
11-755 Machine Learning for Signal Processing

Automatic Speech Recognition
in (just over) an Hour!

Class 22. 6 Nov 2009

String Matching

  A simple problem: Given two strings of
characters, how do we find the distance
between them?

  Solution: Align them as best as we can, then
measure the “cost” of aligning them

  Cost includes the costs of “insertion”,
“Deletion”, “Substitution” and “Match”

D D C C B

  Match 1:
  Insertions: B, B, C, C, D, D
  Deletions: A, A, A, A
  Matches: B, B, A, C, B, D, D,

A
  Total cost: 2I(C)+ 2I(B) + 2I(D)

+ 4D(A) + 3M(B) + M(A) +
M(C) + 2M(D)

  Match 2:
  Insertions: B, B, D, D
  Deletions: A, A
  Substitutions: (A,C), (A,C)
  Matches: B, B, A, C, B, D, D,

A
  Total cost: 2I(B)+ 2I(D) +

2D(A) + 2S(A,C) + 3M(B) +
2M(A) + M(C) + 2M(D)

D A B B A A A C B A D

B B

B

A C B D D

A

A

D D

C C

B

D A B B A A A C B A D

B B

B

A C B D D

A

A

Cost of match

  The cost of matching a data string to a model string is
the cost of the alignment that results in minimum cost

  How does one compute the lowest cost?
  Exponentially large number of possibilities for matching two

strings
  Exhaustive evaluation of the cost of all possibilities to identify

the minimum cost match is infeasible and unnecessary
  The minimum cost can be efficiently computed using a dynamic

programming algorithm that incrementally compares substrings
of increasing length
  Dynamic Time Warping

Computing the minimum cost

Dynamic Time Warping

  Incrementally build up the best “alignment”
by matching substrings to entire strings

  Standard procedure for edit distance:
Computing the Levenshtein distance
  Not possible to represent as a simple search

through a static graph
  Edge scores depend on symbols on the string..

  Alternative procedure – building and
searching a static graph..

11-755 MLSP: Bhiksha Raj

D

A
B
B
A
A
A
C
B
A
D

A

B B B B A

  Each match represents the cost of matching a
data substring consisting of only the first symbol,
to a model substring consisting of all symbols until
the matched symbol
  E.g. C11 is the cost of matching the data substring “B”

to the model substring “A”
  C12 is the cost of matching the data substring “B” to

the model substring “A B”
  C13 is the cost of matching “B” to “A B B”

  The cost of matching the substrings is the lowest
cost of matching these substrings in this manner
  Since there is only one way of obtaining these

matches
C11

C13

C12

C14

C10
D D C C C B D D A

Alignment graph

D

A
B
B
A
A
A
C
B
A
D

A

B B B B A

  Match data substring “B B” to all model
substrings

  The cost of matching data substring “B B” to
any model substring X is given as
  Minimum over Y (match(“B” , Y) + match(“B”, X -Y))
  Y is any model substring that is shorter than or

equal to model substring X
  X – Y is the string of symbols that must be added to

Y to make it equal to X

C23 = minimumY [match(“B” , Y) + match(“B”, “ABB” -Y)]

D D C C C B D D A

Alignment graph

D

A
B
B
A
A
A
C
B
A
D

A

B B B B A

  Match data substring “B B” to all model
substrings

  The cost of matching data substring “B B” to
any model substring X is given as
  Minimum over Y (match(“B” , Y) + match(“B”, X -Y))
  Y is any model substring that is shorter than or

equal to model substring X
  X – Y is the string of symbols that must be added to

Y to make it equal to X

C10 C20 = C10 + I(B)

C23 = C12 + M(B)

D D C C C B D D A

Alignment graph

D

A
B
B
A
A
A
C
B
A
D

A

B B B B A
C11

C13

C12

C14

  We repeat this procedure for matches
of the substring “B B B”
  “B B B” is a combination of the substring

“B B” and the symbol B

  The cost of matching “B B B” to any string = sum of
the cost of matching “B B” and that of matching “B”

  The minimum cost of matching “B B B” to any
substring W = minimum of
 lowest cost of matching “B B” to some substring W1 of W +
 Cost of matching the remaining B to the rest of W

  The lowest cost of matching “B B” to the various
substrings has already been computed

C10 C20

C21

C22

C23

C24

D D C C C B D D A

Alignment graph

  The entire procedure can be recursively applied to
increasingly longer data substrings, until we have a the
minimum cost of matching the entire data string to the
model string
  In the process we also obtain the best manner of

matching the two strings

D

A
B
B
A
A
A
C
B
A
D

A

B B B B A
C11

C13

C12

C14

C10 C20

C21

C22

C23

C24

D D C C C B D D A

Alignment graph

  The alignment process can be viewed as
graph search

Aligning two strings

2

A

B
B
A

A
A

A

B
A

C

D
D

D D A D C D B A B C C B B B

Alignment graph

2

A

B
B
A

A
A

A

B
A

C

D
D

D D A D C D B A B C C B B B

Alignment graph

  This is just one way of creating the graph
  The graph is asymmetric

  Every symbol along the horizontal axis must be visited
  Symbols on the vertical axis may be skipped

