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Sparsity



Why Sparsity

* Natural data and signals exhibit structure

* Sparsity often captures that structure

* Very general signal model

 Computationally tractable

* Wide range of applications in signal acquisition,
processing, and transmission



Sighal Representations



Signal example: Images

e 2-D function f

 |dealized view

f € some function
space defined
over [0,1] x [O, 1]




Signal example: Images

e 2-D function f

 |dealized view

f € some function
space defined
over [0,1] x [0, 1]

* |n practice

f c RNXN

ie:an N x INmatrix



Signal example: Images

e 2-D function f

-y

 |dealized view

f € some function
space defined
over [0,1] x [O, 1]

* |n practice

f c RNXN

ie:an N x N matrix (pixel average)



Signal Models

R® Classical Model: Signal lies in a linear vector space
(e.g. bandlimited functions)

Sparse Model: Signals of interest are often sparse

;2 or compressible

Signal  Transform

Image Wavelet

=

i.e., very few large coefficients, many close to zero.




Sparse Signal Models

R3

Sparse signals have
few non-zero coefficients

X2

X3
1-sparse 2-sparse

Compressible signals have few significant
coefficients.

*2  The coefficients decay as a power law.

Compressible (¢4, ball, p<1)



Sparse Approximation



Computational Harmonic Analysis

* Representation J = Zk&kbk
.

coefficients basis, frame

« Analysis:  study f through structure of {a}
{b:} should extract features of interest

e Approximation: [N uses just afew terms NV
exploit sparsity of {ax}



Wavelet Transform Sparsity
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Sparseness = Approximation

few big

many small

—_ O

sorted index k’/




Linear Approximation

>k Ok by

index Kk



Linear Approximation

f = 2. parby
* N-term approximation: use “first” Qg
~ . N
N = ) =1 ar bk

N index k



Nonlinear Approximation

J = Zkakbk

 N-term approximation:
use largest aj. independently

AN ] N
SN = S:k/—l ag by
* Greedy / thresholding

N sorted index k'



Error Approximation Rates

/ Zk ar by
fN — y:]k\/f—l ap by

||f—fNH% < OCN™“ as N — o0

* Optimize asymptotic error decay rate

* Nonlinear approximation works better than linear



Compression is Approximation

* Lossy compression of an image creates an
approximation

f = Zk CLT/@ ?k

coefficients basis, frame

quantize | to R total bits

J/[\R — Zkazbk



Sparse approximation # Compression

e Sparse approximation chooses coefficients but does
not quantize or worry about their locations

J = Zkakbk

threshold

AN N '
fN p— y:k,_l a,k./ bk,/




Location, Location, Location

* Nonlinear approximation
selects /N largest ap
to minimize error
(easy — threshold)

 Compression algorithm
must encode both a set
of Ak and their locations
(harder)




Exposing Sparsity



Spikes and Sinusoids example

Example Signal Model: Sinusoidal with a few spikes.

w

B

f a
DCT Basis: i i

T/MW\J/L\




Spikes and Sinusoids Dictionary

DCT basis Impulses

| a <1/

T“’N”w"“L‘ — Lost
M Uniqueness!!

EEEEEEEEEEEEEEEEE EEEEECEENEEEES




Overcomplete Dictionaries

Strategy: Improve sparse approximation
by constructing a large dictionary.

f D

How do we design a dictionary?

[T TTTTETETIT]




Dictionary Design

Wavelets

DCT, DFT Edgelets, curvelets, ...

Impulse Basis Oversampling Frame

Dictionary D

Can we just throw in the bucket everything we know?



Dictionary Design Considerations

* Dictionary Size:

— Computation and storage increases with size

e Fast Transforms:

— FFT, DCT, FWT, etc. dramatically decrease computation and
storage

e Coherence:
— Similarity in elements makes solution harder



Dictionary Coherence

Two candidate dictignaries:

D2
BAD!

Intuition: D, has too many similar elements.
It is very coherent.

