11-755 Machine Learning for Signal Processing

Expectation Maximization Mixture Models Clustering

Class 14. 6 Oct 2010

Administrivia

Many homeworks still due

□ Is everyone on the "projects" page?

• Where are your project proposals?

Covered

Learning distributions from data

- Given a collection of examples from some data, estimate its distribution
- Solution: Assign a model to the distribution
- Learn parameters of model from data
- Complex models: Learning must be done using Expectation Maximization
- Following slides: An intuitive explanation using a simple example of multinomials

A Thought Experiment

63154124...

- A person shoots a loaded dice repeatedly
- You observe the series of outcomes
- You can form a good idea of how the dice is loaded
 - Figure out what the probabilities of the various numbers are for dice
- P(number) = count(number)/sum(rolls)
- This is a maximum likelihood estimate
 - Estimate that makes the observed sequence of numbers most probable

The Multinomial Distribution

 A probability distribution over a discrete collection of items is a *Multinomial*

P(X : X belongs to a discrete set) = P(X)

COVERED

- E.g. the roll of dice
 X : X in (1,2,3,4,5,6)
- Or the toss of a coin
 X : X in (head, tails)

Maximum Likelihood Estimation

- Basic principle: Assign a form to the distribution
 - E.g. a multinomial
 - Or a Gaussian
- Find the distribution that best fits the histogram of the data

Defining "Best Fit"

- The data are generated by draws from the distribution
 - I.e. the generating process crays from the distribution
- Assumption: The distribution has a high probability of generating the observed data
 - Not necessarily true
- Select the distribution that has the *highest* probability of generating the data
 - Should assign lower probability to less frequent observations and vice versa

Maximum Likelihood Estimation: Multinomial

Probability of generating $(n_1, n_2, n_3, n_4, n_5, n_6)$

$$P(n_1, n_2, n_3, n_4, n_5, n_6) = Const \prod_i p_i^{n_i}$$

- Find p₁,p₂,p₃,p₄,p₅,p₆ so that the above is maximized
- Alternately maximize

$$\log(P(n_1, n_2, n_3, n_4, n_5, n_6)) = \log(Const) + \sum_i n_i \log(p_i)$$

- Log() is a monotonic function
 - $\operatorname{argmax}_{x} f(x) = \operatorname{argmax}_{x} \log(f(x))$
- Solving for the probabilities gives us
 - Requires constrained optimization to ensure probabilities sum to 1

$$p_i = \frac{n_i}{\sum_j n_j}$$
 EVENTU.
ITS JUS
COUNTI

Parameters of a Gaussian:

 \square Mean μ , Covariance Θ

Maximum Likelihood: Gaussian

- Given a collection of observations $(X_1, X_2,...)$, estimate mean μ and covariance Θ $P(X_1, X_2,...) = \prod_i \frac{1}{\sqrt{(2\pi)^d |\Theta|}} \exp(-0.5(X_i - \mu)^T \Theta^{-1}(X_i - \mu))$ $\log(P(X_1, X_2,...)) = C - 0.5 \sum_i (\log(|\Theta|) + (X_i - \mu)^T \Theta^{-1}(X_i - \mu))$
- Maximizing w.r.t μ and Θ gives us
 - $\mu = \frac{1}{N} \sum_{i} X_{i} \qquad \Theta = \frac{1}{N} \sum_{i} (X_{i} \mu) (X_{i} \mu)^{T}$

ITS STILL JUST COUNTING!

