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11-755 Machine Learning for Signal Processing

Expectation Maximization
Mixture Models
Clusteringg

Class 14.  6 Oct 2010
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Administrivia
 Many homeworks still due

 Is everyone on the “projects” page?
 Where are your project proposals?
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Covered

 Learning distributions from data

 Given a collection of examples from some data, 
estimate its distribution

 Solution: Assign a model to the distribution

 Learn parameters of model from data

 Complex models: Learning must be done 
using Expectation Maximization

 Following slides: An intuitive explanation 
using a simple example of multinomials
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A Thought Experiment

6 3 1 5 4 1 2 4 …

COVERED

 A person shoots a loaded dice repeatedly

 You observe the series of outcomes

 You can form a good idea of how the dice is loaded
 Figure out what the probabilities of the various numbers are for dice

 P(number) = count(number)/sum(rolls)

 This is a maximum likelihood estimate
 Estimate that makes the observed sequence of numbers most probable
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The Multinomial Distribution

 A probability distribution over a discrete 
collection of items is a Multinomial

)()set discrete a  tobelongs :( XPXXP 

 E.g. the roll of dice
 X : X in (1,2,3,4,5,6)

 Or the toss of a coin
 X : X in (head, tails)
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COVERED

Maximum Likelihood Estimation

n1

n2

n3

n4

n5

n6

p1 p2

p3 p4

p5

p6

p1

p2

p

p4

p5 p6 COVERED
 Basic principle: Assign a form to the distribution

 E.g. a multinomial

 Or a Gaussian

 Find the distribution that best fits the histogram 
of the data

p3
p6

6

COVERED
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Defining “Best Fit”
 The data are generated by draws from the 

distribution
 I.e. the generating process draws from the distribution

 Assumption: The distribution has a high probability 
of generating the observed data

COVERED
of generating the observed data
 Not necessarily true

 Select the distribution that has the highest 
probability of generating the data
 Should assign lower probability to less frequent 

observations and vice versa
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Maximum Likelihood Estimation: Multinomial

 Probability of generating (n1, n2, n3, n4, n5, n6)

 Find p1,p2,p3,p4,p5,p6 so that the above is maximized

Alternatel ma imi e
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COVERED Alternately maximize

 Log() is a monotonic function
 argmaxx f(x) =  argmaxx log(f(x))

 Solving for the probabilities gives us
 Requires constrained optimization to 

ensure probabilities sum to 1
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COVERED

Segue:  Gaussians

COVERED

 Parameters of a Gaussian: 
 Mean , Covariance 
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Maximum Likelihood: Gaussian
 Given a collection of observations (X1, X2,…), 

estimate mean  and covariance 
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COVERED

 Maximizing w.r.t  and  gives us
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ITS STILL
JUST
COUNTING!
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Laplacian

COVERED

 Parameters: Mean , scale b (b > 0)
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Maximum Likelihood: Laplacian
 Given a collection of observations (x1, x2,…), 

estimate mean  and scale b
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COVERED

 Maximizing w.r.t  and b gives us
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Dirichlet
(from wikipedia)

log of the density as we change α from
α=(0.3, 0.3, 0.3) to (2.0, 2.0, 2.0), 
keeping all the individual αi's equal to 

COVERED

 Parameters are s
 Determine mode and curvature

 Defined only of probability vectors
 X = [x1 x2 .. xK], i xi = 1,  xi >= 0 for all i

K=3. Clockwise from top left:
α=(6, 2, 2), (3, 7, 5), (6, 2, 6), (2, 3, 4)

keeping all the individual αi s equal to 
each other.




















i
i

i
i

i
i

ixXDXP 1

)(
);()( 






13

Maximum Likelihood: Dirichlet
 Given a collection of observations (X1, X2,…), 

estimate 

No closed form solution for s
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COVERED
 No closed form solution for s.

 Needs gradient ascent

 Several distributions have this property: the ML 
estimate of their parameters have no closed 
form solution
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Continuing the Thought Experiment

6 3 1 5 4 1 2 4 … 4 4 1 6 3 2 1 2 …

COVERED

 Two persons shoot loaded dice repeatedly
 The dice are differently loaded for the two of them

 We observe the series of outcomes for both persons

 How to determine the probability distributions of the two dice?
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Estimating Probabilities
 Observation: The sequence of 

numbers from the two dice

 As indicated by the colors, we 
know who rolled what number

 Segregation: Separate the blue 
observations from the red

6 4 5 1 2 3 4 5 2 2 1 4 3 4 6 2 1 6… 

6 5 2 4 2 1 3 6 1.. 4 1 3 5 2 4 4 2 6..

