Sparse and Overcomplete
Representations

Class 23- November 10, 2009
Sourish Chaudhuri

Key Topics in this Lecture

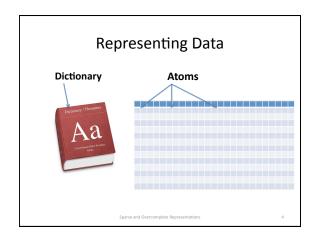
- The Basics- Overcomplete and Sparse Representations, Dictionaries
- Pursuit Algorithms
- How to learn a dictionary
- Why is an overcomplete representation powerful?

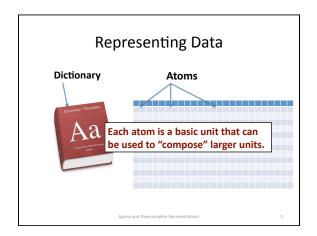
parse and Overcomplete Representations

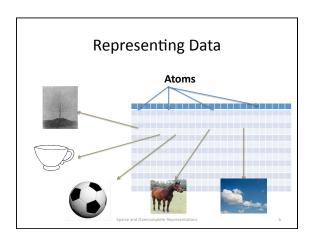
Representing Data

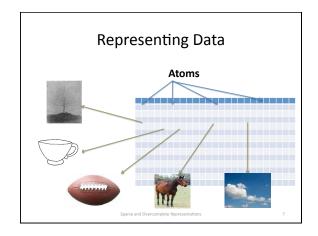
Dictionary (codebook)

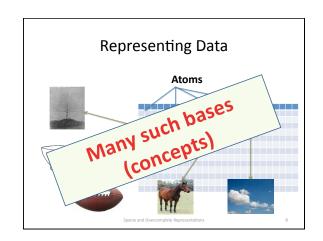
Library (state of the state of the state

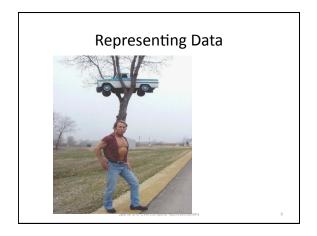


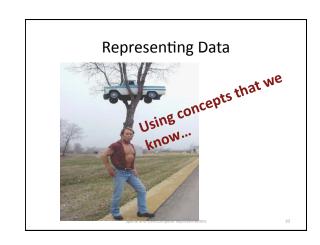


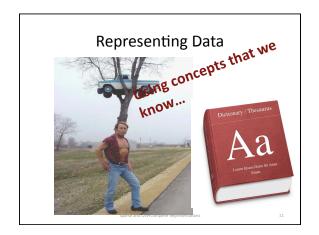


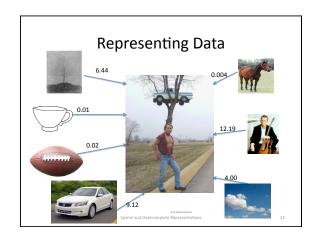


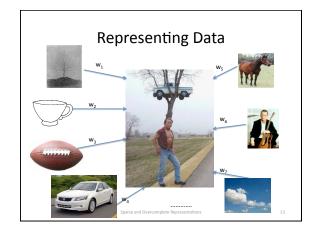












Overcomplete Representations

 What is the dimensionality of the input image? (say 64x64 image)

> 4096

 What is the dimensionality of the dictionary? (each image = 64x64 pixels)

➤ N x 4096

Sparse and Overcomplete Representations

Overcomplete Representations

 What is the dimensionality of the input image? (say 64x64 image)

> 4096

 What is the dimensionality of the dictionary? (each image o4x64 pixels)

parse and Overcomplete Representations

Overcomplete Representations

• What is the dimensionality of the input image? (say 64x64 image)

> 4096

 What is the dimensionality of the dictionary? (each image o4x64 pixels)

Quarrampleta Bancacantations

Overcomplete Representations

• What is the dimensionality of the input

If N > 4096 (as it likely is)
we have an **overcomplete** representation

 What is the dimensionality of the dictionary? (each image o4x64 pixels)

