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Component Analysis for PR 
• Computer Vision & Image Processing

– Structure from motion.

– Spectral graph methods for segmentation.

– Appearance and shape models.

– Fundamental matrix estimation and calibration.

– Compression.

– Classification.

– Dimensionality reduction and visualization.
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– Dimensionality reduction and visualization.

• Signal Processing
– Spectral estimation, system identification (e.g. Kalman filter), sensor 
array processing (e.g. cocktail problem, eco cancellation), blind source 
separation, …

• Computer Graphics
– Compression (BRDF), synthesis,…

• Speech, bioinformatics, combinatorial problems.
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Component Analysis (ICA)
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Why Component Analysis for PR?

• Learn from high dimensional data and few samples.
– Useful for dimensionality reduction.

• Easy to incorporate 
– Robustness to noise, missing data, outliers (de la Torre & Black, 2003a)

– Invariance to geometric transformations (de la Torre & Black, 2003b; de la 
Torre & Nguyen,2007)
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features  samples  

• Efficient methods  O(    d            n<  <n2    )

(Everitt,1984)

Torre & Nguyen,2007)

– Non-linearities (Kernel methods) (Scholkopf & Smola,2002; Shawe-Taylor & 
Cristianini,2004)

– Probabilistic (latent variable models)

– Multi-factorial (tensors) (Paatero & Tapper, 1994 ;O’Leary & Peleg,1983; 
Vasilescu & Terzopoulos,2002; Vasilescu & Terzopoulos,2003)

– Exponential family PCA (Gordon,2002; Collins et al. 01)



Are CA Methods Popular/Useful/Used?

• About 20% of CVPR-06 papers use CA.

• Google:
– Results 1 - 10 of about 1,870,000 for "principal component

analysis".

– Results 1 - 10 of about 506,000 for "independent component
analysis". 

– Results 1 - 10 of about 273,000 for "linear discriminant
analysis". 
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• Still work to do

– Results 1 - 10 of about 65,300,000 for "Britney Spears".

– Results 1 - 10 of about 273,000 for "linear discriminant
analysis". 

– Results 1 - 10 of about 46,100 for "negative matrix

factorization".

– Results 1 - 10 of about 491,000 for "kernel methods". 



Outline
• Introduction

• Generative models
– Principal Component Analysis (PCA)

– Non-negative Matrix Factorization (NMF)

– Independent Component Analysis (ICA)

– Multidimensional Scaling (MDS)

• Discriminative models
– Linear Discriminant Analysis (LDA).

Component Analysis for Signal Processing 11

– Linear Discriminant Analysis (LDA).

– Oriented Component Analysis (OCA).

– Canonical Correlation Analysis (CCA).

• Standard extensions of linear models
– Kernel methods.

– Latent variable models.

– Tensor factorization 



Principal Component Analysis (PCA)
(Pearson, 1901; Hotelling, 1933;Mardia et al., 1979; Jolliffe, 1986; Diamantaras, 1996)
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• PCA finds the directions of maximum variation of the
data based on linear correlation.

• PCA decorrelates the original variables.



PCA
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kccc ++++≈ ......21µ

•Assuming 0 mean data, the basis B that preserve the maximum
variation of the signal is given by the eigenvectors of DDT.

B ΛBDD =Td 

d 



Snap-shot Method & SVD
• If d>>n (e.g. images 100*100 vs. 300 samples) no DDT.

• DDT and DTD have the same eigenvalues (energy) and 

related eigenvectors (by D). 

• B is a linear combination of the data!

• [α,L]=eig(DTD)   B=D α(diag(diag(L))) -0.5

ΛDαDDαDDDDαBBΛBDD
TTTT ===

(Sirovich, 1987)
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Error Function for PCA

(Eckardt & Young, 1936; Gabriel & Zamir, 1979; Baldi & Hornik, 1989; Shum et al., 

1995; de la Torre & Black, 2003a)

• Not unique solution:

• To obtain same PCA solution R has to satisfy:
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• PCA minimizes the following CONVEX function. 
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• To obtain same PCA solution R has to satisfy:

• R is computed as a generalized k×k eigenvalue problem.
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PCA/SVD in Computer Vision
• PCA/SVD has been applied to:

– Recognition (eigenfaces:Turk & Pentland, 1991; Sirovich & Kirby, 1987; Leonardis & 
Bischof, 2000; Gong et al., 2000; McKenna et al., 1997a)