COVERED

 From each set compute 
probabilities for each of the 6 
possible outcomes

rollsobservedofnumber total

rolled number was  timesof no.
)( numberP 0

0.05

0.1

0.15

0.2

0.25

0.3

1 2 3 4 5 6
0

0.05

0.1

0.15

0.2

0.25

0.3

1 2 3 4 5 6
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A Thought Experiment
6 4 1 5 3 2 2 2 …

 Now imagine that you cannot observe the dice yourself

 Instead there is a “caller” who randomly calls out the outcomes

 40% of the time he calls out the number from the left shooter, and 60% of the 
time, the one from the right (and you know this)

 At any time, you do not know which of the two he is calling out

 How do you determine the probability distributions for the two dice?

6 3 1 5 4 1 2 4 … 4 4 1 6 3 2 1 2 …
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A Thought Experiment
6 4 1 5 3 2 2 2 …

 How do you now determine the probability 
distributions for the two sets of dice …

 .. If you do not even know what fraction of time the 
blue numbers are called, and what fraction are red? 

6 3 1 5 4 1 2 4 … 4 4 1 6 3 2 1 2 …

18
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A Mixture Multinomial
 The caller will call out a number X in any given callout IF

 He selects “RED”, and the Red die rolls the number X

 OR

 He selects “BLUE” and the Blue die rolls the number X

 P(X) = P(Red)P(X|Red) + P(Blue)P(X|Blue)
 E.g. P(6) = P(Red)P(6|Red) + P(Blue)P(6|Blue)

 A distribution that combines (or mixes) multiple 
multinomials is a mixture multinomial


Z

ZXPZPXP )|()()(

Mixture weights Component multinomials
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Mixture Distributions


Z

ZXPZPXP )|()()(

Mixture weights Component distributions
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Mixture Gaussian

   bXLZPXNZPXP );()();()()( 
Mixture of Gaussians and Laplacians

 Mixture distributions mix several component distributions
 Component distributions may be of varied type

 Mixing weights must sum to 1.0

 Component distributions integrate to 1.0

 Mixture distribution integrates to 1.0
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Maximum Likelihood Estimation

 For our problem:
 Z = color of dice

 Maximum likelihood solution: Maximize
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 No closed form solution (summation inside log)! 
 In general ML estimates for mixtures do not have a 

closed form

 USE EM!
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Expectation Maximization

 It is possible to estimate all parameters in this setup 
using the Expectation Maximization (or EM) algorithm

 First described in a landmark paper by Dempster, Laird 
and Rubin
 Maximum Likelihood Estimation from incomplete data, Maximum Likelihood Estimation from incomplete data, 

via the EM Algorithm, Journal of the Royal Statistical 
Society, Series B, 1977

 Much work on the algorithm since then

 The principles behind the algorithm existed for several 
years prior to the landmark paper, however.
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Expectation Maximization
 Iterative solution

 Get some initial estimates for all parameters
 Dice shooter example: This includes probability 

distributions for dice AND the probability with which 
the caller selects the dice

 Two steps that are iterated:
 Expectation Step: Estimate statistically, the values 

of unseen variables

 Maximization Step: Using the estimated values of 
the unseen variables as truth, estimates of the 
model parameters
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EM: The auxiliary function

 EM iteratively optimizes the following 
auxiliary function

 Q(, ’) = Z P(Z|X,’) log(P(Z,X | ))

Z are the unseen variables Z are the unseen variables

 Assuming Z is discrete (may not be)

 ’ are the parameter estimates from the 
previous iteration

 are the estimates to be obtained in the 
current iteration

24
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Expectation Maximization as counting

Collection of “blue”
numbers

Collection of “red”
numbers

6

.. ..
Collection of “blue”
numbers

Collection of “red”
numbers

6

.. ..
Collection of “blue”
numbers

Collection of “red”
numbers

6

6 6

6 6 6 .. 6 ..

Instance from blue dice Instance from red dice Dice unknown

 Hidden variable: Z
 Dice: The identity of the dice whose number has been called out

 If we knew Z for every observation, we could estimate all terms
 By adding the observation to the correct bin

 Unfortunately, we do not know Z – it is hidden from us!