Overcomplete Representations

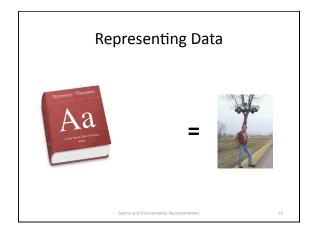
• What is the dimensionality of the input image? (say 64x64 image)

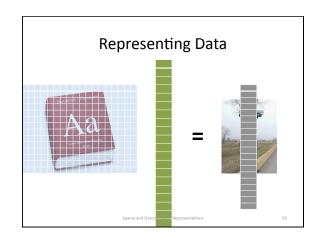
More generally:

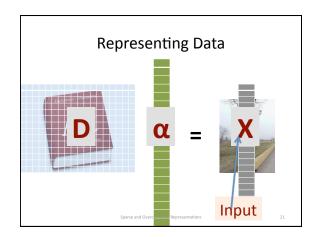
If #(basis vectors) > dimensions of input

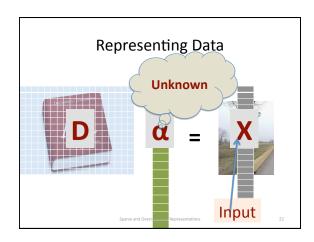
we have an **overcomplete** representation

npiete Representations

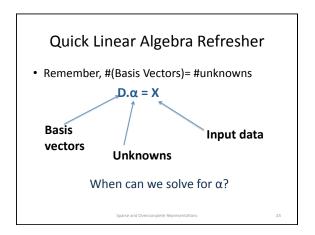








Quick Linear Algebra Refresher • Remember, #(Basis Vectors)= #unknowns D.a = X Basis Unknowns Input data Unknowns



Quick Linear Algebra Refresher

$D.\alpha = X$

- When #(basis vectors) = dim(Input Data), we have a unique solution
- When #(basis vectors) < dim(Input Data), we may have no solution
- When #(basis vectors) > dim(Input Data), we have infinitely many solutions

Quick Linear Algebra Refresher

$D.\alpha = X$

- When #(basis vectors) = dim(Input Data), we have a unique solution
- When #(basis vectors) < dim(Input Data), we may have no solution
- When #(basis vectors) > dim(Input Data), we have infinitely many solutions

Our Case

Overcomplete Representations

#(basis vectors) > dimensions of the input

Overcomplete Representation Unknown #(basis vectors) > dimensions of the nput

Overcomplete Representations

- Why do we use them?
- How do we learn them?

Overcomplete Representations

- Why do we use them?
 - A more natural representation of the real world
 - More flexibility in matching data
 - Can yield a better approximation of the statistical distribution of the data.
- How do we learn them?

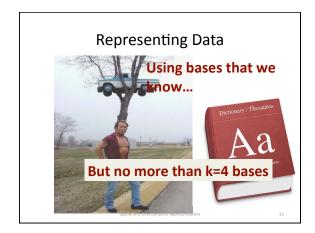
Overcompleteness and Sparsity

• To solve an overcomplete system of the type:

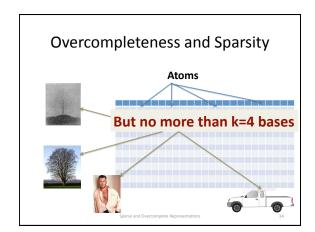
$D.\alpha = X$

- Make assumptions about the data.
- Suppose, we say that X is composed of no more than a fixed number (k) of bases from D (k ≤ dim(X))
- Now, we can find the set of **k** bases that best fit the data point, **X**.

and Overcomplete Representations



Overcompleteness and Sparsity Atoms But no more than k=4 bases



Sparsity- Definition

 Sparse representations are representations that account for most or all information of a signal with a linear combination of a small number of atoms.

(from: www.see.ed.ac.uk/~tblumens/Sparse/Sparse.html)

Sparse and Overcomplete Representations

The Sparsity Problem

- We don't really know k
- You are given a signal X
- Assuming X was generated using the dictionary, can we find α that generated it?