Parameters: Mean μ , scale *b* (*b* > 0)

Maximum Likelihood: Laplacian

- Given a collection of observations $(x_1, x_2,...)$, estimate mean μ and scale k $\log(P(x_1, x_2,...)) = C - N \log(b) - \sum_i \frac{|x_i - \mu|}{b}$
- Maximizing w.r.t μ and b gives us

$$\mu = \frac{1}{N} \sum_{i} x_{i} \qquad b = \frac{1}{N} \sum_{i} |x_{i} - \mu|$$

K=3. Clockwise from top left: *a*=(6, 2, 2), (3, 7, 5), (6, 2, 6), (2, 3, 4)

log of the density as we change a from a=(0.3, 0.3, 0.3) to (2.0, 2.0, 2.0), keeping all the individual ai's equal to each other.

$$P(X) = D(X;\alpha) = \frac{\prod_{i} \Gamma(\alpha_{i})}{\Gamma\left(\sum_{i} \alpha_{i}\right)} \prod_{i} x_{i}^{\alpha_{i}-1}$$

- Parameters are αs
 - Determine mode and curvature
- Defined only of probability vectors
 - $\ \ \, \square \ \ X = [x_1 \ x_2 \ .. \ x_K] \text{, } \Sigma_i \ x_i = 1 \text{, } \ \ x_i >= 0 \text{ for all } i$

Maximum Likelihood: Dirichlet

• Given a collection of observations $(X_1, X_2,...)$, estimate α

 $\log(P(X_1, X_2, ...)) = \sum_{j} \sum_{i} (\alpha_i - 1) \log(X_{j,i}) + N \sum_{i} \log(\Gamma(\alpha_i)) - N \log\left(\Gamma\left(\sum_{i} \alpha_i\right)\right)$

- No closed form solution for α s.
 - Needs gradient ascent
- Several distributions have this property: the ML estimate of their parameters have no closed form solution

Continuing the Thought Experiment

- Two persons shoot loaded dice repeatedly
 - The dice are differently loaded for the two of them
- We observe the series of outcomes for both persons
- How to determine the probability distributions of the two dice?

Estimating Probabilities

- Observation: The sequence of numbers from the two dice
 - As indicated by the colors, we know who rolled what number

6 4 5 1 2 3 4 5 2 2 1 4 3 4 6 2 1 6...

Estimating Probabilities

- Observation: The sequence of numbers from the two dice
 - As indicated by the colors, we know who rolled what number
- Segregation: Separate the blue observations from the red

Estimating Probabilities

- Observation: The sequence of numbers from the two dice
 - As indicated by the colors, we know who rolled what number
- Segregation: Separate the blue observations from the red
- From each set compute probabilities for each of the 6 possible outcomes

 $P(number) = \frac{\text{no. of times number was rolled}}{\text{total number of observed rolls}}$

63154124...

44163212...

- Now imagine that you cannot observe the dice yourself
- Instead there is a "caller" who randomly calls out the outcomes
 - 40% of the time he calls out the number from the left shooter, and 60% of the time, the one from the right (and you know this)
- At any time, you do not know which of the two he is calling out
- How do you determine the probability distributions for the two dice?

63154124...

44163212...

- How do you now determine the probability distributions for the two sets of dice ...
- If you do not even know what fraction of time the blue numbers are called, and what fraction are red?

A Mixture Multinomial

- The caller will call out a number X in any given callout IF
 - He selects "RED", and the Red die rolls the number X
 - OR
 - He selects "BLUE" and the Blue die rolls the number X
- P(X) = P(Red)P(X|Red) + P(Blue)P(X|Blue)
 - $\Box \quad E.g. \ P(6) = P(Red)P(6|Red) + P(Blue)P(6|Blue)$
- A distribution that combines (or mixes) multiple multinomials is a mixture multinomial

$$P(X) = \sum_{Z} P(Z)P(X | Z)$$

Mixture weights Component multinomials

- Mixture distributions mix several component distributions
 - Component distributions may be of varied type
- Mixing weights must sum to 1.0
- Component distributions integrate to 1.0
- Mixture distribution integrates to 1.0

Maximum Likelihood Estimation

• For our problem:
$$P(X) = \sum_{Z} P(Z)P(X | Z)$$

• Z = color of dice

$$P(n_1, n_2, n_3, n_4, n_5, n_6) = Const \prod_X P(X)^{n_X} = Const \prod_X \left(\sum_Z P(Z) P(X \mid Z) \right)^{n_X}$$

Maximum likelihood solution: Maximize

$$\log(P(n_1, n_2, n_3, n_4, n_5, n_6)) = \log(Const) + \sum_X n_X \log\left(\sum_Z P(Z)P(X \mid Z)\right)$$

- No closed form solution (summation inside log)!
 - In general ML estimates for mixtures do not have a closed form
 - USE EM!