– Parameterized motion models (Yacoob & Black, 1999; Black et al., 2000; Black, 
1999; Black & Jepson, 1998)

– Appearance/shape models (Cootes & Taylor, 2001; Cootes et al., 1998; Pentland 
et al., 1994; Jones & Poggio, 1998; Casia & Sclaroff, 1999; Black & Jepson, 1998; Blanz & 
Vetter, 1999; Cootes et al., 1995; McKenna et al., 1997; de la Torre et al., 1998b; de la 
Torre et al., 1998b)

– Dynamic appearance models (Soatto et al., 2001; Rao, 1997; Orriols & Binefa, 
2001; Gong et al., 2000)

– Structure from Motion (Tomasi & Kanade, 1992; Bregler et al., 2000; Sturm & 
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– Structure from Motion (Tomasi & Kanade, 1992; Bregler et al., 2000; Sturm & 
Triggs, 1996; Brand, 2001)

– Illumination based reconstruction (Hayakawa, 1994)

– Visual servoing (Murase & Nayar, 1995; Murase & Nayar, 1994)

– Visual correspondence (Zhang et al., 1995; Jones & Malik, 1992)

– Camera motion estimation (Hartley, 1992; Hartley & Zisserman, 2000)

– Image watermarking (Liu & Tan, 2000)

– Signal processing (Moonen & de Moor, 1995)

– Neural approaches (Oja, 1982; Sanger, 1989; Xu, 1993)

– Bilinear models (Tenenbaum & Freeman, 2000; Marimont & Wandell, 1992)

– Direct extensions (Welling et al., 2003; Penev & Atick, 1996)



“Intercorrelations among 

variables are the bane of the 

multivariate researcher’s struggle 

for meaning”
Cooley and Lohnes, 1971
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Part-based Representation

�The firing rates of neurons are never negative.
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�The firing rates of neurons are never negative.

� Independent representations.

NMF & ICA



Non-negative Matrix Factorization

• Positive factorization.

• Leads to part-based representation.

0||||)( ≥−= CB,BCDCB, FE
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Nonnegative Factorization 
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• Multiplicative algorithm can be interpreted as 

diagonally rescaled gradient descent.

Learning:
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Independent Component Analysis

• We need more than second order statistics to represent 

the signal.
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ICA

• Look for si that are independent.

• PCA finds uncorrelated variables, the independent 

components have non Gaussian distributions.

• Uncorrelated E(sisj)= E(si)E(sj)

• Independent  E(g(si)f(sj))= E(g(si))E(f(sj)) for any non-

linear f,g

1−≈=≈= BWWDSCBCD

(Hyvrinen et al., 2001)
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i j i j

linear f,g

PCA ICA



ICA vs PCA
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Many optimization criteria

• Minimize high order moments: e.g. kurtosis

kurt(W) = E{s4} -3(E{s2}) 2

• Many other information criteria.

(Olhausen & Field, 1996)• Also an error function:
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(Chennubhotla & Jepson, 2001b; Zou et al., 2005; dAspremont et al., 2004;)

• Other sparse PCA.



Basis of natural images
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Denoising 

Original

image Noisy Image

(30% noise)
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Denoise

(Wiener filter) ICA



Multidimensional Scaling (MDS)

• MDS takes a matrix of pair-wise distances 

and finds an embedding that preserves the 

interpoint distances.
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Outline
• Introduction

• Generative models
– Principal Component Analysis (PCA)

– Non-negative Matrix Factorization (NMF)

– Independent Component Analysis (ICA)

– Multidimensional Scaling (MDS)
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– Linear Discriminant Analysis (LDA).

– Oriented Component Analysis (OCA).

– Canonical Correlation Analysis (CCA).

• Standard extensions of linear models
– Kernel methods.

– Latent variable models.

– Tensor factorization 



Linear Discriminant Analysis (LDA)
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• Optimal linear dimensionality reduction if classes are 

Gaussian with equal covariance matrix.
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Oriented Component Analysis (OCA)
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• Generalized eigenvalue problem:

• boca is steered by the distribution of noise.

λkeki bΣbΣ =



OCA for face recognition
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Canonical Correlation Analysis 

(CCA)
• PCA independently and general mapping
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• Signals dependent signals with small energy can be lost.