  The resultant distance is not symmetric
  Distance(string1, string2) != Distance(string2, string1)

  The graph may be constructed in other ways
  Symmetric : symbols on horizontal axis may also be skipped

  Additional constraints may be incorporated
  E.g. We may never delete more than one symbol in a

sequence
  Useful for the classification problems

String matching

  The method is almost identical to what is done for
string matching

  The crucial additional information is the notion of
a distance between vectors

  The cost of substituting a vector A by a vector B
is the distance between A and B
  Distance could be computed using various metrics. E.g.

  Euclidean distance is sqrt(Σi|Ai – Bi|2)
  Manhattan metric or the L1 norm: Σi|Ai – Bi|
  Weighted Minkowski norms: (Σiwi|Ai – Bi|n)1/n

Matching vector sequences

DTW and speech recognition

  Simple speech recognition (e.g. we want to
recognize names for voice dialling)

  Store one or more examples of the speaker
uttering each of the words as templates

  Given a new word, match the new recording
against each of the templates

  Select the template for which the final DTW
matching cost is lowest

Speech Recognition
  An “utterance” is actually converted to a sequence of cepstral

vector prior to recognition
  Both templates and new utterances

  Computing cepstra:
  Window the signal into segments of 25ms, where adjacent segments

overlap by 15ms
  For each segment compute a magnitude spectrum
  Compute the logarithm of the magnitude spectrum
  Compute the Discrete Cosine Transform of the log magnitude spectrum
  Retain only the first 13 components of the DCT

  Each utterance is finally converted to a sequence of 13-
dimensional vectors

  Optionally augmented by delta and double delta features
  Potentially, with other processing such as mean and variance normalization

  Returning to our discussion...

DTW with two sequences of vectors

M
O

D
E

L

DATA

The template (model) is matched against the data string to be recognized
Select the template with the lowest cost of match

Using Multiple Templates

  A person may utter a word (e.g. ZERO) in
multiple ways
  In fact, one never utters the word twice in exactly the

same way

  Store multiple templates for each word
  Record 5 instances of “ZERO”, five of “ONE” etc.

  Recognition: Cost of word = cost of closest
template of word (to test utterance)
  Select minimum cost word as recognition output

DTW with multiple models

DATA

MODELS

Evaluate all templates for a word against the data

DTW with multiple models

DATA

MODELS

Evaluate all templates for a word against the data

DTW with multiple models

DATA

MODELS

Evaluate all templates for a word against the data
Select the best fitting template. The corresponding cost is the cost of the match

The Problem with Multiple Templates

  Finding the closest template to a test utterance
requires evaluation of all test templates
  This is expensive

  Additionally, the set of templates may not cover
all possible variants of the words
  Must generalize from templates to represent other

variants

  We do this by averaging the templates

DTW with multiple models
MODELS

T1 T2 T3

T4

T4

T3

T4
T3

Align the templates
themselves against
one another

DTW with multiple models
MODELS

T1 T2 T3 T4

T4
T3

T2

T1

Average Model

Align the templates
themselves against
one another

Average the aligned templates

DTW with one model

M
O

D
E

L

DATA

A SIMPLER METHOD: Segment the templates themselves
and average within segments

M
O

D
E

L

DATA

DTW with one model

A simple trick: segment the “model” into regions of equal length
Average each segment into a single point

DTW with one model

mj is the model vector for the jth segment
Nj is the number of training vectors in the jth segment
v(i) is the ith training vector

M
O

D
E

L

DATA

DTW with one model

The averaged template is matched against the data string to be recognized
Select the word whose averaed template has the lowest cost of match

DTW with multiple models
MODELS

DATA

Segment all templates
Average each region into a single point

DTW with multiple models
MODELS

DATA

Segment all templates
Average each region into a single point

mj is the model vector for the jth segment

Nk,j is the number of training vectors in the
jth segment of the kth training sequence

vk(i) is the ith vector of the kth training
sequence

T1 T2 T3 T4

MODELS

AV
G

. M
O

D
E

L
segmentk(j) is the jth segment of the
kth training sequence

DTW with multiple models

AV
G

. M
O

D
E

L

DATA

DTW with multiple models

Segment all templates
Average each region into a single point
To get a simple average model, which is used for recognition

