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11-755 Machine Learning for Signal Processing

Sparse and Overcomplete
Representations

Class 23- November 10, 2009
Sourish Chaudhuri

Key Topics in this Lecture

The Basics- Overcomplete and Sparse
Representations, Dictionaries

* Pursuit Algorithms
* How to learn a dictionary

* Why is an overcomplete representation
powerful?

Representing Data

Dictionary (codebook)

Representing Data

Dictionary Atoms
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Representing Data

Dictionary Atoms
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Aa Each atom is a basic unit that can
P be used to “compose” larger units.
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Representing Data

Representing Data




Representing Data
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Overcomplete Representations

* What is the dimensionality of the input
image? (say 64x64 image)

> 4096

* What is the dimensionality of the dictionary?
(each image = 64x64 pixels)

> N x 4096

Overcomplete Representations

* What is the dimensionality of the input
image? (say 64x64 image)

> 4096

* What is the dimensionality of the dictionary?

Overcomplete Representations

* What is the dimensionality of the input
image? (say 64x64 image)

» 4096

* What is the dimensionality of the dictionary?

4096 VERY LARGE!!!

Overcomplete Representations

* What is the dimensionality of the input
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If N > 4096 (as it likely is)
we have an overcomplete representation

* What is the dimensionality of the dictionary?

4096 VERY LARGE!!!

Overcomplete Representations

* What is the dimensionality of the input

imnand [cav BEAVEA immnan)

More generally:
If #(basis vectors) > dimensions of input

we have an overcomplete representation

@4096 VERY LARGE!!!




Representing Data

arse and Overcomplete Representations

11/10/09

Representing Data
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Representing Data
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Representing Data

Quick Linear Algebra Refresher

* Remember, #(Basis Vectors)= #unknowns
a=X

Basis
vectors

Input data
Unknowns

se and Overcomplete Representations

Quick Linear Algebra Refresher

* Remember, #(Basis Vectors)= #unknowns
a=X

Basis
vectors

Input data
Unknowns

When can we solve for a?

Sparse and Overcomplete Representations




Quick Linear Algebra Refresher

D.a=X
* When #(basis vectors) = dim(Input Data), we
have a unique solution
* When #(basis vectors) < dim(Input Data), we
may have no solution
* When #(basis vectors) > dim(Input Data), we
have infinitely many solutions
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Quick Linear Algebra Refresher

D.a=X
* When #(basis vectors) = dim(Input Data), we
have a unique solution

* When #(basis vectors) < dim(Input Data), we
may have no solution

. Whenl#(basis vectors) > dim(Input Data)l, we

have infinitely many sdngns

Our Case

Overcomplete Representations

#(basis vectors) > dimensions of the input

Overcomplete Representation
iR

(
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#(basis vectors) > difffensions of thesnput
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Overcomplete Representations

* Why do we use them?
* How do we learn them?

Overcomplete Representations

* Why do we use them?
— A more natural representation of the real world
— More flexibility in matching data

— Can yield a better approximation of the statistical
distribution of the data.

* How do we learn them?




Overcompleteness and Sparsity

* To solve an overcomplete system of the type:
D.a=X
* Make assumptions about the data.

¢ Suppose, we say that X is composed of no
more than a fixed number (k) of bases from D
(k < dim(X))

* Now, we can find the set of k bases that best
fit the data point, X.
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Representing Data

s
Y

But no more than k=4 bases [§

Overcompleteness and Sparsity

Atoms

.....m......

But no more than k=4 bases

Overcompleteness and Sparsity

Atoms

.---M—----

But no more than k=4 bases

Sparsity- Definition

* Sparse representations are representations
that account for most or all information of a
signal with a linear combination of a small
number of atoms.

(from: www.see.ed.ac. html)

The Sparsity Problem

* We don’t really know k
* You are given a signal X

* Assuming X was generated using the
dictionary, can we find a that generated it?




The Sparsity Problem

* We want to use as few basis vectors as
possible to do this.

Min |a],

st. X=Da
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The Sparsity Problem

* We want to use as few basis vectors as
possible to do this.

mial,
M.X=§Q

\
Counts the number of non-
zero elements in a

The Sparsity Problem

* We want to use as few basis vectors as
possible to do this.

Min |al,

st. X=Da

How can we solve the above?