- It is possible to estimate all parameters in this setup using the Expectation Maximization (or EM) algorithm
- First described in a landmark paper by Dempster, Laird and Rubin
 - Maximum Likelihood Estimation from incomplete data, via the EM Algorithm, Journal of the Royal Statistical Society, Series B, 1977
- Much work on the algorithm since then
- The principles behind the algorithm existed for several years prior to the landmark paper, however.

- Iterative solution
- Get some initial estimates for all parameters
 - Dice shooter example: This includes probability distributions for dice AND the probability with which the caller selects the dice
- Two steps that are iterated:
 - Expectation Step: Estimate statistically, the values of unseen variables
 - Maximization Step: Using the estimated values of the unseen variables as truth, estimates of the model parameters

EM: The auxiliary function

- EM iteratively optimizes the following auxiliary function
- $Q(\theta, \theta') = \Sigma_Z P(Z|X, \theta') \log(P(Z, X | \theta))$
 - Z are the unseen variables
 - Assuming Z is discrete (may not be)
- θ' are the parameter estimates from the previous iteration
- θ are the estimates to be obtained in the current iteration

- Hidden variable: Z
 - Dice: The identity of the dice whose number has been called out
- If we knew Z for every observation, we could estimate all terms
 - By adding the observation to the correct bin
- Unfortunately, we do not know Z it is hidden from us!
- Solution: FRAGMENT THE OBSERVATION

Fragmenting the Observation

- EM is an iterative algorithm
 - □ At each time there is a *current* estimate of parameters
- The "size" of the fragments is proportional to the a posteriori probability of the component distributions
 - The *a posteriori* probabilities of the various values of *Z* are computed using Bayes' rule:

$$P(Z \mid X) = \frac{P(X \mid Z)P(Z)}{P(X)} = CP(X \mid Z)P(Z)$$

Every dice gets a fragment of size P(dice | number)

- Hypothetical Dice Shooter Example:
- We obtain an initial estimate for the probability distribution of the two sets of dice (somehow):

 We obtain an initial estimate for the probability with which the caller calls out the two shooters (somehow)

- Hypothetical Dice Shooter Example:
- Initial estimate:
 - $\square P(blue) = P(red) = 0.5$
 - P(4 | blue) = 0.1, for P(4 | red) = 0.05

Caller has just called out 4

Posterior probability of colors:

 $P(red | X = 4) = CP(X = 4 | Z = red)P(Z = red) = C \times 0.05 \times 0.5 = C0.025$ $P(blue | X = 4) = CP(X = 4 | Z = blue)P(Z = blue) = C \times 0.1 \times 0.5 = C0.05$

Normalizing : P(red | X = 4) = 0.33; P(blue | X = 4) = 0.67

- Every observed roll of the dice contributes to both "Red" and "Blue"
- Total count for "Red" is the sum of all the posterior probabilities in the red column
 - **7.31**
- Total count for "Blue" is the sum of all the posterior probabilities in the blue column
 - **10.69**
 - Note: 10.69 + 7.31 = 18 = the total number of instances

Called	P(red X)	P(blue X)
6	.8	.2
4	.33	.67
5	.33	.67
1	.57	.43
2	.14	.86
3	.33	.67
4	.33	.67
5	.33	.67
2	.14	.86
2	.14	.86
1	.57	.43
4	.33	.67
3	.33	.67
4	.33	.67
6	.8	.2
2	.14	.86
1	.57	.43
6	.8	.2