 Solution:  FRAGMENT THE OBSERVATION

25

Fragmenting the Observation

 EM is an iterative algorithm

 At each time there is a current estimate of parameters

 The “size” of the fragments is proportional to the a 

posteriori probability of the component distributions

 The a posteriori probabilities of the various values of Z are The a posteriori probabilities of the various values of Z are 

computed using Bayes’ rule:

 Every dice gets a fragment of size P(dice | number)

)()|(
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Expectation Maximization

 Hypothetical Dice Shooter Example:

 We obtain an initial estimate for the probability distribution of the 
two sets of dice (somehow):  
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 We obtain an initial estimate for the probability with which the 
caller calls out the two shooters (somehow)
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Expectation Maximization

 Hypothetical Dice Shooter Example:

 Initial estimate:  
 P(blue) = P(red) = 0.5

 P(4 | blue) = 0.1, for P(4 | red) =  0.05

 Caller has just called out 4

 Posterior probability of colors: 

025.05.005.0)()|4()4|( CCredZPredZXCPXredP 
05.05.01.0)()|4()4|( CCblueZPblueZXCPXblueP 

67.0)4|(33.0)4|(  XbluePXredP    ;  :gNormalizin
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Expectation Maximization

 Every observed roll of the dice 
contributes to both “Red” and 
“Blue”

6 4 5 1 2 3 4 5 2 2 1 4 3 4 6 2 1 6

6 (0.8), 4 (0.33),
5 (0 33) 1 (0 57)

6 (0.2), 4 (0.67),
5 (0 67) 1 (0 43)5 (0.33), 1 (0.57),

2 (0.14), 3 (0.33),
4 (0.33), 5 (0.33),
2 (0.14), 2 (0.14),
1 (0.57), 4 (0.33),
3 (0.33), 4 (0.33),
6 (0.8), 2 (0.14),
1 (0.57), 6 (0.8)

5 (0.67), 1 (0.43),
2 (0.86), 3 (0.67),
4 (0.67), 5 (0.67),
2 (0.86), 2 (0.86),
1 (0.43), 4 (0.67),
3 (0.67), 4 (0.67),
6 (0.2), 2 (0.86),
1 (0.43), 6 (0.2)
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Expectation Maximization

 Every observed roll of the dice 
contributes to both “Red” and “Blue”

 Total count for “Red” is the sum of 
all the posterior probabilities in the 
red column
 7.31

Called P(red|X) P(blue|X)
6 .8 .2
4 .33 .67
5 .33 .67
1 .57 .43
2 .14 .86
3 .33 .67
4 .33 .67
5 .33 .67

 Total count for “Blue” is the sum of 
all the posterior probabilities in the 
blue column
 10.69

 Note: 10.69 + 7.31 = 18 = the total 
number of instances

2 .14 .86
2 .14 .86
1 .57 .43
4 .33 .67
3 .33 .67
4 .33 .67
6 .8 .2
2 .14 .86
1 .57 .43
6 .8 .2

7.31 10.69 30
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Expectation Maximization
 Total count for “Red” : 7.31
 Red:

 Total count for 1:  1.71
 Total count for 2:  0.56
 Total count for 3:  0.66
 Total count for 4:  1.32
 Total count for 5:  0.66

T t l t f 6 2 4

Called P(red|X) P(blue|X)
6 .8 .2
4 .33 .67
5 .33 .67
1 .57 .43
2 .14 .86
3 .33 .67
4 .33 .67
5 .33 .67

 Total count for 6:  2.4

 Updated probability of Red dice:
 P(1 | Red) = 1.71/7.31 = 0.234
 P(2 | Red) = 0.56/7.31 = 0.077
 P(3 | Red) = 0.66/7.31 = 0.090
 P(4 | Red) = 1.32/7.31 = 0.181
 P(5 | Red) = 0.66/7.31 = 0.090
 P(6 | Red) = 2.40/7.31 = 0.328

2 .14 .86
2 .14 .86
1 .57 .43
4 .33 .67
3 .33 .67
4 .33 .67
6 .8 .2
2 .14 .86
1 .57 .43
6 .8 .2

7.31 10.69 31

Expectation Maximization
 Total count for “Blue” : 10.69
 Blue:

 Total count for 1:  1.29
 Total count for 2:  3.44
 Total count for 3:  1.34
 Total count for 4:  2.68
 Total count for 5:  1.34
 Total count for 6: 0 6

Called P(red|X) P(blue|X)
6 .8 .2
4 .33 .67
5 .33 .67
1 .57 .43
2 .14 .86
3 .33 .67
4 .33 .67
5 .33 .67

 Total count for 6:  0.6

 Updated probability of Blue dice:
 P(1 | Blue) = 1.29/11.69 = 0.122
 P(2 | Blue) = 0.56/11.69 = 0.322
 P(3 | Blue) = 0.66/11.69 = 0.125
 P(4 | Blue) = 1.32/11.69 = 0.250
 P(5 | Blue) = 0.66/11.69 = 0.125
 P(6 | Blue) = 2.40/11.69 = 0.056

2 .14 .86
2 .14 .86
1 .57 .43
4 .33 .67
3 .33 .67
4 .33 .67
6 .8 .2
2 .14 .86
1 .57 .43
6 .8 .2

7.31 10.69 32

Expectation Maximization
 Total count for “Red” : 7.31

 Total count for “Blue” : 10.69

 Total instances = 18 

 Note 7.31+10.69 = 18

 We also revise our estimate for the 
probability that the caller calls out 

Called P(red|X) P(blue|X)
6 .8 .2
4 .33 .67
5 .33 .67
1 .57 .43
2 .14 .86
3 .33 .67
4 .33 .67
5 .33 .67

Red or Blue

 i.e the fraction of times that he 
calls Red and the fraction of times 
he calls Blue

 P(Z=Red) = 7.31/18 = 0.41

 P(Z=Blue) = 10.69/18 = 0.59

2 .14 .86
2 .14 .86
1 .57 .43
4 .33 .67
3 .33 .67
4 .33 .67
6 .8 .2
2 .14 .86
1 .57 .43
6 .8 .2

7.31 10.69 33

The updated values

Called P(red|X) P(blue|X)
6 .8 .2
4 .33 .67
5 .33 .67
1 .57 .43
2 .14 .86
3 .33 .67
4 .33 .67
5 .33 .67 Probability of Blue dice:

 Probability of Red dice:
 P(1 | Red) = 1.71/7.31 = 0.234
 P(2 | Red) = 0.56/7.31 = 0.077
 P(3 | Red) = 0.66/7.31 = 0.090
 P(4 | Red) = 1.32/7.31 = 0.181
 P(5 | Red) = 0.66/7.31 = 0.090
 P(6 | Red) = 2.40/7.31 = 0.328

 P(Z=Red) = 7.31/18 = 0.41

 P(Z=Blue) = 10.69/18 = 0.59

2 .14 .86
2 .14 .86
1 .57 .43
4 .33 .67
3 .33 .67
4 .33 .67
6 .8 .2
2 .14 .86
1 .57 .43
6 .8 .2

 P(1 | Blue) = 1.29/11.69 = 0.122
 P(2 | Blue) = 0.56/11.69 = 0.322
 P(3 | Blue) = 0.66/11.69 = 0.125
 P(4 | Blue) = 1.32/11.69 = 0.250
 P(5 | Blue) = 0.66/11.69 = 0.125
 P(6 | Blue) = 2.40/11.69 = 0.056

THE UPDATED VALUES CAN BE USED TO REPEAT THE 
PROCESS. ESTIMATION IS AN ITERATIVE PROCESS 34

The Dice Shooter Example

6 4 1 5 3 2 2 2 …

1. Initialize P(Z),  P(X | Z)

2. Estimate P(Z | X) for each Z, for each called out number
• Assign X with to value of Z, with weight P(Z | X)

3. Re-estimate P(X | Z) for every value of X and Z

4. Re-estimate P(Z)

5. If not converged, return to 2

6 3 1 5 4 1 2 4 … 4 4 1 6 3 2 1 2 …
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In Squiggles
 Given a sequence of observations O1, O2, ..
 NX is the number of observations of number X

 Initialize P(Z), P(X|Z) for dice Z and numbers X

 Iterate:
F h b X
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Solutions may not be unique

 The EM algorithm will give us one of many solutions, 
all equally valid!
 The probability of 6 being called out:

 Assigns Pr as the probability of 6 for the red die

br PPbluePredPP   )|6()|6()6(

r

 Assigns Pb as the probability of 6 for the blue die

 The following too is a valid solution

 Assigns 1.0 as the a priori probability of the red die
 Assigns 0.0 as the probability of the blue die

 The solution is NOT unique

  anythingPPP br 0.00.1)6(  
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A More Complex Model

 Gaussian mixtures are often good models for 
the distribution of multivariate data

 Problem: Estimating the parameters, given a 
collection of data

  


 

k
kk

T
k

k
d

k
kk XX

kP
XNkPXP )()(5.0exp

||)2(

)(
),;()()( 1 




38

Gaussian Mixtures: Generating model

 The caller now has two Gaussians

 
k

kkXNkPXP ),;()()( 
6.1 1.4 5.3 1.9 4.2 2.2 4.9 0.5  

 The caller now has two Gaussians

 At each draw he randomly selects a Gaussian, by 

the mixture weight distribution

 He then draws an observation from that Gaussian

 Much like the dice problem (only the outcomes are 

now real numbers and can be anything)
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Estimating GMM with complete information
 Observation: A collection of 

numbers drawn from a mixture 
of 2 Gaussians

 As indicated by the colors, we 
know which Gaussian 
generated what number

6.1 1.4 5.3 1.9 4.2 2.2 4.9 0.5 … 

6.1  5.3  4.2  4.9 .. 1.4  1.9  2.2  0.5 ..

 Segregation: Separate the blue 
observations from the red

 From each set compute 
parameters for that Gaussian

N

N
redP red)(
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Fragmenting the observation

Collection of “blue”
numbers

Collection of “red”
numbers

4.2

4.2 4.2

4.2 .. 4.2 ..

Gaussian  unknown

 The identity of the Gaussian is not known!

 Solution:  Fragment the observation

 Fragment size proportional to a posteriori
probability
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Expectation Maximization
 Initialize P(k), k and k for both 

Gaussians
 Important how we do this

 Typical solution: Initialize means 
randomly, k as the global covariance 
of the data and P(k) uniformly

C t f t i f h

Number P(red|X) P(blue|X)
6.1 .81 .19
1.4 .33 .67
5.3 .75 .25
1.9 .41 .59
4.2 .64 .36
2.2 .43 .57
4.9 .66 .34
0.5 .05 .95

 Compute fragment sizes for each 
Gaussian, for each observation
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Expectation Maximization
 Each observation contributes 

only as much as its fragment 
size to each statistic

 Mean(red) =  
(6.1*0.81 + 1.4*0.33 + 5.3*0.75 + 
1.9*0.41 + 4.2*0.64 + 2.2*0.43 + 
4.9*0.66 + 0.5*0.05 ) /
(0 81 + 0 33 + 0 75 + 0 41 + 0 64 +

Number P(red|X) P(blue|X)
6.1 .81 .19
1.4 .33 .67
5.3 .75 .25
1.9 .41 .59
4.2 .64 .36
2.2 .43 .57
4.9 .66 .34
0.5 .05 .95

(0.81 + 0.33 + 0.75 + 0.41 + 0.64 + 
0.43 + 0.66 + 0.05)
= 17.05 / 4.08 = 4.18

4.08 3.92

 Var(red) = ((6.1-4.18)2*0.81 + (1.4-4.18)2*0.33 + 
(5.3-4.18)2*0.75 + (1.9-4.18)2*0.41 + 
(4.2-4.18)2*0.64 + (2.2-4.18)2*0.43 + 
(4.9-4.18)2*0.66 + (0.5-4.18)2*0.05 ) /

(0.81 + 0.33 + 0.75 + 0.41 + 0.64 + 0.43 + 0.66 + 0.05)

8

08.4
)( redP
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EM for Gaussian Mixtures

1. Initialize P(k), k and k for all Gaussians

2. For each observation X compute a posteriori
probabilities for all Gaussian
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3. Update mixture weights, means and variances 
for all Gaussians

4. If not converged, return to 2
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EM estimation of Gaussian Mixtures
 An Example

Histogram of 4000
instances of a randomly
generated data

Individual parameters
of a two-Gaussian
mixture estimated by EM

Two-Gaussian mixture
estimated by EM
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Expectation Maximization
 The same principle can be extended to mixtures of other 

distributions.