  The inherent variation between vectors
is different for the different segments
  E.g. the variation in the colors of the beads in

the top segment is greater than that in the
bottom segment

  Ideally we should account for the
differences in variation in the segments
  E.g, a vector in a test sequence may actually

be more matched to the central segment,
which permits greater variation, although it is
closer, in a Euclidean sense, to the mean of
the lower segment, which permits lesser
variation

DTW with multiple models

T1 T2 T3 T4

MODELS

mj is the model vector for the jth segment

Cj is the covariance of the vectors in the jth
segment T1 T2 T3 T4

MODELS

We can define the covariance for each
segment using the standard formula
for covariance

DTW with multiple models

  The distance function must be modified to account for
the covariance

  Mahalanobis distance:
  Normalizes contribution of all dimensions of the data

DTW with multiple models

–  v is a data vector, mj is the mean of a segment, Cj is the
covariance matrix for the segment

•  Negative Gaussian log likelihood:
–  Assumes a Gaussian distribution for the segment and computes

the probability of the vector on this distribution

  Simple uniform segmentation of training instances is
not the most effective method of grouping vectors in
the training sequences

  A better segmentation strategy is to segment the
training sequences such that the vectors within any
segment are most alike
  The total distance of vectors within each segment from the

model vector for that segment is minimum

  This segmentation must be estimated

  The segmental K-means procedure is an iterative
procedure to estimate the optimal segmentation

Segmental K-means

T1 T2 T3 T4

Alignment for training a model from multiple vector
sequences

MODELS

AV
G

. M
O

D
E

L

Initialize by uniform segmentation

T4 T1 T2 T3

Alignment for training a model from multiple vector
sequences

Initialize by uniform segmentation

T4 T1 T2 T3

Alignment for training a model from multiple vector
sequences

Initialize by uniform segmentation
Align each template to the averaged model to get new segmentations

T1 T2 T3

T4OLD

T4NEW

Alignment for training a model from multiple vector
sequences

T1 T2
T3NEW

T4NEW

Alignment for training a model from multiple vector
sequences

T1

T3NEW

T2NEW

Alignment for training a model from multiple vector
sequences

T4NEW

T3NEW

T2NEW

T1NEW

Alignment for training a model from multiple vector
sequences

T4NEW

T4NEW T1NEW

T2NEW

T3NEW

Alignment for training a model from multiple vector
sequences

Initialize by uniform segmentation
Align each template to the averaged model to get new segmentations
Recompute the average model from new segmentations

T4NEW
T1NEW

T2NEW

T3NEW

Alignment for training a model from multiple vector
sequences

T4NEW T1NEW

T2NEW

T3NEW

Alignment for training a model from multiple vector
sequences

T1 T2 T3 T4
The procedure can be continued until convergence

Convergence is achieved when the total best-alignment error for
all training sequences does not change significantly with further
refinement of the model

Shifted terminology

STATE

mj , Cj

SEGMENT

TRAINING DATA

TRAINING DATA VECTOR

SEGMENT BOUNDARY

MODEL PARAMETERS
or
PARAMETER VECTORS

MODEL

Transition structures in models

DATA

 M
O

D
E

L

The converged models can be used to score / align data sequences

Model structure is incomplete.

  Some segments are naturally longer than
others
  E.g., in the example the initial (yellow) segments are

usually longer than the second (pink) segments

  This difference in segment lengths is different
from the variation within a segment
  Segments with small variance could still persist very

long for a particular sound or word

  The DTW algorithm must account for these
natural differences in typical segment length

  This can be done by having a state specific
insertion penalty
  States that have lower insertion penalties persist

longer and result in longer segments

DTW with multiple models

T4NEW T1NEW

T2NEW

T3NEW

Transition structures in models

DATA

State specific insertion penalties are represented as
self transition arcs for model vectors. Horizontal edges within the
trellis will incur a penalty associated with the corresponding arc.
Every transition within the model can have its own penalty.

I1

T11

T22

T33

T12

T23

T34

Transition structures in models

DATA

State specific insertion penalties are represented as
self transition arcs for model vectors. Horizontal edges within the
trellis will incur a penalty associated with the corresponding arc.
Every transition within the model can have its own penalty or score

T11

T22

T33

T12

T23

T34

T01

T11 T11

T12

T23

T33 T33

Transition structures in models

DATA

This structure also allows the inclusion of arcs that permit the
central state to be skipped (deleted)
Other transitions such as returning to the first state from the
last state can be permitted by inclusion of appropriate arcs

T11

T22

T33

T12

T23

T34

T13

  Transition behavior can be expressed with probabilities
  For segments that are typically long, if a data vector is within that

segment, the probability that the next vector will also be within it is
high

  A good choice for transition scores are the negative
logarithm of the probabilities of the appropriate transitions

  Tij is the negative of the log probability that if the current data vector
belongs to the ith state, the next data vector belongs to the jth state