- Total count for "Red" : 7.31
- Red:
 - Total count for 1: 1.71

Called	P(red X)	P(blue X)
6	.8	.2
4	.33	.67
5	.33	.67
1	.57	.43
2	.14	.86
3	.33	.67
4	.33	.67
5	.33	.67
2	.14	.86
2	.14	.86
1	.57	.43
4	.33	.67
3	.33	.67
4	.33	.67
6	.8	.2
2	.14	.86
1	.57	.43
6	.8	.2

- Total count for "Red" : 7.31
- Red:
 - Total count for 1: 1.71
 - □ Total count for 2: 0.56

Called	P(red X)	P(blue X)
6	.8	.2
4	.33	.67
5	.33	.67
1	.57	.43
2	.14	.86
3	.33	.67
4	.33	.67
5	.33	.67
2	.14	.86
2	.14	.86
1	.57	.43
4	.33	.67
3	.33	.67
4	.33	.67
6	.8	.2
2	.14	.86
1	.57	.43
6	.8	.2

- Total count for "Red" : 7.31
- Red:
 - Total count for 1: 1.71
 - □ Total count for 2: 0.56
 - Total count for 3: 0.66

Called	P(red X)	P(blue X)
6	.8	.2
4	.33	.67
5	.33	.67
1	.57	.43
2	.14	.86
3	.33	.67
4	.33	.67
5	.33	.67
2	.14	.86
2	.14	.86
1	.57	.43
4	.33	.67
3	.33	.67
4	.33	.67
6	.8	.2
2	.14	.86
1	.57	.43
6	.8	.2

- Total count for "Red" : 7.31
- Red:
 - Total count for 1: 1.71
 - □ Total count for 2: 0.56
 - Total count for 3: 0.66
 - Total count for 4: 1.32

Called	P(red X)	P(blue X)
6	.8	.2
4	.33	.67
5	.33	.67
1	.57	.43
2	.14	.86
3	.33	.67
4	.33	.67
5	.33	.67
2	.14	.86
2	.14	.86
1	.57	.43
4	.33	.67
3	.33	.67
4	.33	.67
6	.8	.2
2	.14	.86
1	.57	.43
6	.8	.2

- Total count for "Red" : 7.31
- Red:
 - Total count for 1: 1.71
 - Total count for 2: 0.56
 - Total count for 3: 0.66
 - Total count for 4: 1.32
 - Total count for 5: 0.66

Called	P(red X)	P(blue X)
6	.8	.2
4	.33	.67
5	.33	.67
1	.57	.43
2	.14	.86
3	.33	.67
4	.33	.67
5	.33	.67
2	.14	.86
2	.14	.86
1	.57	.43
4	.33	.67
3	.33	.67
4	.33	.67
6	.8	.2
2	.14	.86
1	.57	.43
6	.8	.2

- Total count for "Red" : 7.31
- Red:
 - Total count for 1: 1.71
 - Total count for 2: 0.56
 - Total count for 3: 0.66
 - Total count for 4: 1.32
 - Total count for 5: 0.66
 - Total count for 6: 2.4

Called	P(red X)	P(blue X)
6	.8	.2
4	.33	.67
5	.33	.67
1	.57	.43
2	.14	.86
3	.33	.67
4	.33	.67
5	.33	.67
2	.14	.86
2	.14	.86
1	.57	.43
4	.33	.67
3	.33	.67
4	.33	.67
6	.8	.2
2	.14	.86
1	.57	.43
6	.8	.2

- Total count for "Red" : 7.31
- Red:
 - Total count for 1: 1.71
 - Total count for 2: 0.56
 - Total count for 3: 0.66
 - □ Total count for 4: 1.32
 - □ Total count for 5: 0.66
 - Total count for 6: 2.4

Updated probability of Red dice:

- □ P(1 | Red) = 1.71/7.31 = 0.234
- □ P(2 | Red) = 0.56/7.31 = 0.077
- □ P(3 | Red) = 0.66/7.31 = 0.090
- P(4 | Red) = 1.32/7.31 = 0.181
- P(5 | Red) = 0.66/7.31 = 0.090
- $\square P(6 | Red) = 2.40/7.31 = 0.328$

Called	P(red X)	P(blue X)
6	.8	.2
4	.33	.67
5	.33	.67
1	.57	.43
2	.14	.86
3	.33	.67
4	.33	.67
5	.33	.67
2	.14	.86
2	.14	.86
1	.57	.43
4	.33	.67
3	.33	.67
4	.33	.67
6	.8	.2
2	.14	.86
1	.57	.43
6	8	2

- Total count for "Blue" : 10.69
- Blue:
 - □ Total count for 1: 1.29

Called	P(red X)	P(blue X)
6	.8	.2
4	.33	.67
5	.33	.67
1	.57	.43
2	.14	.86
3	.33	.67
4	.33	.67
5	.33	.67
2	.14	.86
2	.14	.86
1	.57	.43
4	.33	.67
3	.33	.67
4	.33	.67
6	.8	.2
2	.14	.86
1	.57	.43
6	.8	.2

- Total count for "Blue" : 10.69
- Blue:
 - □ Total count for 1: 1.29
 - Total count for 2: 3.44

Called	P(red X)	P(blue X)
6	.8	.2
4	.33	.67
5	.33	.67
1	.57	.43
2	.14	.86
3	.33	.67
4	.33	.67
5	.33	.67
2	.14	.86
2	.14	.86
1	.57	.43
4	.33	.67
3	.33	.67
4	.33	.67
6	.8	.2
2	.14	.86
1	.57	.43
6	.8	.2

- Total count for "Blue" : 10.69
- Blue:
 - □ Total count for 1: 1.29
 - □ Total count for 2: 3.44
 - Total count for 3: 1.34

Called	P(red X)	P(blue X)
6	.8	.2
4	.33	.67
5	.33	.67
1	.57	.43
2	.14	.86
3	.33	.67
4	.33	.67
5	.33	.67
2	.14	.86
2	.14	.86
1	.57	.43
4	.33	.67
3	.33	.67
4	.33	.67
6	.8	.2
2	.14	.86
1	.57	.43
6	.8	.2

- Total count for "Blue" : 10.69
- Blue:
 - Total count for 1: 1.29
 - Total count for 2: 3.44
 - Total count for 3: 1.34
 - □ Total count for 4: 2.68

Called	P(red X)	P(blue X)
6	.8	.2
4	.33	.67
5	.33	.67
1	.57	.43
2	.14	.86
3	.33	.67
4	.33	.67
5	.33	.67
2	.14	.86
2	.14	.86
1	.57	.43
4	.33	.67
3	.33	.67
4	.33	.67
6	.8	.2
2	.14	.86
1	.57	.43
6	.8	.2

- Total count for "Blue" : 10.69
- Blue:
 - Total count for 1: 1.29
 - Total count for 2: 3.44
 - Total count for 3: 1.34
 - Total count for 4: 2.68
 - Total count for 5: 1.34

Called	P(red X)	P(blue X)
6	.8	.2
4	.33	.67
5	.33	.67
1	.57	.43
2	.14	.86
3	.33	.67
4	.33	.67
5	.33	.67
2	.14	.86
2	.14	.86
1	.57	.43
4	.33	.67
3	.33	.67
4	.33	.67
6	.8	.2
2	.14	.86
1	.57	.43
6	.8	.2

- Total count for "Blue" : 10.69
- Blue:
 - Total count for 1: 1.29
 - Total count for 2: 3.44
 - Total count for 3: 1.34
 - Total count for 4: 2.68
 - Total count for 5: 1.34
 - □ Total count for 6: 0.6