Obtaining Sparse Solutions

* We will look at 2 algorithms:
— Matching Pursuit (MP)
— Basis Pursuit (BP)

Matching Pursuit (MP)

* Greedy algorithm

* Finds an atom in the dictionary that best
matches the input signal

* Remove the weighted value of this atom from
the signal

* Again, find an atom in the dictionary that best
matches the remaining signal.

* Continue till a defined stop condition is
satisfied.

Matching Pursuit

* Find the dictionary atom that best matches

the given signal.
Weight = w,
—p
\:‘ \
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Matching Pursuit

* Remove weighted image to obtain updated
signal

Find best match for

=2 this signal from the
dictionary

Matching Pursuit

* Find best match for updated signal

Matching Pursuit

* Find best match for updated signal

Iterate till you reach a stopping condition,
norm(ResiduallnputSignal) < threshold

Matching Pursuit

Algorithm Matching Pursuit
Input: Signal: f{1).
Output: List of coefficients: ({1,,”.(},,’“).
Initialization:
Rf, < f0);

Repeat

find g, € D with maximum inner product < Rf,” Gryn >;

a, = < Rfu, gy, >
Rf .\ < Rf, — QAn Gy
n « n+l;
Until stop condition (for example: | |Rf" | | < threshold)

From http://en.wikipedia.org/wiki/Matching_pursuit

Matching Pursuit

* Problems ???

Matching Pursuit

* Main Problem
— Computational complexity
— The entire dictionary has to be searched at every
iteration




Comparing MP and BP

Matching Pursuit

Hard thresholding

(remember the equations)
Greedy optimization at
each step

Weights obtained using
greedy rules
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Basis Pursuit (BP)

* Remember,

Min e,

st. X=Da

Basis Pursuit

* Remember,

Min |al,

st. X=Da

In the general case, this is intractable

Basis Pursuit

* Remember,

Min |a],

st. X=Da

In the general case, this is intractable

Requires combinatorial optimization

Basis Pursuit

* Replace the intractable expression by an
expression that is solvable

Min |a]

st. X=Da

Basis Pursuit

* Replace the intractable expression by an
expression that is solvable

Min |a],

st. X=Da

This holds when a obeys the
Restricted Isometry Property.
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Basis Pursuit

* Replace the intractable expression by an
expression that is solvable

Algin HQH1 1 Objective
st. X=Da

LN

Constraint

Basis Pursuit

* We can formulate the optimization term as:

Min (] - Dad + 2]

/

Constraint Objective

Basis Pursuit

* We can formulate the optimization term as:

an{xwal}

A\ is a penalty term on the non-zero elements
and promotes sparsity

Basis Pursuit

Known as LASSO; for more details, see this

paper by Tibshirani -

Min {[|X ~Daf" + A }

A is a penalty term on the non-zero elements
and promotes sparsity

Basis Pursuit

* There are efficient ways to solve the LASSO
formulation. [Link to Matlab code]

Comparing MP and BP

Matching Pursuit

Hard thresholding Soft thresholding
(remember the equations)

Greedy optimization at  Global optimization
each step
Weights obtained using  Can force N-sparsity

greedy rules with appropriately
chosen weights

10
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Applications of Sparse Representations

* Two extremely popular applications:
— Compressive sensing
— Denoising

Applications of Sparse Representations

* Two extremely popular applications:
— Compressive sensing

Compressive Sensing

* Recall the Nyquist criterion?

* To reconstruct a signal, you need to sample at
twice the maximum frequency of the original
signal

Compressive Sensing

* Recall the Nyquist criterion?

* To reconstruct a signal, you need to sample at
twice the frequency of the original signal

* |s it possible to reconstruct signals when they
have not been sampled so as to satisfy the
Nyquist criterion?

Compressive Sensing

* Recall the Nyquist criterion?

* To reconstruct a signal, you need to sample at
twice the frequency of the original signal

* |s it possible to reconstruct signals when they
have not been sampled so as to satisfy the
Nyquist criterion?

* Under specific criteria, yes!!!!

Compressive Sensing

* What criteria?

11



Compressive Sensing
* What criteria?

Sparsity!

11/10/09

Compressive Sensing
* What criteria?

Sparsity!

* Exploit the structure of the data
* Most signals are sparse, in some domain

Applications of Sparse Representations

* Two extremely popular applications:

— Compressive sensing
* You will hear more about this in the next class

Applications of Sparse Representations
* Two extremely popular applications:

— Denoising

Denoising

* As the name suggests, remove noise!