  More probable transitions are less penalized. Impossible
transitions are infinitely penalized

What should the transition scores be

Modified segmental K-means AKA Viterbi training

T4NEW T1NEW

T2NEW

T3NEW

•  Nk,i is the number of vectors in the ith segment (state) of
the kth training sequence

•  Nk,i,j is the number of vectors in the ith segment (state) of
the kth training sequence that were followed by vectors
from the jth segment (state)
–  E.g., No. of vectors in the 1st (yellow) state = 20

 No of vectors from the 1st state that were
 followed by vectors from the 1st state = 16
 P11 = 16/20 = 0.8; T11 = -log(0.8)

•  Transition scores can be computed by a simple extension
of the segmental K-means algorithm

•  Probabilities can be counted by simple counting

Modified segmental K-means AKA Viterbi training

T4NEW T1NEW

T2NEW

T3NEW

•  A special score is the penalty associated with starting at
a particular state

•  In our examples we always begin at the first state
•  Enforcing this is equivalent to setting T01 = 0,

T0j = infinity for j != 1
•  It is sometimes useful to permit entry directly into later

states
–  i.e. permit deletion of initial states

•  The score for direct entry into any state can be
computed as

•  N is the total number of training sequences
•  N0j is the number of training sequences for which the

first data vector was in the jth state

N = 4
N01 = 4
N02 = 0
N03 = 0

  Some structural information
must be prespecified

  The number of states must
be prespecified
  Manually

  Allowable start states and
transitions must be
presecified
  E.g. we may specify beforehand

that the first vector may be in
states 1 or 2, but not 3

  We may specify possible
transitions between states

Modified segmental K-means AKA Viterbi training

3 model vectors
Permitted initial states: 1
Permitted transitions: shown by arrows

4 model vectors
Permitted initial states: 1, 2
Permitted transitions: shown by arrows

Some example specifications

  Initializing state parameters
  Segment all training instances uniformly, learn means and variances

  Initializing T0j scores
  Count the number of permitted initial states

 Let this number be M0

  Set all permitted initial states to be equiprobable: Pj = 1/M0
  T0j = -log(Pj) = log(M0)

  Initializing Tij scores
  For every state i, count the number of states that are permitted to follow

 i.e. the number of arcs out of the state, in the specification
 Let this number be Mi

  Set all permitted transitions to be equiprobable: Pij = 1/Mi

  Initialize Tij = -log(Pij) = log(Mi)

  This is only one technique for initialization
  Other methods possible, e.g. random initialization

Modified segmental K-means AKA Viterbi training

  The entire segmental K-means algorithm:
  Initialize all parameters

  State means and covariances
  Transition scores
  Entry transition scores

  Segment all training sequences

  Reestimate parameters from segmented training
sequences

  If not converged, return to 2

Modified segmental K-means AKA Viterbi training

Alignment for training a model from multiple
vector sequences

T1 T2 T3 T4

The procedure can be continued until convergence

Convergence is achieved when the total best-alignment error for
all training sequences coverges

Initialize Iterate

  This structure is a generic representation of a statistical
model for processes that generate time series

  The “segments” in the time series are referred to as states
  The process passes through these states to generate time

series
  The entire structure may be viewed as one generalization

of the DTW models we have discussed thus far
  Strict left-to-right Bakis topology

DTW and Hidden Markov Models (HMMs)

T11 T22 T33

T12 T23

T13

  A Hidden Markov Model consists of two components
  A state/transition backbone that specifies how many states

there are, and how they can follow one another
  A set of probability distributions, one for each state, which

specifies the distribution of all vectors in that state

Hidden Markov Models

•  This can be factored into two separate probabilistic entities
–  A probabilistic Markov chain with states and transitions
–  A set of data probability distributions, associated with the states

Markov chain

Data distributions

HMMS and DTW

•  HMMs are similar to DTW templates
•  DTW: Minimize negative log probability (cost)
•  HMM: Maximize probability

•  In the models considered so far, the state output
distribution have been assumed to be Gaussian

•  In reality, the distribution of vectors within any state need
not be Gaussian
  In the most general case it can be arbitrarily complex
  The Gaussian is only a coarse representation of this distribution
  Typically they are Gaussian Mixtures

•  Training algorithm: Baum Welch may replace segmental
K-means
•  Segmental K-means is also quite effective

Gaussian Mixtures

•  A Gaussian Mixture is literally a mixture of Gaussians. It is
a weighted combination of several Gaussian distributions

•  v is any data vector. P(v) is the probability given to that vector by the
Gaussian mixture

•  K is the number of Gaussians being mixed
•  wi is the mixture weight of the ith Gaussian. mi is its mean and Ci is

its covariance

•  Trained using all vectors in a segment
•  Instead of computing a single mean and covariance only, computes

means and covariances of all Gaussians in the mixture

Gaussian Mixtures

  A Gaussian mixture can represent
data distributions far better than a
simple Gaussian