Called	P(red X)	P(blue X)
6	.8	.2
4	.33	.67
5	.33	.67
1	.57	.43
2	.14	.86
3	.33	.67
4	.33	.67
5	.33	.67
2	.14	.86
2	.14	.86
1	.57	.43
4	.33	.67
3	.33	.67
4	.33	.67
6	.8	.2
2	.14	.86
1	.57	.43
6	.8	.2

- Total count for "Blue" : 10.69
- Blue:
 - Total count for 1: 1.29
 - Total count for 2: 3.44
 - Total count for 3: 1.34
 - Total count for 4: 2.68
 - Total count for 5: 1.34
 - Total count for 6: 0.6

Updated probability of Blue dice:

- □ P(1 | Blue) = 1.29/11.69 = 0.122
- □ P(2 | Blue) = 0.56/11.69 = 0.322
- □ P(3 | Blue) = 0.66/11.69 = 0.125
- □ P(4 | Blue) = 1.32/11.69 = 0.250
- □ P(5 | Blue) = 0.66/11.69 = 0.125
- \square P(6 | Blue) = 2.40/11.69 = 0.056

Called	P(red X)	P(blue X)
6	.8	.2
4	.33	.67
5	.33	.67
1	.57	.43
2	.14	.86
3	.33	.67
4	.33	.67
5	.33	.67
2	.14	.86
2	.14	.86
1	.57	.43
4	.33	.67
3	.33	.67
4	.33	.67
6	.8	.2
2	.14	.86
1	.57	.43
6	.8	.2

- Total count for "Red" : 7.31
- Total count for "Blue" : 10.69
- Total instances = 18

Note 7.31+10.69 = 18

- We also revise our estimate for the probability that the caller calls out Red or Blue
 - i.e the fraction of times that he calls Red and the fraction of times he calls Blue
- P(Z=Red) = 7.31/18 = 0.41
- P(Z=Blue) = 10.69/18 = 0.59

Called	P(red X)	P(blue X)
6	.8	.2
4	.33	.67
5	.33	.67
1	.57	.43
2	.14	.86
3	.33	.67
4	.33	.67
5	.33	.67
2	.14	.86
2	.14	.86
1	.57	.43
4	.33	.67
3	.33	.67
4	.33	.67
6	.8	.2
2	.14	.86
1	.57	.43
6	.8	.2

The updated values

Probability of Red dice:

$$P(1 | \text{Red}) = 1.71/7.31 = 0.234$$

- □ P(2 | Red) = 0.56/7.31 = 0.077
- P(3 | Red) = 0.66/7.31 = 0.090
- □ P(4 | Red) = 1.32/7.31 = 0.181
- $\square P(5 | \text{Red}) = 0.66/7.31 = 0.090$
- $\square P(6 | \text{Red}) = 2.40/7.31 = 0.328$
- Probability of Blue dice:

- □ P(2 | Blue) = 0.56/11.69 = 0.322
- □ P(3 | Blue) = 0.66/11.69 = 0.125
- \square P(4 | Blue) = 1.32/11.69 = 0.250
- \square P(5 | Blue) = 0.66/11.69 = 0.125
- \square P(6 | Blue) = 2.40/11.69 = 0.056
- P(Z=Red) = 7.31/18 = 0.41
- P(Z=Blue) = 10.69/18 = 0.59

Called	P(red X)	P(blue X)
6	.8	.2
4	.33	.67
5	.33	.67
1	.57	.43
2	.14	.86
3	.33	.67
4	.33	.67
5	.33	.67
2	.14	.86
2	.14	.86
1	.57	.43
4	.33	.67
3	.33	.67
4	.33	.67
6	.8	.2
2	.14	.86
1	.57	.43
6	.8	.2

THE UPDATED VALUES CAN BE USED TO REPEAT THE PROCESS. ESTIMATION IS AN ITERATIVE PROCESS ⁵³

The Dice Shooter Example

63154124...

44163212...