Coherence (similarity) between elements: [{(d,,d,)|

Dictionary coherence: y=max; | (d;d)|



Incoherent Bases

 “Mix” well the signal components
— Impulses and Fourier Basis
— Anything and Random Gaussian
— Anything and Random 0-1 basis
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Computing
Sparse Representations



Thresholding

C . . Zero out
ompute set of coefficients small ones
)i D a
— a
u
* O
a=D'f O

Computationally efficient
Good for small and very incoherent dictionaries



Matching Pursuit

Measure image Select largest Add to
against dictionary correlation representation

A< APy

D" f p
! Pk Compute residual
— f<rf-pd;

(dif) — Pk

T Iterate using residual




Greedy Pursuits Family

e Several Variations of MP:

OMP, StOMP, ROMP, CoSaMP, Tree MP, ...
(You can create an AndrewMP if you work on it...)

 Some have provable guarantees
 Some improve dictionary search

 Some improve coefficient selection



CoSaMP (Compressive Sampling MP)

Add to
Measure image Select location support set
against dictionary of largest = Supp(p|2K) JT

2K correlations

D7 p
f > Invert over
support
supp(p|,x) _ i
! K b= D, f
— Truncate and
compute residual
T = supp(b|x)

a:b|K

<d’f>:pk T%f—DCL

I Iterate using residual




Optimization (Basis Pursuit)

Sparse approximation:

Minimize non-zeros in representation
s.t.: representation is close to signal

min @, s.t.

Number of non-zeros Data Fidelity
(sparsity measure) (approximation quality)

Combinatorial complexity.
Very hard problem!



Optimization (Basis Pursuit)

Sparse approximation:

Minimize non-zeros in representation
s.t.: representation is close to signal

min || a H)@( s.t. f=Da

Convex Relaxation

min || a ||’ s.t. f=Da

Ploynomial complexity.
Solved using linear programming.



Why [, relaxation works

min || a || . S.t. f=Da

Sparse solution
[, “ball




Basis Pursuits

 Have provable guarantees
— Finds sparsest solution for incoherent dictionaries

e Several variants in formulation:
BPDN, LASSO, Dantzig selector, ...

e Variations on fidelity term and relaxation choice

e Several fast algorithms:
FPC, GPSR, SPGL, ...



Compressed Sensing:
Sensing, Sampling and
Data Processing



Data Acquisition

e Usual acquisition methods sample signals uniformly

— Time: A/D with microphones, geophones, hydrophones.
— Space: CCD cameras, sensor arrays.

* Foundation: Nyquist/Shannon sampling theory

— Sample at twice the signal bandwidth.

— Generally a projection to a complete basis that spans the
signal space.




Data Processing and Transmission

e Data processing steps:
— Sample Densely

[ Signal x,
| N coefficients

— Transform to an informative domain (Fourier, Wavelet)

- " os
K<<N significant
coefficients
sparse
wavelet
transform

— Process/Compress/Transmit

Sets small coefficients to zero (sparsification)



Sparsity Model

e Signals can usually be compressed in some basis

N K <KN
pixels large
wavelet
coefficients
i '\I’\‘ K <<KN
W|deband \H l ]. large
5|gnal | " Gabor
samples coefficients

e Sparsity: good prior in picking from a lot of candidates



Compressive Sensing Principles

x R
If a signal is sparse, do not waste
effort sampling the empty space.
X2
X3
1-sparse Instead, use fewer samples

and allow ambiguity.