The Sparsity Problem

• We want to use as few basis vectors as possible to do this.

$$\begin{aligned}
& \underset{\underline{\alpha}}{Min} \ \|\underline{\alpha}\|_{0} \\
& s.t. \ \underline{X} = \mathbf{D}\underline{\alpha}
\end{aligned}$$

Sparse and Overcomplete Representations

The Sparsity Problem

• We want to use as few basis vectors as possible to do this.

$$\begin{array}{c|c}
Min & \underline{\alpha} \\
\underline{\alpha} \\
s.t. & \underline{X} = \underline{\mathbf{D}}\underline{\alpha}
\end{array}$$

Counts the number of non-zero elements in $\boldsymbol{\alpha}$

parse and Overcomplete Representations

The Sparsity Problem

 We want to use as few basis vectors as possible to do this.

$$\begin{array}{ll}
Min & \|\underline{\alpha}\|_0 \\
s.t. & \underline{X} = \mathbf{D}\underline{\alpha}
\end{array}$$

How can we solve the above?

Sparse and Overcomplete Representations

Obtaining Sparse Solutions

- · We will look at 2 algorithms:
 - Matching Pursuit (MP)
 - Basis Pursuit (BP)

Sparse and Overcomplete Representations

Matching Pursuit (MP)

- · Greedy algorithm
- Finds an atom in the dictionary that best matches the input signal
- Remove the weighted value of this atom from the signal
- Again, find an atom in the dictionary that best matches the remaining signal.
- Continue till a defined stop condition is satisfied.

rse and Overcomplete Representations

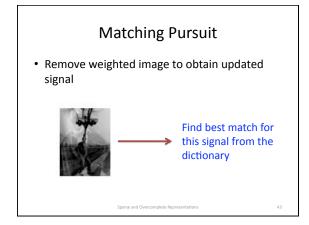
Matching Pursuit

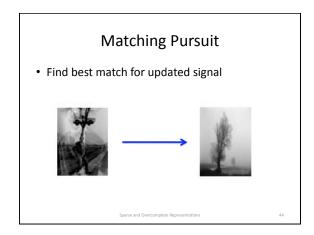
• Find the dictionary atom that best matches the given signal.

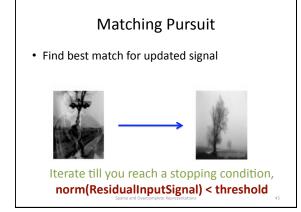
Weight = W₁

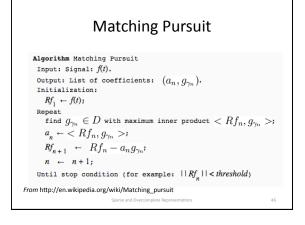
Sparse and Overcomplete Representations

42









Matching Pursuit • Problems ???

Sparse and Overcomplete Representations

Matching Pursuit

- Main Problem
 - Computational complexity
 - The entire dictionary has to be searched at every iteration

Comparing MP and BP Matching Pursuit Basis Pursuit Hard thresholding (remember the equations) Greedy optimization at each step Weights obtained using greedy rules

Basis Pursuit (BP)

· Remember,

$$\begin{aligned}
& \underset{\underline{\alpha}}{Min} \ \|\underline{\alpha}\|_{0} \\
& s.t. \ \underline{X} = \mathbf{D}\underline{\alpha}
\end{aligned}$$

Sparse and Overcomplete Representations

Basis Pursuit

· Remember,

$$\begin{array}{l}
Min \ \|\underline{\alpha}\|_{0} \\
st. \ \underline{X} = \mathbf{D}\underline{\alpha}
\end{array}$$

In the general case, this is intractable

Sparse and Overcomplete Representations

Basis Pursuit

• Remember,

$$\begin{array}{ll}
Min & \|\underline{\alpha}\|_0 \\
s.t. & \underline{X} = \mathbf{D}\underline{\alpha}
\end{array}$$

In the general case, this is intractable Requires combinatorial optimization

Sparse and Overcomplete Representations

Basis Pursuit

Replace the intractable expression by an expression that is solvable

$$\begin{array}{ll}
Min & \|\underline{\alpha}\|_{1} \\
st. & \underline{X} = \mathbf{D}\underline{\alpha}
\end{array}$$

Sparse and Overcomplete Representations

Basis Pursuit

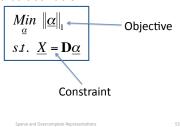
Replace the intractable expression by an expression that is solvable

$$\begin{aligned} & \underset{\underline{\alpha}}{Min} \ \left\| \underline{\alpha} \right\|_{1} \\ & s.t. \ \underline{X} = \mathbf{D}\underline{\alpha} \end{aligned}$$

This holds when α obeys the **Restricted Isometry Property**.