- 1. Initialize P(Z), P(X | Z)
- 2. Estimate $P(Z \mid X)$ for each Z, for each called out number
 - Assign X with to value of Z, with weight $P(Z \mid X)$
- 3. Re-estimate P(X | Z) for every value of X and Z
- 4. Re-estimate P(Z)
- 5. If not converged, return to 2

In Squiggles

- Given a sequence of observations O₁, O₂, ...
 N_x is the number of observations of number X
- Initialize P(Z), P(X|Z) for dice Z and numbers X

Iterate:

• For each number X: $P(Z \mid X) = \frac{P(X \mid Z)P(Z)}{\sum_{Z'} P(Z')P(X \mid Z')}$

• Update:

Solutions may not be unique

- The EM algorithm will give us one of many solutions, all equally valid!
 - The probability of 6 being called out:

 $P(6) = \alpha P(6 \mid red) + \beta P(6 \mid blue) = \alpha P_r + \beta P_b$

- Assigns P_r as the probability of 6 for the red die
- Assigns P_b as the probability of 6 for the blue die
- The following too is a valid solution

 $P(6) = 1.0(\alpha P_r + \beta P_b) + 0.0 anything$

- Assigns 1.0 as the a priori probability of the red die
- Assigns 0.0 as the probability of the blue die
- The solution is NOT unique

A More Complex Model

$$P(X) = \sum_{k} P(k)N(X; \mu_{k}, \Theta_{k}) = \sum_{k} \frac{P(k)}{\sqrt{(2\pi)^{d} |\Theta_{k}|}} \exp\left(-0.5(X - \mu_{k})^{T} \Theta_{k}^{-1}(X - \mu_{k})\right)$$

- Gaussian mixtures are often good models for the distribution of multivariate data
- Problem: Estimating the parameters, given a collection of data

- The caller now has two Gaussians
 - At each draw he randomly selects a Gaussian, by the mixture weight distribution
 - He then draws an observation from that Gaussian
 - Much like the dice problem (only the outcomes are now real numbers and can be anything)

Estimating GMM with complete information

- Observation: A collection of numbers drawn from a mixture of 2 Gaussians
 - As indicated by the colors, we know which Gaussian generated what number
- Segregation: Separate the blue observations from the red
- From each set compute parameters for that Gaussian

$$P(red) = \frac{N_{red}}{N}$$

- The identity of the Gaussian is not known!
- Solution: Fragment the observation
- Fragment size proportional to a posteriori probability $P(k|X) = \frac{P(X|k)P(k)}{P(k)} = \frac{P(k)N(X;\mu)}{P(k)}$

$$P(k \mid X) = \frac{P(X \mid k)P(k)}{\sum_{k'} P(k')P(X \mid k')} = \frac{P(k)N(X; \mu_k, \Theta_k)}{\sum_{k'} P(k')N(X; \mu_{k'}, \Theta_{k'})}$$

- Initialize P(k), μ_k and Θ_k for both Gaussians
 - Important how we do this
 - Typical solution: Initialize means randomly, Θ_k as the global covariance of the data and P(k) uniformly
- Compute fragment sizes for each Gaussian, for each observation

Number	P(red X)	P(blue X)
6.1	.81	.19
1.4	.33	.67
5.3	.75	.25
1.9	.41	.59
4.2	.64	.36
2.2	.43	.57
4.9	.66	.34
0.5	.05	.95

$$P(k \mid X) = \frac{P(k)N(X; \mu_k, \Theta_k)}{\sum_{k'} P(k')N(X; \mu_{k'}, \Theta_{k'})}$$

- Each observation contributes only as much as its fragment size to each statistic
- Mean(red) = (6.1*0.81 + 1.4*0.33 + 5.3*0.75 + 1.9*0.41 + 4.2*0.64 + 2.2*0.43 + 4.9*0.66 + 0.5*0.05) / (0.81 + 0.33 + 0.75 + 0.41 + 0.64 + 0.43 + 0.66 + 0.05) = 17.05 / 4.08 = 4.18

