Sparsity, Randomness and Compressed Sensing

Petros Boufounos Mitsubishi Electric Research Labs petrosb@merl.com

Sparsity

Why Sparsity

- Natural data and signals exhibit structure
- Sparsity often captures that structure
- Very general signal model
- Computationally tractable
- Wide range of applications in signal acquisition, processing, and transmission

Signal Representations

Signal example: Images

- 2-D function f
- Idealized view

```
f \in \text{some function} \\ \text{space defined} \\ \text{over } [0,1] \times [0,1]
```


Signal example: Images

- 2-D function f
- Idealized view

$$f \in \text{some function} \\ \text{space defined} \\ \text{over } [0,1] \times [0,1]$$

In practice

$$f \in \mathbb{R}^{N \times N}$$

ie: an $N \times N$ matrix

Signal example: Images

- 2-D function f
- Idealized view

$$f \in \text{some function}$$
 space defined over $[0,1] \times [0,1]$

In practice

$$f \in \mathbb{R}^{N \times N}$$

ie: an $N \times N$ matrix (pixel average)

Signal Models

i.e., very few large coefficients, many close to zero.

Sparse Signal Models

1-sparse

2-sparse

Sparse signals have few non-zero coefficients

Compressible signals have few significant coefficients.

The coefficients decay as a power law.

Compressible (ℓ_p ball, p < 1)

Sparse Approximation

Computational Harmonic Analysis

Representation

$$f = \sum_{k} a_k b_k$$
coefficients basis, frame

• Analysis: study f through structure of $\{a_k\}$ $\{b_k\}$ should extract features of interest

• Approximation: \widehat{f}_N uses just a few terms N exploit sparsity of $\{a_k\}$

Wavelet Transform Sparsity

$$f = \sum_{k} a_k b_k$$

• Many
$$a_k \approx 0$$
 (blue)

Sparseness ⇒ Approximation

$$f = \sum_{k} a_k b_k$$

Linear Approximation

$$f = \sum_{k} a_k b_k$$

Linear Approximation

$$f = \sum_{k} a_k b_k$$

• *N*-term approximation: use "first" a_k

$$\widetilde{f}_N := \sum_{k=1}^N a_k \, \mathbf{b}_k$$

$$|a_k|$$

$$N \quad \text{index } k$$

Nonlinear Approximation

$$f = \sum_{k} a_k b_k$$

• N-term approximation: use largest a_k independently

$$\widehat{f}_N := \sum_{k'=1}^N a_{k'} \mathbf{b}_{k'}$$

Greedy / thresholding

Error Approximation Rates

$$f = \sum_{k} a_{k} b_{k}$$

$$\widehat{f}_{N} = \sum_{k'=1}^{N} a_{k'} b_{k'}$$

$$\|f-\widehat{f}_N\|_2^2 < CN^{-\alpha}$$
 as $N \to \infty$

- Optimize asymptotic *error decay rate* $\, lpha \,$
- Nonlinear approximation works better than linear

Compression is Approximation

Lossy compression of an image creates an approximation

$$f = \sum_k a_k \, \mathbf{b}_k$$
 \uparrow
 \uparrow
coefficients basis, frame

 $quantize \mid to \, R \, total \, bits$
 $\widehat{f}_R = \sum_k a_k^q \, \mathbf{b}_k$

Sparse approximation ≠ Compression

 Sparse approximation chooses coefficients but does not quantize or worry about their locations

$$f = \sum_{k} a_{k} b_{k}$$

$$f_{N} = \sum_{k'=1}^{N} a_{k'} b_{k'}$$

Location, Location

• Nonlinear approximation selects N largest a_k to minimize error (easy – threshold)

 Compression algorithm must encode both a set of ak and their locations (harder)

Exposing Sparsity

Spikes and Sinusoids example

Example Signal Model: Sinusoidal with a few spikes.

Spikes and Sinusoids Dictionary

Overcomplete Dictionaries

Strategy: Improve sparse approximation by constructing a large **dictionary.**

How do we **design** a dictionary?

Dictionary Design

Can we just throw in the bucket everything we know?

