectors, a table, etc …

� Can be a linear transformation
� A process by which to transform data in another matrix

� We’ll usually start with the first definition and 
then apply the second one on it
� Very frequent operation
� Room reverberations, mirror reflections, etc …

� Most of signal processing and machine 
learning are a matrix multiplication!
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Eigenanalysis

� If something can go through a process mostly 
unscathed in character it is an eigen-something
� Sound example:

� A vector that can undergo a matrix multiplication 
and keep pointing the same way is an 
eigenvector
� Its length can change though

� How much its length changes is expressed by its 
corresponding eigenvalue
� Each eigenvector of a matrix has its eigenvalue

� Finding these “eigenthings” is called 
eigenanalysis
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EigenVectors and EigenValues

� Vectors that do not change angle upon transformation
� They may change length

� V = eigen vector
� λ = eigen value
� Matlab:  [V, L] = eig(M)

� L is a diagonal matrix whose entries are the eigen values
� V is a maxtrix whose columns are the eigen vectors

VMV λ=










−
−

=
0.17.0

7.05.1
A

Black 
vectors
are
eigen
vectors
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Eigen vector example
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Matrix multiplication revisited

� Matrix transformation “transforms” the space
� Warps the paper so that the normals to the two 

vectors now lie along the axes










−
−

=
2.11.1

07.00.1
A
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A stretching operation

� Draw two lines
� Stretch / shrink the paper along these lines by 

factors d1 and d2
� The factors could be negative – implies flipping the paper

� The result is a transformation of the space

1.4 0.8
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A stretching operation

� Draw two lines
� Stretch / shrink the paper along these lines by 

factors λ1 and λ2
� The factors could be negative – implies flipping the paper

� The result is a transformation of the space



11-755 MLSP: Bhiksha Raj

Physical interpretation of eigen vector

� The result of the stretching is exactly the same as transformation 
by a matrix

� The axes of stretching/shrinking are the eigenvectors
� The degree of stretching/shrinking are the corresponding 

eigenvalues

� The EigenVectors and EigenValues convey all the information 
about the matrix
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Physical interpretation of eigen vector

[ ]

1
2

1

21

0

0

−=





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
=

=

VLVM

L

VVV

λ
λ

� The result of the stretching is exactly the same as transformation 
by a matrix

� The axes of stretching/shrinking are the eigenvectors
� The degree of stretching/shrinking are the corresponding 

eigenvalues
� The EigenVectors and EigenValues convey all the information 

about the matrix
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Eigen Analysis

� Not all square matrices have nice eigen values and 
vectors
� E.g. consider a rotation matrix

� This rotates every vector in the plane
� No vector that remains unchanged

� In these cases the Eigen vectors and values are 
complex

� Some matrices are special however..
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Symmetric Matrices

� Matrices that do not change on transposition
� Row and column vectors are identical

� Symmetric matrix: Eigen vectors and Eigen values 
are always real

� Eigen vectors are always orthogonal
� At 90 degrees to one another


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
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

−
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Symmetric Matrices

� Eigen vectors point in the direction of the 
major and minor axes of the ellipsoid 
resulting from the transformation of a 
spheroid
� The eigen values are the lengths of the axes










−
−

17.0

7.05.1
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Symmetric matrices

� Eigen vectors Vi are orthonormal
� Vi

TVi = 1
� Vi

TVj = 0, i != j

� Listing all eigen vectors in matrix form V
� VT = V-1

� VT V = I
� V VT= I

� C Vi = λVi

� In matrix form  :  C V  = V L
� L is a diagonal matrix with all eigen values

� C = V L VT
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The Correlation and Covariance Matrices

� Consider a set of column vectors represented as a DxN matrix M
� The correlation matrix is

� C = (1/N) MMT

� If the average value (mean) of the vectors in M is 0, C is called the covariance
matrix

� covariance = correlation + mean * mean T

� Diagonal elements represent average value of the squared value of 
each dimension
� Off diagonal elements represent how two components are related