X R®

Use the sparsity model to reconstruct

and uniquely resolve the ambiguity.
X2

X3
2-sparse



Measuring Sparse Signals



Compressive Measurements

Ambiguity . y = Ox
nll{®} +x., R yi = (s, X)
\J\ T X2 R®

X Measurement
(Projection) X

3 ~_

Reconstruction

® has rank M«N

N = Signal dimensionality M= Number of measurements
K = Signal sparsity (dimensionality of y)

N>MzK



One Simple Question

e When is it possible to distinguish K-sparse signals?
- require ®x, # ®X, for all K-sparse Xx; # X,

e Necessary: ® must have at least 2K rows
- otherwise there exist K-sparse x;,X, s.t. ®(x;-%,)=0

e Sufficient: Gaussian ® with 2K rows

Yy
N x 1
M x 1 — sparse
measurements signal
K
2K columns nonzero

K < M << N entries



Geometry of Sparse Signal Sets

Linear Sparse, Nonlinear

K-plane Union of K-planes



Geometry: Embedding in RM

K-planes

e ®(K-plane) = K-plane in general
e M = 2K measurements

- necessary for injectivity

- sufficient for injectivity when ® Gaussian

- but not enough for efficient, robust recovery
e See also FROI [Vetterli et al., Lu and Do]



Illustrative Example

Y P X
N = 3: signal length
— K = 1: sparsity
M = 2K = 2: measurements




Example: 1-sparse signal 2

Nf [0 1 0} Bad! 2=
o @:
M=2K=2 0 0 1

V1I=X1=X2

RZ
0
1 Bad! V2 =X3

X3



Example: 1-sparse signal

N=3
K=1 ®
M=2K=2

x3 R
X
R‘Z

X3

/

"o [ : \_/%g —_%?2 ]



Restricted Isometry Property

[Candés, Romberg, Tao]

e Measurement matrix ® has Y (0) €T
RIP of order K if E B % E
D2 | =

(1-0k) < | !2§(1+5K) H
||-’L’||2 H

for all K-sparse signals z.

e Does not hold for K>M; may hold for smaller K.

e Implications: tractable, stable, robust recovery



RIP as a “"Stable” Embedding

e RIP of order 2K implies: for all K-sparse z; and z,
[Pz — Pao|3

(1 —d2k) < < (1 + d2k)
|21 — x2|3
RM
*
&Zr
K-planes

(if 8, < 1 have injectivity, smaller 6, more stable)



Verifying RIP
How Many Measurements?

e Want RIP of order 2K (say) to hold for MxN @

- difficult to verify for a given @
- requires checking eigenvalues of each submatrix

e Prove random @ will work
- Iid Gaussian entries
- Iid Bernoulli entries (+/- 1)
- Iid subgaussian entries
- random Fourier ensemble
- random subset of incoherent dictionary

e In each case, M = O(K log N ) suffices
- with very high probability, usually 1-O(etN)
- slight variations on log term



Universality Property

e Gaussian white noise basis is incoherent with any
fixed orthonormal basis (with high probability)

e Signal sparse in time domain: ¢ = |

b

|-

HEE EEEEE BN @ EERS




Universality Property

e Gaussian white noise basis is incoherent with any
fixed orthonormal basis (with high probability)

e Signal sparse in frequency domain: U — |dct
Y >
I
I : |
I p— -.I ! L] :

¢ Product WV remains Gaussian white noise

T TTTIT N TET] O




Democrac

M x 1

measurements

Bad/lost/dropped measurements

HEE EEEEE BN EElke

* Measurements are democratic [Davenport, Laska, Boufounos, Baraniuk]
— They are all equally important

— We can loose some arbitrarily, (i.e. an adversary can choose
which ones)

* The ® still satisfies RIP (as long as we don’t drop too many)



Reconstruction



Requirements for Reconstruction

* Letx, x,be K-sparse signals (l.e. x,-x,is 2K-sparse):
* Mapping y=®x is invertible for K-sparse signals:

D(x,-x,)£0 if x,#x,
* Mapping is robust for K-sparse signals:

P -x,)] | =] x-%5] |

— Restricted Isometry Property (RIP):
® preserves distance when projecting K-sparse signals

* Guarantees there exists a unique K-sparse signal explains the
measurements, and is robust to noise.