Denoising

* As the name suggests, remove noise!
* We will look at image denoising as an example

12



Image Denoising

* Here’s what we want
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Image Denoising

e Here’s what we want

Image Denoising

* Here’s what we want

Ry

\

r
7

-

parse and Overcomplete Representations

Denoising

* As the name suggests, remove noise!
* We will look at image denoising as an example

A more general take-away:
How to learn the dictionaries

Sparse and Overcomplete Representations

The Image Denoising Problem

¢ Given an image
* Remove Gaussian additive noise from it

se and Overcomplete Representations

Image Denoising

T
Orig. Image

Noisy Input

Gaussian Noise

13
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Image Denoising

Remove the noise from Y, to obtain X as best
as possible.

Image Denoising

* Remove the noise from Y, to obtain X as best

as possible

* Using sparse representations over learned

dictionaries

Image Denoising

Remove the noise from Y, to obtain X as best
as possible

Using sparse representations over learned
dictionaries

Yes, we will learn the dictionaries

Image Denoising

Remove the noise from Y, to obtain X as best
as possible

Using sparse representations over learned
dictionaries

Yes, we will learn the dictionaries

What data will we use? The corrupted image
itself!

Image Denoising

We use the data to be denoised to learn the
dictionary.

Training and denoising become an iterated
process.

We use image patches of size pixels
(i.e. if the image is 64x64, patches are 8x8)

Image Denoising

* The data dictionary D
—Size=nxk(k>n)
— This is known and fixed, to start with

— Every image patch can be sparsely represented
using D

14



Image Denoising

* Recall our equations from before.

* We want to find a so as to minimize the value
of the equation below:

Min (| ~Da + 2]}
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Image Denoising

* Recall our equations from before.

* We want to find a so as to minimize the value
of the equation below:

Min (] ~Ded + 2]}

Image Denoising

* Recall our equations from before.

* We want to find a so as to minimize the value
of the equation below:

Min (| ~Da + 2]}

Yes

Image Denoising

* Recall our equations from before.

* We want to find a so as to minimize the value
of the equation below:

Min (| ~Da + 2]al,}

Yes
What constraints does it need?

Image Denoising

* Recall our equations from before.

* We want to find a so as to minimize the value
of the equation below:

Min {|X -Dal + A|d],}

Image Denoising

* Recall our equations from before.

* We want to find a so as to minimize the value
of the equation below:

]\4ain {HX —DQHZ + }\’HQH()}

But this is intractable!

15
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Image Denoising Image Denoising

* Recall our equations from before.
* We want to find a so as to minimize the value
of the equation below:

* Recall our equations from before.
* We want to find a so as to minimize the value
of the equation below:

Min {|X -Da|” + 2|a| } Min {|X -Da’ + 2] }
Yes

Image Denoising Image Denoising

Min {|X -Da|” + 2|a| } Min {|X -Da|’ + 2] }

* In the above, X is a patch.

* If the larger image is fully expressed by the
every patch in it, how can we go from patches
to the image?

* In the above, X is a patch.

Image Denoising Image Denoising

@x i 3k x
/

Min X -,

(X Y) is the error between the
|nput and denoised image. 1 is a
penalty on the error.




Image Denoising.
a \2\
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Error bounding in each patch
-what is R;;?
-How many terms in the
summation?

Image Denoising
. 2
Mip (X =Y.+ 3

RUX -Do

2
ey
7 2

A forces sparsity

Image Denoising

* But, we don’t “know” our dictionary D.
* We want to estimate D as well.

Image Denoising

* But, we don’t “know” our dictionary D.
* We want to estimate D as well.

Min (u|X -Y|}+ 3[R, X -Da,
ij

o D,a,-j,X

+E)Ll-j
i

2
2

%

J

We can use the previous equation itself!!!

Image Denoising

Min (X -¥[+ S

Dk 1,

+E)»ij
ij

How do we estimate all 3 at once?

Rin -Do

2
i
diP)

%

J

Image Denoising
2

Min {u|x-v[+ izjzei,.)(_l)ai, 2
+E)Ll.j
if

How do we estimate all 3 at once?

%

J

We cannot estimate them at the same time!