� How much knowing one lets us guess the value of the other

A AT

=
C

(1/Ν)Σ(1/Ν)Σ(1/Ν)Σ(1/Ν)Σ ia1,i
2

N
(1/Ν)Σ(1/Ν)Σ(1/Ν)Σ(1/Ν)Σ iak,iak,j
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Correlation / Covariance Matrix

� The correlation / covariance matrix is symmetric
� Has orthonormal eigen vectors and real, non-negative eigen

values

� The square root of a correlation or covariance matrix is easily 
derived from the eigen vectors and eigen values
� The eigen values of the square root of the covariance matrix are 

the square roots of the eigen values of the covariance matrix
� These are also the “singular values” of the data set

CVLVVLSqrtLSqrtV

VLSqrtVVLSqrtVCSqrtCSqrt

VLSqrtVCSqrt

VLVC

TT

TT

T

T

===
=

=
=

)().(.

).(.).(.)().(

).(.)(
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Square root of the Covariance Matrix

� The square root of the covariance matrix 
represents the elliptical scatter of the data

� The eigenvectors of the matrix represent the 
major and minor axes

C
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The Covariance Matrix

� Projections along the N eigen vectors with the 
largest eigen values represent the N greatest 
“energy-carrying” components of the matrix

� Conversely, N “bases” that result in the least square 
error are the N best eigen vectors

Any vector V = aV,1 * eigenvec1 + aV,2 *eigenvec2 + ..

ΣV aV,i = eigenvalue(i)
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An audio example

� The spectrogram has 974 vectors of 
dimension 1025

� The covariance matrix is size 1025 x 1025
� There are 1025 eigenvectors
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Eigen Reduction

� Compute the Covariance/Correlation
� Compute Eigen vectors and values
� Create matrix from the 25 Eigen vectors corresponding to 25 highest 

Eigen values
� Compute the weights of the 25 eigenvectors
� To reconstruct the spectrogram – compute the projection on the 25 

eigen vectors 

dim

dim

251

)(
]..[

)(],[

.

lowreducedtedreconstruc

reducedlow

reduced

T

MVM

MVPinvM
VVV

CeigLV

MMC

mspectrograM

=
=
=

=
=

= 1025x1000

1025x1025

1025x25

25x1000

1025x1000

V = 1025x1025
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Eigenvalues and Eigenvectors

� Left panel: Matrix with 1025 eigen vectors
� Right panel: Corresponding eigen values

� Most eigen values are close to zero
� The corresponding eigenvectors are “unimportant”

)(],[

.

CeigLV

MMC

mspectrograM
T

=
=

=
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Eigenvalues and Eigenvectors

� The vectors in the spectrogram are linear combinations of all 
1025 eigen vectors

� The eigen vectors with low eigen values contribute very little
� The average value of ai is proportional to the square root of the 

eigenvalue
� Ignoring these will not affect the composition of the spectrogram

Vec = a1 *eigenvec1 + a2 * eigenvec2 + a3 * eigenvec3 …



11-755 MLSP: Bhiksha Raj

An audio example

� The same spectrogram projected down to the 25 
eigen vectors with the highest eigen values
� Only the 25-dimensional weights are shown

� The weights with which the 25 eigen vectors must be added to 
compose a least squares approximation to the spectrogram

MVPinvM
VVV

reducedlow

reduced

)(
]..[

dim

251

=
=
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An audio example

� The same spectrogram constructed from only the 25 eigen
vectors with the highest eigen values
� Looks similar

� With 100 eigenvectors, it would be indistinguishable from the original

� Sounds pretty close
� But now sufficient to store 25 numbers per vector (instead of 

1024)

dimlowreducedtedreconstruc MVM =
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With only 5 eigenvectors

� The same spectrogram constructed from only 
the 5 eigen vectors with the highest eigen
values
� Highly recognizable
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Eigenvectors, Eigenvalues and 

Covariances

� The eigenvectors and eigenvalues (singular 
values) derived from the correlation matrix 
are important

� Do we need to actually compute the 
correlation matrix?
� No

� Direct computation using Singular Value 
Decomposition
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Singular Value Decomposition
� A matrix decomposition method

� Breaks up the input into a product of three 
matrices, two orthogonal and one diagonal

� The right matrix will point towards two 
perpendicular directions on which the greater 
vector lengths are

� The diagonal will represent how much spread is in 
each direction and contains the singular values

� The left matrix will tell us how the two major 
directions can be combined to generate the input

A = U ⋅ Σ ⋅ VT

U ⋅UT = I,  V ⋅ VT = I,   Σ is diagonal

ΣΣΣΣ
. .