Dictionary Design Considerations

- Dictionary Size:
 - Computation and storage increases with size
- Fast Transforms:
 - FFT, DCT, FWT, etc. dramatically decrease computation and storage
- Coherence:
 - Similarity in elements makes solution harder

Dictionary Coherence

Intuition: D_2 has too many similar elements. It is very coherent.

Coherence (similarity) between elements: $|\langle d_1, d_2 \rangle|$

Dictionary coherence: $\mu = \max_{i,j} |\langle d_i, d_j \rangle|$

Incoherent Bases

- "Mix" well the signal components
 - Impulses and Fourier Basis
 - Anything and Random Gaussian
 - Anything and Random 0-1 basis

Computing Sparse Representations

Thresholding

Zero out Compute set of coefficients small ones $a=D^{\dagger}f$

Computationally efficient Good for small and very incoherent dictionaries

Matching Pursuit

Greedy Pursuits Family

- Several Variations of MP:
 OMP, StOMP, ROMP, CoSaMP, Tree MP, ...
 (You can create an AndrewMP if you work on it...)
- Some have provable guarantees
- Some improve dictionary search
- Some improve coefficient selection

CoSaMP (Compressive Sampling MP)

Optimization (Basis Pursuit)

Sparse approximation:

Minimize non-zeros in representation s.t.: representation is close to signal

$$\min \|a\|_{\mathfrak{d}} \text{ s.t. } f \approx \mathrm{D}a$$

Number of non-zeros (sparsity measure)

Data Fidelity (approximation quality)

Combinatorial complexity. Very hard problem!

Optimization (Basis Pursuit)

Sparse approximation:

Minimize non-zeros in representation s.t.: representation is close to signal

min
$$\|a\|_{\mathbf{X}}$$
 s.t. $f \approx \mathrm{D}a$

Convex Relaxation

min $\|a\|_1$ s.t. $f \approx \mathrm{D}a$

Ploynomial complexity.

Solved using linear programming.

Why l_1 relaxation works

min
$$||a||_1$$
 s.t. $f \approx Da$

Basis Pursuits

- Have provable guarantees
 - Finds sparsest solution for incoherent dictionaries
- Several variants in formulation:

BPDN, LASSO, Dantzig selector, ...

Variations on fidelity term and relaxation choice

Several fast algorithms:

FPC, GPSR, SPGL, ...

Compressed Sensing:
Sensing, Sampling and
Data Processing

Data Acquisition

- Usual acquisition methods sample signals uniformly
 - Time: A/D with microphones, geophones, hydrophones.
 - Space: CCD cameras, sensor arrays.
- Foundation: Nyquist/Shannon sampling theory
 - Sample at twice the signal bandwidth.
 - Generally a projection to a complete basis that spans the signal space.

Data Processing and Transmission

- Data processing steps:
 - Sample Densely

Signal x, *N* coefficients

Transform to an informative domain (Fourier, Wavelet)

K<<*N* significant coefficients

Process/Compress/Transmit

Sets small coefficients to zero (sparsification)

Sparsity Model

• Signals can usually be **compressed** in some basis

 $N \ {
m pixels}$

 $K \ll N$ large wavelet coefficients

N wideband signal samples

 $K \ll N$ large Gabor coefficients

Sparsity: good prior in picking from a lot of candidates

Compressive Sensing Principles

If a signal is sparse, do not waste effort sampling the empty space.

1-sparse

Instead, use fewer samples and allow ambiguity.

Use the sparsity model to reconstruct and uniquely resolve the ambiguity.