Basis Pursuit

• Replace the intractable expression by an expression that is solvable



Basis Pursuit

• We can formulate the optimization term as:

$$\underbrace{Min}_{\underline{\alpha}} \left\{ \left\| \underline{X} - \mathbf{D}\underline{\alpha} \right\|^2 + \lambda \left\| \underline{\alpha} \right\|_1 \right\}$$
Constraint Objective

Basis Pursuit

• We can formulate the optimization term as:

$$\underset{\underline{\alpha}}{Min} \left\{ \left\| \underline{X} - \mathbf{D}\underline{\alpha} \right\|^2 + \lambda \|\underline{\alpha}\|_{\mathbf{I}} \right\}$$

 λ is a penalty term on the non-zero elements and promotes sparsity

ie and Overcomplete Representations

Basis Pursuit

Known as LASSO; for more details, see <u>this</u> paper by Tibshirani

$$Min_{\underline{\alpha}} \{ \|\underline{X} - \mathbf{D}\underline{\alpha}\|^2 + \lambda \|\underline{\alpha}\|_1 \}$$

 $\boldsymbol{\lambda}$ is a penalty term on the non-zero elements and promotes sparsity

Sparse and Overcomplete Representations

Basis Pursuit

 There are efficient ways to solve the LASSO formulation. [Link to Matlab code]

Sparse and Overcomplete Representations

Comparing MP and BP

Basis Pursuit
Dasis Fursuit
Soft thresholding
he equations)
Global optimization
Can force N-sparsity with appropriately chosen weights

Applications of Sparse Representations

- Two extremely popular applications:
 - Compressive sensing
 - Denoising

rse and Overcomplete Representations

Applications of Sparse Representations

- Two extremely popular applications:
 - Compressive sensing
 - Denoising

Compressive Sensing

- Recall the Nyquist criterion?
- To reconstruct a signal, you need to sample at twice the maximum frequency of the original signal

parse and Overcomplete Representations

Compressive Sensing

- Recall the Nyquist criterion?
- To reconstruct a signal, you need to sample at twice the frequency of the original signal
- Is it possible to reconstruct signals when they have not been sampled so as to satisfy the Nyquist criterion?

Sparse and Overcomplete Representations

Compressive Sensing

- Recall the Nyquist criterion?
- To reconstruct a signal, you need to sample at twice the frequency of the original signal
- Is it possible to reconstruct signals when they have not been sampled so as to satisfy the Nyquist criterion?
- Under specific criteria, yes!!!!

Sparse and Overcomplete Representations

Compressive Sensing

· What criteria?

Compressive Sensing

• What criteria?

Sparsity!

Sparse and Overcomplete Representations

Compressive Sensing

• What criteria?

Sparsity!

- Exploit the structure of the data
- Most signals are sparse, in some domain

Sparse and Overcomplete Representations

Applications of Sparse Representations

- Two extremely popular applications:
 - Compressive sensing
 - You will hear more about this in the next class
 - Denoising

parse and Overcomplete Representations

Applications of Sparse Representations

- Two extremely popular applications:
 - Compressive sensing
 - Denoising

se and Overcomplete Representations

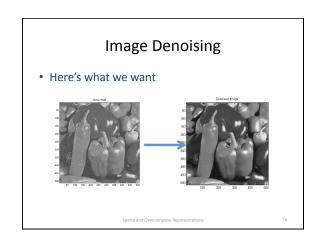
Denoising

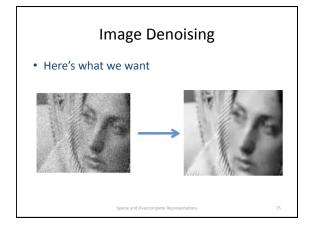
• As the name suggests, remove noise!