=

A U VT

V

MATLAB syntax: 
[u,s,v]=svd(x)

NxM

NxN NxM MxM
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SVD vs. Eigen decomposition

� Singluar value decomposition is analogous to the 
eigen decomposition of the correlation matrix of the 
data

� The “right” singluar vectors are the eigen vectors of 
the correlation matrix
� Show the directions of greatest importance

� The corresponding singular values are the square 
roots of the eigen values of the correlation matrix
� Show the importance of the eigen vector
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Thin SVD, compact SVD, reduced SVD

� Thin SVD:  Only compute the first N columns of U
� All that is required if N < M

� Compact SVD: Only the left and right eigen vectors 
corresponding to non-zero singular values are computed

� Reduced SVD: Only compute the columns of U corresponding to 
the K highest singular values

. .
=

A U VT
NxM

NxN

NxM

MxM
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Why bother with eigens/SVD

� Can provide a unique insight into 
data
� Strong statistical grounding 
� Can display complex interactions 

between the data
� Can uncover irrelevant parts of 

the data we can throw out
� Can provide basis functions

� A set of elements to compactly 
describe our data

� Indispensable for performing 
compression and classification

� Used over and over and still 
perform amazingly well

Eigenfaces
Using a linear transform of 

the above “eigenvectors” we 
can compose various faces
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Making vectors and matrices in MATLAB

� Make a row vector: 
a = [1 2 3]

� Make a column vector: 
a = [1;2;3]

� Make a matrix: 
A = [1 2 3;4 5 6]

� Combine vectors
A = [b c] or A = [b;c]

� Make a random vector/matrix: 
r = rand(m,n)

� Make an identity matrix: 
I = eye(n)

� Make a sequence of numbers
c = 1:10 or c = 1:0.5:10 or c = 100:-2:50

� Make a ramp
c = linspace( 0, 1, 100)
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Indexing

� To get the i-th element of a vector
a(i)

� To get the i-th j-th element of a matrix
A(i,j)

� To get from the i-th to the j-th element
a(i:j)

� To get a sub-matrix
A(i:j,k:l)

� To get segments
a([i:j k:l m])
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Arithmetic operations

� Addition/subtraction
C = A + B or C = A - B

� Vector/Matrix multiplication
C = A * B

� Operant sizes must match!

� Element-wise operations
� Multiplication/division

C = A .* B or C = A ./ B

� Exponentiation
C = A.^B

� Elementary functions
C = sin(A) or C = sqrt(A) , …
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Linear algebra operations

� Transposition
C = A’
� If A is complex also conjugates use C = A.’ to avoid that

� Vector norm
norm(x) (also works on matrices)

� Matrix inversion
C = inv(A) if A is square
C = pinv(A) if A is not square
� A might not be invertible, you‘ll get a warning if so

� Eigenanalysis
[u,d] = eig(A)
� u is a matrix containing the eigenvectors
� d is a diagonal matrix containing the eigenvalues

� Singular Value Decomposition
[u,s,v] = svd(A) or [u,s,v] = svd(A,0)
� “thin” versus regular SVD
� s is diagonal and contains the singular values
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Plotting functions

� 1-d plots
plot(x)

� if x is a vector will plot all its elements
� If x is a matrix will plot all its column 

vectors

bar(x)
� Ditto but makes a bar plot

� 2-d plots
imagesc(x)

� plots a matrix as an image

surf(x)
� makes a surface plot
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Getting help with functions

� The help function
� Type help followed by a function name

� Things to try
help help
help +
help eig
help svd
help plot
help bar
help imagesc
help surf
help ops
help matfun

� Also check out the tutorials and the mathworks site