2-sparse

Measuring Sparse Signals

Compressive Measurements

 Φ has rank $M \ll N$

K = Signal sparsity

N = Signal dimensionality M = Number of measurements (dimensionality of y)

$$N \gg M \gtrsim K$$

One Simple Question

- When is it possible to distinguish K-sparse signals?
 - require $\Phi x_1 \neq \Phi x_2$ for all K-sparse $x_1 \neq x_2$
- - otherwise there exist K-sparse x_1, x_2 s.t. $\Phi(x_1-x_2)=0$
- Sufficient: Gaussian Φ with 2K rows

Geometry of Sparse Signal Sets

Linear

K-plane

Sparse, Nonlinear

 \mathbf{R}^N

Union of K-planes

Geometry: Embedding in R^M

- Φ(K-plane) = K-plane in general
- M ≥ 2K measurements
 - necessary for injectivity
 - sufficient for injectivity when Φ Gaussian
 - but not enough for efficient, robust recovery
- See also FROI [Vetterli et al., Lu and Do]

Illustrative Example

N = 3: signal length

K = 1: sparsity

M = 2K = 2: measurements

Example: 1-sparse signal

 $y_1 = x_2$

Example: 1-sparse signal

Restricted Isometry Property

[Candès, Romberg, Tao]

• Measurement matrix Φ has **RIP of order** K if

$$(1 - \delta_K) \le \frac{\|\Phi x\|_2^2}{\|x\|_2^2} \le (1 + \delta_K)$$

for all K-sparse signals x.

- Does *not* hold for K>M; may hold for smaller K.
- Implications: tractable, stable, robust recovery

RIP as a "Stable" Embedding

• RIP of order 2K implies: for all K-sparse x_1 and x_2

$$(1 - \delta_{2K}) \le \frac{\|\Phi x_1 - \Phi x_2\|_2^2}{\|x_1 - x_2\|_2^2} \le (1 + \delta_{2K})$$

(if δ_{2K} < 1 have injectivity; smaller δ_{2K} more stable)

Verifying RIP

How Many Measurements?

- Want RIP of order 2K (say) to hold for MxN Φ
 - difficult to verify for a given Φ
 - requires checking eigenvalues of each submatrix
- Prove random Φ will work
 - iid Gaussian entries
 - iid Bernoulli entries (+/- 1)
 - iid subgaussian entries
 - random Fourier ensemble
 - random subset of incoherent dictionary
- In each case, $M = O(K \log N)$ suffices
 - with very high probability, usually 1-O(e-CN)
 - slight variations on log term

Universality Property

- Gaussian white noise basis is incoherent with any fixed orthonormal basis (with high probability)
- Signal sparse in time domain: $\Phi = I$

Universality Property

- Gaussian white noise basis is incoherent with any fixed orthonormal basis (with high probability)
- Signal sparse in frequency domain: $\Psi = idct$

ullet Product $\Phi\Psi$ remains Gaussian white noise

Democracy

- Measurements are democratic [Davenport, Laska, Boufounos, Baraniuk]
 - They are all equally important
 - We can loose some arbitrarily, (i.e. an adversary can choose which ones)
- ullet The $ilde{\Phi}$ still satisfies RIP (as long as we don't drop too many)

Reconstruction

Requirements for Reconstruction

- Let x_1 , x_2 be K-sparse signals (I.e. x_1 - x_2 is 2K-sparse):
- Mapping $y = \Phi x$ is **invertible** for K-sparse signals:

$$\Phi(x_1-x_2)\neq 0$$
 if $x_1\neq x_2$

Mapping is robust for K-sparse signals:

$$||\Phi(x_1-x_2)||_2 \approx ||x_1-x_2||_2$$

- Restricted Isometry Property (RIP):
 - Φ preserves distance when projecting K-sparse signals
- Guarantees there exists a unique K-sparse signal explains the measurements, and is robust to noise.

Reconstruction Ambiguity

Solution should be consistent with measurements

$$\hat{\mathbf{x}}$$
 s.t. $\mathbf{y} = \Phi \hat{\mathbf{x}}$ or $\mathbf{y} \approx \Phi \hat{\mathbf{x}}$

- Projections imply that an infinite number of solutions are consistent!
- Classical approach: use the pseudoinverse (minimize l_2 norm)
- Compressive sensing approach: pick the sparsest.
- RIP guarantee: sparsest solution unique and reconstructs the signal.

Becomes a sparse approximation problem!