  The two panels show the histogram of
an unknown random variable

  The first panel shows how it is
modeled by a simple Gaussian

  The second panel models the
histogram by a mixture of two
Gaussians

  Caveat: It is hard to know the optimal
number of Gaussians in a mixture
distribution for any random variable

  The parameters of an HMM with Gaussian
mixture state distributions are:
  π the set of initial state probabilities for all states
  T the matrix of transition probabilities
  A Gaussian mixture distribution for every state in

the HMM. The Gaussian mixture for the ith state is
characterized by
  Ki, the number of Gaussians in the mixture for the ith state
  The set of mixture weights wi,j 0<j<Ki

  The set of Gaussian means mi,j 0 <j<Ki

  The set of Covariance matrices Ci,j 0 < j <Ki

HMMS

  The procedure is identical to what is used
when state distributions are Gaussians with
one minor modification:

  The distance of any vector from a state is
now the negative log of the probability given
to the vector by the state distribution

  The “penalty” applied to any transition is the
negative log of the corresponding transition
probability

Segmenting and scoring data sequences with
HMMs with Gaussian mixture state distributions

Define model structure
  Specify number of

states
  Specify transition

structure
  Specify no. of

Gaussians in the
distribution of any state

T11 T22 T33

T12 T23

T13

Training word models

T11 T22 T33

T12 T23

T13

Record instances

Compute features

Train
- HMMs using segmental K-means.
- Mixture Gaussians for each state using K-means or EM

  A special kind of state: An NON-EMITTING state. No
observations are generated from this state

  Usually used to model the termination of a unit

non-emitting absorbing 
state

A Non-Emitting State

  Given data X, find which of a number of classes C1, C2,…CN it
belongs to, based on known distributions of data from C1, C2, etc.

  Bayesian Classification:
 Class = Ci : i = argminj -log(P(Cj)) - log(P(X|Cj))

a priori probability of Cj Probability of X as given by 
the probability distribution of Cj

Statistical pattern classification

 The a priori probability accounts for the relative proportions of the
classes
–  If you never saw any data, you would guess the class based on

these probabilities alone
  P(X|Cj) accounts for evidence obtained from observed data X

 -Log(P(X|C)) is approximated by the DTW score of the model

Log(P(Odd))

HMM for Odd
 HMM for Even

Log(P(Even))

Log(P(Odd))+ log(P(X|Odd))
 Log(P(Even))+log(P(X|Even))

Classifying between two words: Odd and Even

Classifying between two words: Odd and Even

Log(P(Odd))

Log(P(Even))

Log(P(Odd))+ log(P(X|Odd))

Log(P(Even)) 
+log(P(X|Even))

Score(X|Even)

Score(X|Odd)

  Compute the score of the best path

Decoding to classify between Odd and Even

Log(P(Odd))

Log(P(Even))

Score(X|Even)

Score(X|Odd)

  Compare scores (best state sequence probabilities) of all competing
words

  Select the word sequence corresponding to the path with the best
score

Decoding to classify between Odd and Even

Log(P(Odd))

Log(P(Even))

Statistical classification of word sequences

•  P(wd1,wd2,wd3..) is a priori probability of word sequence
wd1,wd2,wd3..
–  Obtained from a model of the language

•  P(X| wd1,wd2,wd3..) is the probability of X computed on the probability
distribution function of the word sequence wd1,wd2,wd3..
–  HMMs now represent probability distributions of word sequences

Decoding continuous speech
First step: construct an HMM for each possible word sequence

•  P(X| wd1,wd2,wd3..) is the probability of X computed on the probability
distribution function of the word sequence wd1,wd2,wd3..
–  HMMs now represent probability distributions of word sequences

HMM for word 1
 HMM for word2

Combined HMM for the sequence word 1 word 2

Second step: find the probability of the given utterance on the HMM for
each possible word sequence

Ro
ck

St
ar

Do
g

St
ar

P(Dog,Star)P(X|Dog Star)
P(Rock,Star)P(X|Rock Star)

P(Rock Star)
 P(Dog Star)

Bayesian Classification between word sequences

  Classifying an utterance as either “Rock Star” or “Dog Star”
  Must compare P(Rock,Star)P(X|Rock Star) with P(Dog,Star)P(X|Dog

Star)

Ro
ck

Do
g

St
ar

P(Rock)
 P(Dog)

P(Star|Rock)
 P(Star|Dog)
 P(Dog,Star)P(X|Dog Star)
P(Rock,Star)P(X|Rock Star)

St
ar

Bayesian Classification between word sequences

  Classifying an utterance as either “Rock Star” or “Dog Star”
  Must compare P(Rock,Star)P(X|Rock Star) with P(Dog,Star)P(X|Dog