Reconstruction Ambiguity

e Solution should be consistent with measurements

X st. y=®x or y~oxk
* Projections imply that an infinite number of solutions are consistent!
* Classical approach: use the pseudoinverse (minimize /, norm)
 Compressive sensing approach: pick the sparsest.

* RIP guarantee: sparsest solution unique and reconstructs the signal.

Becomes a sparse approximation problem!



Putting everything together



Compressed Sensing Coming Together

Signal Structure (sparsity)

approximation

! !

Stable Embedding Non-linear Reconstruction

(random projections) (Basis Pursuit, Matching
Pursuit, CoSaMP, etc...)

e Signal model: Provides prior information; allows undersampling

* Randomness: Provides robustness/stability; makes proofs easier

* Non-linear reconstruction: Incorporates information through computation



Beyond: Extensions,
Connections, Generalizations



Sparsity Models



Block Sparsity

Y X
JN x 1
M x 1 — 1 sparse
measurements signal
K
1 nonzero
K< MKN " blocks of L

Mixed [i/l> norm—sum of o norms: > _xz, |l
Basis pursuit becomes: min _ [xz]l2 st. y = ¢z

Blocks are not allowed to overlap



Joint Sparsity

N L

L sparse signals in RV

M x L

measurements

K

Sparse components per signal
with common support

Mixed 11/l norm—sum of /> norms: Z %62

1

Basis pursuit becomes: m}inz 1% ll2 s-t. y ~ ®x



Randomized Embeddings



Stable Embeddings

Recall: RIP
e RIP of order K requires: for all K-sparse z,
Pdzx||2
(1 —-0k) < H”xHQQ < (1+dk)
2

RN RM

K-planes




Johnson-Lindenstrauss Lemma

[see also Dasgupta, Gupta; Frankl, Maehara; Achlioptas; Indyk, Motwani]

Consider a point set Q ¢ RN and random™ MxN @ with
M = O(log(#Q) ¢2). With high prob., for all x;,x, € Q,

| Pz — Das||3

|21 — x2||3

(1-¢) < < (1+e).

Proof via concentration inequality: For any x € RN

P(|[®z|3 — [[z]3] > ellz|3) < 2e7=(/27/3).



Favorable JL Distributions

e Gaussian 1
i~ N[0, —
Pig ( M)

e Bernoulli/Rademacher [Achlioptas]

1 " ep e
o ::{ W Wfth probab!I!ty
— 73 with probability

e "Database-friendly” [Achlioptas]

(
+4/=  with probability
0

i = < with probability

—y/=  with probability
\ ‘

e Random Orthoprojection to RM [Gupta, Dasgupta]

.

.

Q= WIN O

N = N



Connecting JL to RIP

Consider effect of random JL ® on each K-plane
- construct covering of points Q on unit sphere

- JL: isometry for each point with high probability
— union bound = isometry forallq € Q
- extend to isometry for all x in K-plane

RN RM
o= i
dx
K-plane




Connecting JL to RIP

Consider effect of random JL ® on each K-plane
- construct covering of points Q on unit sphere

- JL: isometry for each point with high probability
— union bound = isometry forallq € Q
- extend to isometry for all x in K-plane

union bound =» isometry for all K-planes

o X

K-planes




Connecting JL to RIP [Baraniuk, Devore, Davenport, Wakin]

e Theorem: Supposing @ is drawn from a JL-favorable
distribution,* then with probability at least 1-e-C¢*M,
® meets the RIP with

M
K <C- .
= 7 log(N/M) + 1

* Gaussian/Bernoulli/database-friendly/orthoprojector

e Bonus: universality (repeat argument for any ¥ )
Wy =1

Vs W3

e See also Mendelson et al. concerning subgaussian ensembles



More?



e iceberg

The tip of th

-
-
: .

Today’s lecture

Compressive Sensing
Repository
dsp.rice.edu/cs

Blog on CS
nuit-blanche.blogspot.com/

Yet to be discovered...
Start working on it ©