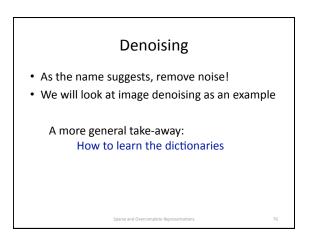
arse and Overcomplete Representations

Denoising

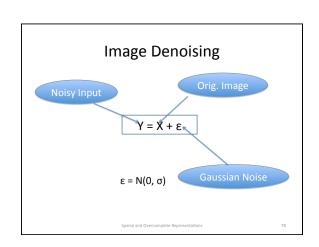
- As the name suggests, remove noise!
- We will look at image denoising as an example







The Image Denoising Problem • Given an image • Remove Gaussian additive noise from it



 Remove the noise from Y, to obtain X as best as possible.

rse and Overcomplete Representations

Image Denoising

- Remove the noise from Y, to obtain X as best as possible
- Using sparse representations over learned dictionaries

Sparse and Overcomplete Representations

Image Denoising

- Remove the noise from Y, to obtain X as best as possible
- Using sparse representations over learned dictionaries
- Yes, we will *learn* the dictionaries

d Overcomplete Representations

Image Denoising

- Remove the noise from Y, to obtain X as best as possible
- Using sparse representations over learned dictionaries
- Yes, we will *learn* the dictionaries
- What data will we use? The corrupted image itself!

Sparse and Overcomplete Representations

Image Denoising

- We use the data to be denoised to learn the dictionary.
- Training and denoising become an iterated process.
- We use image patches of size √n x √n pixels (i.e. if the image is 64x64, patches are 8x8)

Sparse and Overcomplete Representation:

Image Denoising

- The data dictionary D
 - Size = n x k (k > n)
 - This is known and fixed, to start with
 - Every image patch can be sparsely represented using D

Sparse and Overcomplete Representations

nplete Representations

- Recall our equations from before.
- We want to find α so as to minimize the value of the equation below:

$$\underset{\underline{\alpha}}{Min} \left\{ \left\| \underline{X} - \mathbf{D}\underline{\alpha} \right\|^2 + \lambda \left\| \underline{\alpha} \right\|_0 \right\}$$

Sparse and Overcomplete Representations

Image Denoising

- Recall our equations from before.
- We want to find α so as to minimize the value of the equation below:

$$\underset{\underline{\alpha}}{Min} \left\{ \left\| \underline{X} - \mathbf{D}\underline{\alpha} \right\|^2 + \lambda \left\| \underline{\alpha} \right\|_0 \right\}$$

Can Matching Pursuit solve this?

Sparse and Overcomplete Representations

Image Denoising

- Recall our equations from before.
- We want to find α so as to minimize the value of the equation below:

$$\underset{\underline{\alpha}}{Min} \left\{ \left\| \underline{X} - \mathbf{D}\underline{\alpha} \right\|^2 + \lambda \left\| \underline{\alpha} \right\|_0 \right\}$$

Can Matching Pursuit solve this? Yes

Sparse and Overcomplete Representations

Image Denoising

- Recall our equations from before.
- We want to find α so as to minimize the value of the equation below:

$$\underset{\underline{\alpha}}{Min} \left\{ \left\| \underline{X} - \mathbf{D}\underline{\alpha} \right\|^2 + \lambda \left\| \underline{\alpha} \right\|_0 \right\}$$

Can Matching Pursuit solve this?

What constraints does it need?

Sparse and Overcomplete Representations

Image Denoising

- Recall our equations from before.
- We want to find α so as to minimize the value of the equation below:

$$\underset{\underline{\alpha}}{Min} \left\{ \left\| \underline{X} - \mathbf{D}\underline{\alpha} \right\|^2 + \lambda \left\| \underline{\alpha} \right\|_0 \right\}$$

Can Basis Pursuit solve this?

Sparse and Overcomplete Representations

Image Denoising

- Recall our equations from before.
- We want to find α so as to minimize the value of the equation below:

$$\underset{\alpha}{Min} \left\{ \left\| \underline{X} - \mathbf{D}\underline{\alpha} \right\|^2 + \lambda \left\| \underline{\alpha} \right\|_0 \right\}$$

But this is intractable!