Putting everything together

Compressed Sensing Coming Together

- Signal model: Provides prior information; allows undersampling
- Randomness: Provides robustness/stability; makes proofs easier
- Non-linear reconstruction: Incorporates information through computation

Beyond: Extensions,
Connections, Generalizations

Sparsity Models

Block Sparsity

Mixed l_1/l_2 norm—sum of l_2 norms: $\sum_i \|\mathbf{x}_{B_i}\|_2$

Basis pursuit becomes: $\min_{\mathbf{x}} \sum_{i} \|\mathbf{x}_{B_i}\|_2$ s.t. $y \approx \Phi x$

Blocks are not allowed to overlap

Joint Sparsity

Mixed
$$l_1/l_2$$
 norm—sum of l_2 norms: $\sum_i \|\mathbf{x}_{(i,\cdot)}\|_2$

Basis pursuit becomes: $\min_{\mathbf{x}} \sum_{i} \|\mathbf{x}_{(i,\cdot)}\|_2 \text{ s.t. } \mathbf{y} \approx \Phi \mathbf{x}$

Randomized Embeddings

Stable Embeddings

Recall: RIP

RIP of order K requires: for all K-sparse x,

$$(1 - \delta_K) \le \frac{\|\Phi x\|_2^2}{\|x\|_2^2} \le (1 + \delta_K)$$

Johnson-Lindenstrauss Lemma

[see also Dasgupta, Gupta; Frankl, Maehara; Achlioptas; Indyk, Motwani]

Consider a point set $Q \subset R^N$ and random* $M \times N \Phi$ with $M = O(\log(\#Q) \epsilon^{-2})$. With high prob., for all $x_1, x_2 \in Q$,

$$(1-\epsilon) \le \frac{\|\Phi x_1 - \Phi x_2\|_2^2}{\|x_1 - x_2\|_2^2} \le (1+\epsilon).$$

Proof via *concentration inequality*: For any $x \in R^N$

$$\mathbf{P}(\|\Phi x\|_{2}^{2}-\|x\|_{2}^{2})\geq \epsilon\|x\|_{2}^{2})\leq 2e^{-\frac{M}{2}(\epsilon^{2}/2-\epsilon^{3}/3)}.$$

Favorable JL Distributions

Gaussian

$$\phi_{i,j} \sim \mathcal{N}\!\left(\mathsf{0}, rac{\mathsf{1}}{M}
ight)$$

Bernoulli/Rademacher [Achlioptas]

$$\phi_{i,j} := \begin{cases} +\frac{1}{\sqrt{M}} & \text{with probability} & \frac{1}{2}, \\ -\frac{1}{\sqrt{M}} & \text{with probability} & \frac{1}{2} \end{cases}$$

"Database-friendly" [Achlioptas]

$$\phi_{i,j} := \begin{cases} +\sqrt{\frac{3}{M}} & \text{with probability} \quad \frac{1}{6}, \\ 0 & \text{with probability} \quad \frac{2}{3}, \\ -\sqrt{\frac{3}{M}} & \text{with probability} \quad \frac{1}{6} \end{cases}$$

Random Orthoprojection to R^M [Gupta, Dasgupta]

Connecting JL to RIP

Consider effect of random JL Φ on each K-plane

- construct covering of points Q on unit sphere
- JL: isometry for each point with high probability
- union bound → isometry for all q ∈ Q
- extend to isometry for all x in K-plane

Connecting JL to RIP

Consider effect of random JL Φ on each K-plane

- construct covering of points Q on unit sphere
- JL: isometry for each point with high probability
- union bound → isometry for all q ∈ Q
- extend to isometry for all x in K-plane
- union bound → isometry for all K-planes

Theorem: Supposing Φ is drawn from a JL-favorable distribution,* then with probability at least 1-e-C*M,
 Φ meets the RIP with

$$K \le C \cdot \frac{M}{\log(N/M) + 1}.$$

- * Gaussian/Bernoulli/database-friendly/orthoprojector
- Bonus: *universality* (repeat argument for any Ψ)

See also Mendelson et al. concerning subgaussian ensembles

More?

The tip of the iceberg

Today's lecture

Compressive Sensing Repository dsp.rice.edu/cs

Blog on CS nuit-blanche.blogspot.com/

Yet to be discovered... Start working on it ☺