Star)

Ro
ck

St
ar

Do
g

St
ar

P(Dog,Star)P(X|Dog Star)

P(Rock,Star)P(X|Rock Star)

Bayesian Classification between word sequences

Ro
ck

St
ar

Do
g

St
ar

Score(X|Rock Star)

Score(X|Dog Star)

Approximate total probability 
with best path score

Decoding to classify between word sequences

Ro
ck

St
ar

Do
g

St
ar

The best path through 
Dog Star lies within the 
dotted portions of the trellis 

There are four transition 
points from Dog to Star in 
this trellis

There are four different sets 
paths through the dotted

trellis, each with its own

best path

Decoding to classify between word sequences

Ro
ck

St
ar

Do
g

St
ar

The best path through 
Dog Star lies within the 
dotted portions of the trellis 

There are four transition 
points from Dog to Star in 
this trellis

There are four different sets 
paths through the dotted

trellis, each with its own

best path

SET 1 and its best path

dogstar1

Decoding to classify between word sequences

Ro
ck

St
ar

Do
g

St
ar

The best path through 
Dog Star lies within the 
dotted portions of the trellis 

There are four transition 
points from Dog to Star in 
this trellis

There are four different sets 
paths through the dotted

trellis, each with its own

best path

SET 2 and its best path

dogstar2

Decoding to classify between word sequences

Ro
ck

St
ar

Do
g

St
ar

The best path through 
Dog Star lies within the 
dotted portions of the trellis 

There are four transition 
points from Dog to Star in 
this trellis

There are four different sets 
paths through the dotted

trellis, each with its own

best path

SET 3 and its best path

dogstar3

Decoding to classify between word sequences

Ro
ck

St
ar

Do
g

St
ar

The best path through 
Dog Star lies within the 
dotted portions of the trellis 

There are four transition 
points from Dog to Star in 
this trellis

There are four different sets 
paths through the dotted

trellis, each with its own

best path

SET 4 and its best path

dogstar4

Decoding to classify between word sequences

Ro
ck

St
ar

Do
g

St
ar

The best path through 
Dog Star is the best of 
the four transition-specific 
best paths 
max(dogstar) =

max (dogstar1, dogstar2,

 dogstar3, dogstar4)

Decoding to classify between word sequences

Ro
ck

St
ar

Do
g

St
ar

Similarly, for Rock Star  
the best path through 
the trellis is the best of 
the four transition-specific 
best paths 
max(rockstar) =

max (rockstar1, rockstar2,

 rockstar3, rockstar4)

Decoding to classify between word sequences

Ro
ck

St
ar

Do
g

St
ar

Then weʼd compare
the best paths
through Dog Star
and Rock Star

max(dogstar) =

max (dogstar1, dogstar2,

 dogstar3, dogstar4)

max(rockstar) =

max (rockstar1, rockstar2, 
 rockstar3, rockstar4)

Viterbi =

max(max(dogstar), 
 max(rockstar))

Decoding to classify between word sequences

Ro
ck

St
ar

Do
g

St
ar

argmax is commutative:

max(max(dogstar),
max(rockstar))

=

max (

 max(dogstar1, rockstar1),

 max (dogstar2, rockstar2),

 max (dogstar3,rockstar3),

 max(dogstar4,rockstar4)

)

Decoding to classify between word sequences

Ro
ck

St
ar

Do
g

St
ar

We can choose between 
Dog and Rock right here  
because the futures of these 
paths are identical

For a given entry point 
the best path through STAR 
is the same for both trellises

t1

Decoding to classify between word sequences

Ro
ck

St
ar

Do
g

St
ar

 We select the higher scoring 

of the two incoming edges 
here  

This portion of the 
trellis is now deleted

t1

Decoding to classify between word sequences

Ro
ck

St
ar

Do
g

St
ar

Similar logic can be applied 
at other entry points to

Star

• t1

Decoding to classify between word sequences

Ro
ck

St
ar

Do
g

St
ar

Similar logic can be applied 
at other entry points to

Star

• t1

Decoding to classify between word sequences

Ro
ck

Do
g

St
ar

Similar logic can be applied 
at other entry points to

Star

• t1

Decoding to classify between word sequences

Ro
ck

Do
g

St
ar

Similar logic can be applied 
at other entry points to

Star

This copy of the trellis 
for STAR is completely 
removed

Decoding to classify between word sequences

Ro
ck

Do
g

St
ar

  The two instances of Star can be collapsed into one to form a smaller
trellis

Decoding to classify between word sequences

Ro
ck

Do
g

St
ar

We will represent the
vertical axis of the
trellis in this simplified
manner

Rock
 Dog
 Star

Rock

Dog

Star
=

Language-HMMs for fixed length word sequences

  The word graph represents all allowed word sequences in
our example
  The set of all allowed word sequences represents the allowed