- Recall our equations from before.
- We want to find α so as to minimize the value of the equation below:

$$\underset{\underline{\alpha}}{Min} \left\{ \left\| \underline{X} - \mathbf{D}\underline{\alpha} \right\|^2 + \lambda \left\| \underline{\alpha} \right\|_1 \right\}$$

Can Basis Pursuit solve this?

Sparse and Overcomplete Representations

Image Denoising

- Recall our equations from before.
- We want to find α so as to minimize the value of the equation below:

$$\underset{\underline{\alpha}}{Min} \left\{ \left\| \underline{X} - \mathbf{D}\underline{\alpha} \right\|^2 + \lambda \left\| \underline{\alpha} \right\|_1 \right\}$$

Can Basis Pursuit solve this? Yes

Image Denoising

$$\underset{\underline{\alpha}}{Min} \left\{ \left\| \underline{X} - \mathbf{D}\underline{\alpha} \right\|^2 + \lambda \left\| \underline{\alpha} \right\|_1 \right\}$$

• In the above, X is a patch.

Sparse and Overcomplete Representations

Image Denoising

$$\underset{\underline{\alpha}}{Min} \left\{ \left\| \underline{X} - \mathbf{D}\underline{\alpha} \right\|^2 + \lambda \left\| \underline{\alpha} \right\|_1 \right\}$$

- In the above, X is a patch.
- If the larger image is fully expressed by the every patch in it, how can we go from patches to the image?

Sparse and Overcomplete Representations

94

Image Denoising

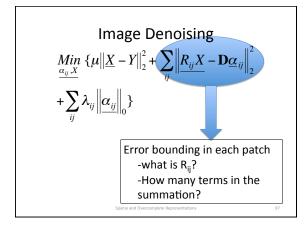
$$\underset{\underline{\alpha_{ij}},X}{\underline{Min}} \left\{ \mu \left\| \underline{X} - Y \right\|_{2}^{2} + \sum_{ij} \left\| \underline{R_{ij}} \underline{X} - \mathbf{D} \underline{\alpha}_{ij} \right\|_{2}^{2} + \sum_{ii} \lambda_{ij} \left\| \underline{\alpha_{ij}} \right\|_{0} \right\}$$

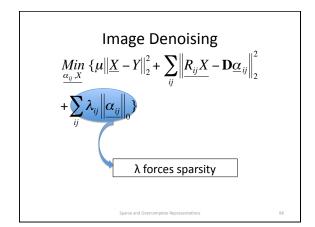
Sparse and Overcomplete Representations

Image Denoising

$$\underset{\alpha_{ij}, \mathbf{Y}}{\min} \left\{ \mathbf{\mu} \left\| \underline{\mathbf{X}} - \mathbf{Y} \right\|_{2}^{2} + \sum_{ij} \left\| \underline{\mathbf{R}}_{ij} \mathbf{X} - \mathbf{D} \underline{\alpha}_{ij} \right\|_{2}^{2} + \sum_{ij} \lambda_{ij} \left\| \underline{\alpha}_{ij} \right\|_{0} \right\}$$

(X-Y) is the error between the input and denoised image. $\boldsymbol{\mu}$ is a penalty on the error.





- But, we don't "know" our dictionary D.
- We want to estimate D as well.

parse and Overcomplete Representations

Image Denoising

- But, we don't "know" our dictionary D.
- We want to estimate D as well.

$$\begin{aligned} & \underset{\mathbf{D}.\alpha_{ij}.X}{\textit{Min}} \{ \mu \big\| \underline{X} - Y \big\|_{2}^{2} + \sum_{ij} \big\| \underline{R_{ij}X} - \mathbf{D}\underline{\alpha}_{ij} \big\|_{2}^{2} \\ & + \sum_{ij} \lambda_{ij} \big\| \underline{\alpha_{ij}} \big\|_{0} \} \end{aligned}$$
We can use the previous equation itself!!!

parse and Overcomplete Representations

Image Denoising

$$\underbrace{Min}_{\underline{D},\underline{\alpha_{ij}},\underline{X}} \left\{ \mu \left\| \underline{X} - Y \right\|_{2}^{2} + \sum_{ij} \left\| \underline{R_{ij}} \underline{X} - \mathbf{D} \underline{\alpha}_{ij} \right\|_{2}^{2} + \sum_{ij} \lambda_{ij} \left\| \underline{\alpha_{ij}} \right\|_{0} \right\}$$