 E.g. Mixture of Laplacians:  Laplacian parameters become

  xxkPbxxkP ||)|(
1

)|(
1 

 In a mixture of Gaussians and Laplacians, Gaussians  use the 
Gaussian update rules, Laplacians use the Laplacian rule
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Expectation Maximization
 The EM algorithm is used whenever proper statistical 

analysis of a phenomenon requires the knowledge of a 
hidden or missing variable (or a set of hidden/missing 
variables)
 The hidden variable is often called a “latent” variable

S l Some examples:
 Estimating mixtures of distributions

 Only data are observed. The individual distributions and mixing 
proportions must both be learnt.

 Estimating the distribution of data, when some attributes are 
missing

 Estimating the dynamics of a system, based only on observations 
that may be a complex function of system state

47

Solve this problem:
 Caller rolls a dice and flips a coin
 He calls out the number rolled if the coin shows 

head

 Otherwise he calls the number+1

 Determine p(heads) and p(number) for the dice 
from a collection of ouputs

 Caller rolls two dice
 He calls out the sum

 Determine P(dice) from a collection of ouputs

48
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The dice and the coin
4

4 3

4. 3

Heads or tail?

..

“Heads” count
“Tails” count

 Unknown: Whether it was head or tails

49

The two dice
4

3,1

2,2

1,3

 Unknown: How to partition the number

 Countblue(3) += P(3,1 | 4)

 Countblue(2) += P(2,2 | 4)

 Countblue(1) += P(1,3 | 4)

50

Fragmentation can be hierarchical
 

k Z

kZXPkZPkPXP ),|()|()()(

k1 k2

 E.g. mixture of mixtures

 Fragments are further fragmented..
 Work this out

51

Z1 Z2 Z3 Z4

More later

 Will see a couple of other instances of the 
use of EM
 E.g. HMM training

 Homework problems

52

Clustering

53

Clustering
 What is clustering

 Clustering is the determination of 
naturally occurring grouping of 
data/instances (with low within-group 
variability and high between-group 
variability)

 How is it done How is it done
 Find groupings of data such that the 

groups optimize a “within-group-
variability” objective function of some 
kind

 The objective function used affects 
the nature of the discovered clusters
 E.g. Euclidean distance and distance 

from center result in different clusters 
in this example

54
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Why Clustering

 Automatic grouping into “Classes”
 Different clusters may show different behavior

 Quantization
 All data within a cluster are represented by a 

single point

 Preprocessing step for other algorithms
 Indexing, categorization, etc.

55

Clustering criteria

 Compactness criterion
 Measure that shows how “good” clusters are

 The objective function

Distance of a point from a cluster Distance of a point from a cluster
 To determine the cluster a data vector belongs to

56

 Distance based measures
 Total distance between each 

element in the cluster and every 
other element in the cluster

 Distance between the two 
farthest points in the cluster

“Compactness” criteria for clustering

p

 Total distance of every element in 
the cluster from the centroid of 
the cluster

 Distance measures are often 
weighted Minkowski metrics

n n

MMM

nn
bawbawbawdist  ...222111

57

Clustering: Distance from cluster

 How far is a data point from a 
cluster?
 Euclidean or Minkowski distance 

from the centroid of the cluster

 Distance from the closest point in 
the cluster

 Distance from the farthest point in 
the cluster

 Probability of data measured on 
cluster distribution

 Fit of data to cluster-based 
regression 58

Optimal clustering: Exhaustive 
enumeration
 All possible combinations of data must be evaluated

 If there are M data points, and we desire N clusters, the 
number of ways of separating M instances into N clusters is

 









N
Mi iN

i

N

M
)()1(

!

1

 Exhaustive enumeration based clustering requires that the 
objective function (the “Goodness measure”) be evaluated 
for every one of these, and the best one chosen

 This is the only correct way of optimal clustering
 Unfortunately, it is also computationally unrealistic








i iM 0!