“language”

  At a more detailed level, the figure represents an HMM
composed of the HMMs for all words in the word graph
  This is the “Language HMM” – the HMM for the entire allowed

language

  The language HMM represents the vertical axis of the
trellis
  It is the trellis, and NOT the language HMM, that is searched for

the best path

P(Rock)

P(Dog)

P(Star|Rock)

P(Star|Dog)

Ea
ch

 w
or

d
is

an
 H

M
M

Language-HMMs for fixed length word sequences

  Recognizing one of four lines from “charge of the light brigade”
 Cannon to right of them
 Cannon to left of them
 Cannon in front of them
 Cannon behind them

to

of

Cannon

them

right

left

front in

behind

P(cannon)

P(to|cannon)

P(right|cannon to)

P(in|cannon)

P(behind|cannon)

P(of|cannon to right)

P(of|cannon to left)

P(them|cannon in front of)

P(them|cannon behind)

them

of

of them

them

P(them|cannon to right of)

P(front|cannon in)
P(of|cannon in front)

P(them|cannon to left of)

P(left|cannon to)

Ea
ch

 w
or

d
is

an
 H

M
M

Language-HMMs for fixed length word sequences

  Recognizing one of four lines from “charge of the light brigade”
  If the probability of a word only depends on the preceding word, the

graph can be collapsed:
  e.g. P(them | cannon to right of) = P(them | cannon to left of) =

P(cannon | of)

to

of Cannon them

right

left

front in

behind

P(cannon)

P(to | cannon)

P(right | to)

P(in | cannon)

P(behind | cannon)

P(of | right)

P(of | left)

P(them | of)

P(them|behind)

Simplification of the language HMM through lower context
language models

Ea
ch

 w
or

d
is

an
 H

M
M

freezy

breeze

made

these

trees

freeze

three trees

trees’ cheese

Language HMMs for fixed-length word sequences: based
on a grammar for Dr. Seuss

Ea
ch

 w
or

d
is

an
 H

M
M

delete

file

all
files

open

edit

close
marked

Language HMMs for fixed-length word sequences:
command and control grammar

Ea
ch

 w
or

d
is

an
 H

M
M

  Constrained set of word sequences with
constrained vocabulary are realistic
  Typically in command-and-control situations

  Example: operating TV remote

  Simple dialog systems
  When the set of permitted responses to a query is restricted

  Unconstrained word sequences : NATURAL
LANGUAGE
  State-of-art large vocabulary decoders

Language HMMs for arbitrarily long word sequences

Language HMMs for natural language: N-gram
representations

  Unigram Model: A bag of words model:
  The probability of a word is independent of the words preceding or

succeeding it.

P(When you wish upon a star) =
P(When) P(you) P(wish) P(upon) P(a) P(star) P(END)

  “END” is a special symbol, that indicates the end of the
word sequence

  P(END) is necessary – without it the word sequence would never
terminate

  Bigram language model: the probability of a word
depends on the previous word
  P(When you wish upon a star) = P(When|START)

P(you |when) P(wish |you) …. P(Star | a) P(END|Star)

  Trigram representations
  P(When you wish upon a star) = P(When|START)

P(you |START when) P(wish |when you) …. P(Star |upon a)
P(END|a Star)

  Ngram representations allow us to represent free-form
language as finite graphs

Language HMMs for Natural language: N-
Gramrepresentations

  There will be one path for every possible word sequence
  A priori probabilitiy for a word sequence can be applied anywhere

along the path representing that word sequence.
  It is the structure and size of this graph that determines the

feasibility of the recognition task

Recognizing Natural Language: Choose between all infinite
sentences

.

the term cepstrum was introduced by Bogert et al and has come to be

accepted terminology for the

inverse Fourier transform of the logarithm of the power spectrum

of a signal in nineteen sixty three Bogert Healy and Tukey published a paper

with the unusual title

The Quefrency Analysis of Time Series for Echoes Cepstrum Pseudoautocovariance

Cross Cepstrum and Saphe Cracking

they observed that the logarithm of the power spectrum of a signal containing an

echo has an additive

periodic component due to the echo and thus the Fourier transform of the

logarithm of the power

spectrum should exhibit a peak at the echo delay

they called this function the cepstrum

interchanging letters in the word spectrum because

in general, we find ourselves operating on the frequency side in ways customary

on the time side and vice versa

Bogert et al went on to define an extensive vocabulary to describe this new

signal processing technique however only the term cepstrum has been widely used

the transformation of a signal into its cepstrum is a homomorphic transformation

and the concept of the cepstrum is a fundamental part of the theory of homomorphic

systems for processing signals that have been combined by convolution

<s>
 </s>

Begin sentence marker
 End sentence marker

  A priori probabilities for word sequences are spread through the
graph
  They are applied on every edge