How do we estimate all 3 at once?

parse and Overcomplete Representations

Image Denoising

$$\underbrace{\frac{Min}{D.\alpha_{ij}.X}}_{D,\alpha_{ij}.X} \left\{ \mu \left\| \underline{X} - Y \right\|_{2}^{2} + \sum_{ij} \left\| \underline{R_{ij}X} - \mathbf{D}\underline{\alpha}_{ij} \right\|_{2}^{2} + \sum_{ij} \lambda_{ij} \left\| \underline{\alpha}_{ij} \right\|_{0} \right\}$$

How do we estimate all 3 at once?

We cannot estimate them at the same time!

$$\underset{\underline{D},\alpha_{ij},X}{\underline{Min}} \left\{ \mu \left\| \underline{X} - Y \right\|_{2}^{2} + \sum_{ij} \left\| \underline{R_{ij}X} - \mathbf{D}\underline{\alpha}_{ij} \right\|_{2}^{2} + \sum_{ij} \lambda_{ij} \left\| \underline{\alpha_{ij}} \right\|_{0} \right\}$$

How do we estimate all 3 at once? Fix 2, and find the optimal 3rd.

Sparse and Overcomplete Representations

Image Denoising

$$\underbrace{\underset{D,\alpha_{ij},X}{Min}}_{\{\mu \| \underline{X} - Y \|_{2}^{2} + \sum_{ij} \| \underline{R_{ij}X} - \mathbf{D}\underline{\alpha}_{ij} \|_{2}^{2} + \sum_{ij} \lambda_{ij} \| \underline{\alpha}_{ij} \|_{0}^{2}}_{1}$$

Initialize X = Y

sparse and Overcomplete Representations

Image Denoising

$$\underset{\underline{\alpha_{ij}}}{\text{Min}} \left\{ \underline{\boldsymbol{\mu}} \left\| \underline{\boldsymbol{X}} - \underline{\boldsymbol{Y}} \right\|_{2}^{2} + \sum_{ij} \left\| \underline{\boldsymbol{R}_{ij}} \underline{\boldsymbol{X}} - \underline{\mathbf{D}} \underline{\boldsymbol{\alpha}}_{ij} \right\|_{2}^{2} + \sum_{ij} \lambda_{ij} \left\| \underline{\boldsymbol{\alpha}_{ij}} \right\|_{0} \right\}$$

Initialize X = Y, initialize D

You know how to solve the remaining portion for α – MP, BP!

Sparse and Overcomplete Representations

Image Denoising

- · Now, update the dictionary D.
- Update D one column at a time, following the <u>K-SVD algorithm</u>
- K-SVD maintains the sparsity structure

Sparse and Overcomplete Representations

Image Denoising

- Now, update the dictionary D.
- Update D one column at a time, following the K-SVD algorithm
- K-SVD maintains the sparsity structure
- Iteratively update α and D

Sparse and Overcomplete Representations

Image Denoising

- Updating D
 - For each basis vector, compute its contribution to the image

$$E_k = Y - \sum_{j \neq k} D_j \alpha_j$$

- Updating **D**
 - For each basis vector, compute its contribution to the image
 - Eigen decomposition of E_k

$$E_k = U\Delta V^T$$

and Overcomplete Representations

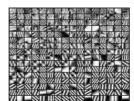
Image Denoising

- Updating **D**
 - For each basis vector, compute its contribution to the image
 - Eigen decomposition of E_k
 - Take the principal eigen vector as the updated basis vector

$$D_k = U_1$$

Sparse and Overcomplete Representations

Image Denoising



Learned Dictionary for Face Image denoising

From: M. Elad and M. Aharon, Image denoising via learned dictionaries and sparse representation, CVPR, 2006.

arse and Overcomplete Representations

Image Denoising

$$\underset{\underline{X}}{\underline{Min}} \left\{ \mu \left\| \underline{X} - Y \right\|_{2}^{2} + \sum_{ij} \left\| \underline{R_{ij}X} - \mathbf{D}\underline{\alpha}_{ij} \right\|_{2}^{2} \right\}$$