PCA PCA



Canonical Correlation Analysis (CCA)

• Learn relations between multiple data sets? (e.g. find 

features in one set related to another data set)

• Given two sets                                       , CCA finds the pair 

of directions wx and wy that maximize the correlation 

between the projections (assume zero mean data)

y

TT

x YwXw
=ρ

ndnd
and
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(Mardia et al., 1979; Borga)
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• Several ways of optimizing it:

• An stationary point of r is the solution to CCA.
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Dynamic Coupled Component Analysis
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Robot localization with Canonical 

Correlation Analysis
(Skocaj & Leonardis, 2000)
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Outline
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– Linear Discriminant Analysis (LDA).

– Oriented Component Analysis (OCA).

– Canonical Correlation Analysis (CCA).

• Standard extensions of linear models
– Kernel methods.

– Latent variable models.

– Tensor factorization 



Kernel Methods
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Kernel Methods



Linear methods fail
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Linear methods fail 
• Learning a non-linear representation for classification
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Kernel Methods for Classification

Feature spaceInput space
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• The kernel defines an implicit mapping (usually high dimensional and

non-linear) from input to feature space, so the data becomes linearly

separable.

• Computation in the feature space can be costly because it is

(usually) high dimensional

– The feature space is typically infinite-dimensional!

Feature spaceInput space



Kernel Methods
• Suppose φ(.) is given as follows

• An inner product in the feature space is

• So, if we define the kernel function as follows, there is no 
need to carry out φ(.) explicitly
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need to carry out φ(.) explicitly

• This use of kernel function to avoid carrying out φ(.) 
explicitly is known as the kernel trick. In any linear 
algorithm that can be expressed by inner products can be 
made nonlinear by going to the feature space



Kernel PCA
(Scholkopf et al., 1998)
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Kernel PCA

• Eigenvectors of the cov. Matrix in feature space.

• Eigenvectors lie in the span of data in feature space.                          

∑
=

ΦΦ=
n

i

ii
n 1

T)()(
1

ddC λ11 bbC =

n

(Scholkopf et al., 1998)

Component Analysis for Signal Processing 45

• Eigenvectors lie in the span of data in feature space.                          
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Latent Variable Models
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Latent Variable Models



Factor Analysis
• A Gaussian distribution on the coefficients and noise is 

added to PCA� Factor Analysis.

• Inference (Roweis & Ghahramani, 1999;Tipping & Bishop, 1999a)
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• Inference (Roweis & Ghahramani, 1999;Tipping & Bishop, 1999a)

11

1

)(

)()(

),|()(

−−

−

Ψ+=

−Ψ+=

=

BBIV

µdBBBm

Vmcd|c

T

TT

Np

PCA reconstruction low error.

FA high reconstruction error (low likelihood).

),( dcp Jointly Gaussian



Ppca
• If                   PPCA.

• If            is equivalent to PCA. TTTT
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• Probabilistic visual learning (Moghaddam & Pentland, 1997;)
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Tensor Factorization
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Tensor Factorization



Tensor faces
(Vasilescu & Terzopoulos, 2002; Vasilescu & Terzopoulos, 2003)

expressions

people
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views
illuminations



Eigenfaces
• Facial images (identity change)

• Eigenfaces bases vectors capture the variability in facial 

appearance (do not decouple pose, illumination, …)
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Data Organization

• Linear/PCA: Data Matrix

– Rpixels x images

– a matrix of image vectors

• Multilinear: Data Tensor

Views
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ImagesD
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• Multilinear: Data Tensor

– Rpeople x views x illums x express x pixels

– N-dimensional matrix

– 28 people, 45 images/person

– 5 views, 3 illuminations, 

3 expressions per person
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D



N-Mode SVD Algorithm

N = 3

pixels
xexpressx

illums.
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x 51
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PCA:

TensorFaces:
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TensorFaces

Mean Sq. Err. = 409.15

3 illum + 11 people param.

PCA

Mean Sq. Err. = 85.75

33 parameters

Strategic Data Compression = 

Perceptual Quality

Original

TensorFaces

6 illum + 11 people param.

• TensorFaces data reduction in illumination space primarily 

degrades illumination effects (cast shadows, highlights)

• PCA has lower mean square error but higher perceptual error
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3 illum + 11 people param.

33 basis vectors

33 parameters

33 basis vectors

Original

176 basis vectors

6 illum + 11 people param.

66 basis vectors
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