59

Not-quite non sequitir:  Quantization

Signal Value Bits Mapped to

S >= 3.75v 11 3 * const

3.75v > S >= 2.5v 10 2 * const

2.5v > S >= 1.25v 01 1 * const

1.25v > S >= 0v 0 0 

ob
ab

ili
ty

 o
f 

an
al

og
 v

al
ue

 Linear quantization (uniform quantization):
 Each digital value represents an equally wide range of analog 

values

 Regardless of distribution of data

 Digital-to-analog conversion represented by a “uniform” table
60

Analog value (arrows are quantization levels)Pr
o
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Not-quite non sequitir:  Quantization

ob
ab

ili
ty

 o
f 

an
al

og
 v

al
ue Signal Value Bits Mapped to

S >= 4v 11 4.5

4v > S >= 2.5v 10 3.25

2.5v > S >= 1v 01 1.25

1.0v > S >= 0v 0 0.5

 Non-Linear quantization:
 Each digital value represents a different range of analog values

 Finer resolution in high-density areas

 Mu-law / A-law assumes a gaussian-like distribution of data

 Digital-to-analog conversion represented by a “non-uniform” table

61

Analog value (arrows are quantization levels)Pr
o

Non-uniform quantization

ab
ili

ty
 o

f 
an

al
og

 v
al

ue

 If data distribution is not Gaussianish?
 Mu-law / A-law are not optimal
 How to compute the optimal ranges for quantization

 Or the optimal table

62

Analog valuePr
ob

a

The Lloyd Quantizer

ab
ili

ty
 o

f 
an

al
og

 v
al

ue

 Lloyd quantizer: An iterative algorithm for computing 
optimal quantization tables for non-uniformly 
distributed data

 Learned from “training” data
63

Analog value (arrows show quantization levels)

Pr
ob

a

Lloyd Quantizer

 Randomly initialize 
quantization points
 Right column entries of 

quantization table

 Assign all training points g g p
to the nearest 
quantization point
 Draw boundaries

 Reestimate quantization 
points

 Iterate until convergence
64

Generalized Lloyd Algorithm: K–means clustering

 K means is an iterative algorithm for clustering 
vector data
 McQueen, J. 1967. “Some methods for classification and 

analysis of multivariate observations.” Proceedings of the 
Fifth Berkeley Symposium on Mathematical Statistics and 
Probability, 281-297 

 General procedure:
 Initially group data into the required number of clusters 

somehow (initialization)

 Assign each data point to the closest cluster

 Once all data points are assigned to clusters, redefine 
clusters

 Iterate 

65

K–means

 Problem: Given a set of data 
vectors, find natural clusters

 Clustering criterion is scatter: 
distance from the centroid

 Every cluster has a centroidy

 The centroid represents the 
cluster

 Definition:  The centroid is 
the weighted mean of the 
cluster

 Weight = 1 for basic scheme  
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K–means
1. Initialize a set of centroids

randomly

2. For each data point x, find the 
distance from the centroid for 
each cluster
• ),( clustercluster mxd distance

3. Put data point in the cluster of the 
closest centroid
• Cluster for which dcluster is 

minimum

4. When all data points are 
clustered, recompute centroids

5. If not converged, go back to 2

 



clusteri
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clusteri
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cluster xw
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m
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67

K-Means comments

 The distance metric determines the clusters
 In the original formulation, the distance is L2 

distance
 Euclidean norm, wi = 1

1

 If we replace every x by mcluster(x), we get Vector 
Quantization

 K-means is an instance of generalized EM

 Not guaranteed to converge for all distance 
metrics
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68

Initialization
 Random initialization

 Top-down clustering
 Initially partition the data into two (or a small 

number of) clusters using K means

 Partition each of the resulting clusters into two a o eac o e esu g c us e s o o
(or a small number of) clusters, also using K 
means

 Terminate when the desired number of clusters 
is obtained

69

K-Means for Top–Down clustering
1. Start with one cluster 

2. Split each cluster into two:
 Perturb centroid of cluster slightly  (by < 5%) 

to generate two centroids

3. Initialize K means with new set of 
centroids

4. Iterate Kmeans until convergence

5. If the desired number of clusters is 
not obtained, return to 2

70

K-means, distances, kernels and spectra

 Basic K-means results in good clusters in 
Euclidean spaces
 Alternately stated, will only find clusters that are 

“good” in terms of Euclidean distances

 Will not find other types of clusters

71

For other forms of clusters we must modify the distance measure

f([x,y]) -> [x,y,z]
x = x
y = y
z = x2 + y2

Non-euclidean clusters

 For other forms of clusters we must modify the distance measure
 E.g. distance from a circle

 May be viewed as a distance in a higher dimensional space
 I.e Kernel distances

 Kernel K-means

 Other related clustering mechansims:
 Spectral clustering

 Non-linear weighting of adjacency

 Normalized cuts..

72