We know D and α

The quadratic term above has a closed-form solution

Sparse and Overcomplete Representations

Image Denoising

$$\underset{\underline{X}}{\underline{Min}} \left\{ \mu \left\| \underline{X} - Y \right\|_{2}^{2} + \sum_{ij} \left\| \underline{R_{ij}X} - \mathbf{D}\underline{\alpha}_{ij} \right\|_{2}^{2} \right\}$$

We know D and α

$$X = (\mu I + \sum_{ij} R_{ij}^T R)^{-1} (\mu Y + \sum_{ij} R_{ij}^T D\alpha_{ij})$$

Sparse and Overcomplete Representations

Image Denoising

• Summarizing... We wanted to obtain 3 things

- Summarizing... We wanted to obtain 3 things
- Weights α
- ➤ Dictionary **D**
- ➤ Denoised Image X

Image Denoising

- Summarizing... We wanted to obtain 3 things
- > Weights α Your favorite pursuit algorithm
- ➤ Dictionary **D** Using K-SVD
- ➤ Denoised Image X

Image Denoising

- Summarizing... We wanted to obtain 3 things
- > Weights α Your fave ite pur it algorithm
- ➤ Dictionary **D** Using K-SVD Iterating
- ➤ Denoised Image X

Image Denoising

- · Summarizing... We wanted to obtain 3 things
- ightharpoonup Weights lpha
- ➤ Dictionary **D**
- ➤ Denoised Image X- Closed form solution

K-SVD algorithm (skip)

Initialization : Set the random normalized dictionary matrix $\mathbf{D}^{(0)} \in \mathbf{R}^{n \times K}$. Set j=1. Repeat until convergence, Sparse Coding Stage: Use any pursuit algorithm to compute \mathbf{x}_i for $i=1,2,\ldots,N$

 $\min_{\mathbf{x}} \left\{ \|\mathbf{y}_i - \mathbf{D}\mathbf{x}\|_2^2 \right\} \quad \text{subject to} \quad \|\mathbf{x}\|_0 \leq T_0.$

Codebook Update Stage: For $k=1,2,\ldots,K$

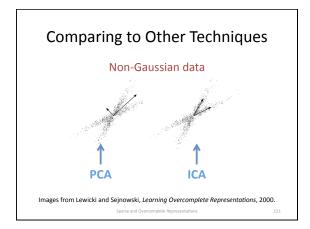
- $\begin{array}{l} \bullet \ \ \mbox{Define the group of examples that use } \mathbf{d}_k, \\ \omega_k = \{i|\ 1 \leq i \leq N, \ \mathbf{x}_i(k) \neq 0\}. \end{array}$
- Compute

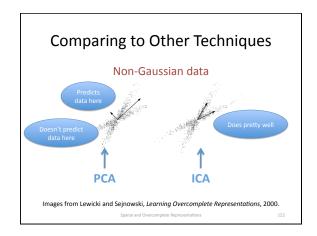
$$\mathbf{E}_k = \mathbf{Y} - \sum_{j \neq k} \mathbf{d}_j \mathbf{x}^j$$
,

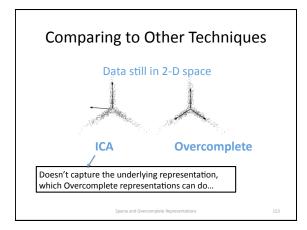
- Restrict E_k by choosing only the columns corresponding to
 those elements that initially used d_k in their representation,
 and obtain E^R_k.
- Apply SVD decomposition $\mathbf{E}_k^R = \mathbf{U} \Delta \mathbf{V}^T$. Update: $\mathbf{d}_k = \mathbf{u}_1, \mathbf{x}_R^k = \Delta(1,1) \cdot \mathbf{v}_1$

Set J=J+1. Sparse and Ov

Comparing to Other Techniques Non-Gaussian data Which is which? Images from Lewicki and Sejnowski, Learning Overcomplete Representations, 2000.







Summary

- Overcomplete representations can be more powerful than component analysis techniques.
- Dictionary can be learned from data.
- Relative advantages and disadvantages of the pursuit algorithms.