17
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Image Denoising

o) }

+E A,
i

How do we estimate all 3 at once?
Fix 2, and find the optimal 3.

2

Min (u|x-Y[}+ 3[R X -Da |
- y

Image Denoising
2

Min (X ~¥[}+ 3R, X ~Da,|
— y

+E A;
i

Initialize X =Y

%y

J

Image Denoising

,if” ug 2~y
+E AU O}
i

Initialize X =, initialize D

2
2

%y

0

You know how to solve the remaining
portion for a — MP, BP!

Image Denoising

* Now, update the dictionary D.

* Update D one column at a time, following the
K-SVD algorithm

* K-SVD maintains the sparsity structure

Image Denoising

Now, update the dictionary D.

Update D one column at a time, following the

K-SVD algorithm
K-SVD maintains the sparsity structure

Iteratively update o and D

Image Denoising

* Updating D
* For each basis vector, compute its contribution to the
image
E,=Y-YDa,

Jj=k

18
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Image Denoising

Updating D
* For each basis vector, compute its contribution to the
image
* Eigen decomposition of E,

E, =UAV'

Image Denoising

* Updating D
* For each basis vector, compute its contribution to the
image
* Eigen decomposition of E,
 Take the principal eigen vector as the updated basis
vector.

Dk=U1

Image Denoising

"\ SRR T 2N
'I'//'\\//III//\\’/)’ VA AN
2 /I.\\\‘\\’ VLT Y T ANEZ
LZ NN Z AN\
VL RS TRTTESS ST T 1

Learned Dictionary for Face Image denoising

From: M. Elad and M. Aharon, Image denoising via learned
dictionaries and sparse representation, CVPR, 2006.

Image Denoising

2
Min (X -¥],+ 3[R, X -Da |

Const. wrt X

We know D and a

The quadratic term above has a closed-
form solution

Image Denoising

. 2 2
Min (X -¥];+ 3|, X -Dar |

Const. wrt X

We know D and a

X = (ul + Y RIR) (uY + Y Ri Dat,))

ij i

Image Denoising

* Summarizing... We wanted to obtain 3 things

19



Image Denoising

¢ Summarizing... We wanted to obtain 3 things

» Weights a
» Dictionary D
» Denoised Image X
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Image Denoising

* Summarizing... We wanted to obtain 3 things

» Weights a — Your favorite pursuit algorithm
» Dictionary D — Using K-SVD
» Denoised Image X

Image Denoising

¢ Summarizing... We wanted to obtain 3 things

y N
> Weights o — Your favgite pwf aloarithm
> Dictionary D — Using k-svD  Iterating
» Denoised Image X

Image Denoising

* Summarizing... We wanted to obtain 3 things

» Weights a
» Dictionary D
» Denoised Image X- Closed form solution

K-SVD algorithm (skip)

Initialization : Set the random normalized dictionary matrix
D@ e R™¥. SetJ = 1.

Repeat until convergence,

Sparse Coding Stage: Use any pursuit algorithm to compute x;
fori=1,2,..., N

min {||y; — Dx]3} subjectto [|x]|o < Tp.

Codebook Update Stage: Fork =1,2,..., K
o Define the group of examples that use dj,
wp ={i| 1< i< N, xi(k) # 0}
o Compute
E.=Y— Z d;x?,
itk
e Restrict E, by choosing only the columns corresponding to

those elements that initially used d in their representation,
and obtain EF.

e Apply SVD decomposition Ef = UAV7T. Update:
di = w, xh = A(L,1) vy

SetJ=J+1.

Comparing to Other Techniques

Non-Gaussian data

Which is which?

Images from Lewicki and Sejnowski, Learning Overcomplete Representations, 2000.
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Comparing to Other Techniques

Non-Gaussian data

: 1

PCA ICA

Images from Lewicki and Sejnowski, Learning Overcomplete Representations, 2000.
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Comparing to Other Techniques

Non-Gaussian data

PCA ICA

Images from Lewicki and Sejnowski, Learning Overcomplete Representations, 2000.

Comparing to Other Techniques

Data still in 2-D space

ICA Overcomplete

/

Doesn’t capture the underlying representation,
which Overcomplete representations can do...

Summary

» Overcomplete representations can be more
powerful than component analysis
techniques.

* Dictionary can be learned from data.

* Relative advantages and disadvantages of the
pursuit algorithms.
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