  This is a much more compact representation of the language than
the full graph shown earlier
  But is still inifinitely large in size

The left to right model: A Graphical View

sing

song

sing

song

sing

song

<s>

sing

song

sing

song

sing

song

sing

song

</s>

• Assuming a two-word 
vocabulary: “sing” and 
“song”

sing

song

sing

song

sing

song

<s>

sing

song

sing

song

sing

song

sing

song

</s>
P(</s>|<s>)

  The structure is recursive and can be collapsed

The two-word example as a full tree with a unigram LM

sing

song

sing

song

sing

song

<s>

sing

song

sing

song

sing

song

sing

song

</s>
P(</s>)

sing

song

sing

song

sing

song

sing

song

sing

song

sing

song

sing

song

</s> <s>
P(</s>)

sing

song

sing

song

sing

song

sing

song

sing

song

sing

song

sing

song

</s> <s>
P(</s>)

sing

song

sing

song

sing

song

sing

song

sing

song

sing

song

sing

song

</s> <s>
P(</s>)

sing

song

</s> <s> P(</s>)

sing

song

sing

song

sing

song

sing

song

sing

song

sing

song

sing

song

</s> <s>

•  The structure is recursive and can be collapsed

The two-word example as a full tree with a bigram LM

P(</s>|<s>)

sing

song

sing

song

sing

song

sing

song

sing

song

sing

song

sing

song

</s> <s> P(</s>|<s>)

sing

song

sing

song

sing

song

sing

song

sing

song

sing

song

sing

song

</s> <s> P(</s>|<s>)

P(song | song)

P(sing | sing)

sing

song

</s>

P(song | song)

<s>

P(sing | sing)

P(</s> | <s>)

sing

song

sing

song

sing

song

<s>

sing

song

sing

song

sing

song

sing

song

</s>

•  The structure is recursive and can be collapsed

The two-word example as a full tree with a trigram LM

sing

song

sing

song

sing

song

<s>

sing

song

sing

song

sing

song

sing

song

</s>

P(sing|sing sing)

P
(s

on
g|

si
ng

 s
in

g)

P
(sing|sing song)

P
(s

in
g|

so
ng

 s
on

g)

P
(s

on
g|

so
ng

 s
in

g)

P(song|song song)

sing

song

sing

song

sing

song

<s> </s>

P(sing|sing sing)

P
(s

on
g|

si
ng

 s
in

g)

P
(sing|sing song)

P
(s

in
g|

so
ng

 s
on

g)

P
(s

on
g|

so
ng

 s
in

g)

P(song|song song)

  The logic can be extended:
  A trigram decoding structure for a vocabulary

of D words needs D word instances at the
first level and D2 word instances at the
second level
  Total of D(D+1) word models must be instantiated
  Other, more expensive structures are also possible

  An N-gram decoding structure will need
  D + D2 +D3… DN-1 word instances
  Arcs must be incorporated such that the exit from a

word instance in the (N-1)th level always represents
a word sequence with the same trailing sequence
of N-1 words

Generic N-gram representations

  N-gram probabilities must be estimated from data

  Probabilities can be estimated simply by counting words in training
text

  E.g. the training corpus has 1000 words in 50 sentences, of which
400 are “sing” and 600 are “song”
  count(sing)=400; count(song)=600; count(</s>)=50
  There are a total of 1050 tokens, including the 50 “end-of-sentence”

markers

  UNIGRAM MODEL:
  P(sing) = 400/1050; P(song) = 600/1050; P(</s>) = 50/1050

  BIGRAM MODEL: finer counting is needed. For example:
  30 sentences begin with sing, 20 with song

 We have 50 counts of <s>
 P(sing | <s>) = 30/50; P(song|<s>) = 20/50

  10 sentences end with sing, 40 with song
 P(</s> | sing) = 10/400; P(</s>|song) = 40/600

  300 instances of sing are followed by sing, 90 are followed by song
 P(sing | sing) = 300/400; P(song | sing) = 90/400;

  500 instances of song are followed by song, 60 by sing
 P(song | song) = 500/600; P(sing|song) = 60/600

Estimating N-gram probabilities

To Build a Speech Recognizer
  Train word HMMs from many training instances

  Typically one trains HMMs for individual phonemes, then
concatenates them to make HMMs for words

  Recognition, however is almost always done with WORD HMMs
(and not phonemes as is often misunderstood)

  Train or decide a language model for the task
  Either a simple grammar or an N-gram model

  Represent the language model as a compact graph
  Introduce the appropriate HMM for each word in the

graph to build a giant HMM

  Use the Viterbi algorithm to find the best state sequence
(and thereby the best word sequence) through the
graph!