Number	P(red X)	P(blue X)
6.1	.81	.19
1.4	.33	.67
5.3	.75	.25
1.9	.41	.59
4.2	.64	.36
2.2	.43	.57
4.9	.66	.34
0.5	.05	.95

4.08

=
$$17.05 / 4.08 = 4.18$$

Var(red) = $((6.1-4.18)^{2*}0.81 + (1.4-4.18)^{2*}0.33 + (5.3-4.18)^{2*}0.75 + (1.9-4.18)^{2*}0.41 + (4.2-4.18)^{2*}0.64 + (2.2-4.18)^{2*}0.43 + (4.9-4.18)^{2*}0.66 + (0.5-4.18)^{2*}0.05) / (4.9-4.18)^{2*}0.66 + (0.5-4.18)^{2*}0.05) / (4.9-4.18)^{2*}0.66 + (0.5-4.18)^{2*}0.05) / (4.9-4.18)^{2*}0.66 + (0.5-4.18)^{2*}0.05) / (4.9-4.18)^{2*}0.66 + (0.5-4.18)^{2*}0.05) / (4.9-4.18)^{2*}0.66 + (0.5-4.18)^{2*}0.05) / (4.9-4.18)^{2*}0.66 + (0.5-4.18)^{2*}0.05) / (4.9-4.18)^{2*}0.66 + (0.5-4.18)^{2*}0.05) / (4.9-4.18)^{2*}0.66 + (0.5-4.18)^{2*}0.05) / (4.9-4.18)^{2*}0.66 + (0.5-4.18)^{2*}0.05) / (4.9-4.18)^{2*}0.66 + (0.5-4.18)^{2*}0.05) / (4.9-4.18)^{2*}0.66 + (0.5-4.18)^{2*}0.05) / (4.9-4.18)^{2*}0.66 + (0.5-4.18)^{2*}0.05) / (4.9-4.18)^{2*}0.66 + (0.5-4.18)^{2*}0.05) / (4.9-4.18)^{2*}0.66 + (0.5-4.18)^{2*}0.05) / (4.9-4.18)^{2*}0.66 + (0.5-4.18)^{2*}0.05) / (4.9-4.18)^{2*}0.66 + (0.5-4.18)^{2*}0.05) / (4.9-4.18)^{2*}0.66 + (0.5-4.18)^{2*}0.05) / (4.9-4.18)^{2*}0.66 + (0.5-4.18)^{2*}0.05) / (4.9-4.1$

$$(0.81 + 0.33 + 0.75 + 0.41 + 0.64 + 0.43 + 0.66 + 0.05)$$

$$P(red) = \frac{4.08}{8}$$

3.92

EM for Gaussian Mixtures

- 1. Initialize P(k), μ_k and Θ_k for all Gaussians
- 2. For each observation X compute *a posteriori* probabilities for all Gaussian

$$P(k \mid X) = \frac{P(k)N(X; \mu_k, \Theta_k)}{\sum_{k'} P(k')N(X; \mu_{k'}, \Theta_{k'})}$$

3. Update mixture weights, means and variances for all Gaussians

$$P(k) = \frac{\sum_{X} P(k|X)}{N} \qquad \mu_k = \frac{\sum_{X} P(k|X) X}{\sum_{X} P(k|X)} \qquad \Theta_k = \frac{\sum_{X} P(k|X) (X - \mu_k)^2}{\sum_{X} P(k|X)}$$

4. If not converged, return to 2

EM estimation of Gaussian Mixtures

An Example

Histogram of 4000 instances of a randomly generated data

Individual parameters of a two-Gaussian mixture estimated by EM

Two-Gaussian mixture estimated by EM

- The same principle can be extended to mixtures of other distributions.
- E.g. Mixture of Laplacians: Laplacian parameters become

$$\mu_{k} = \frac{1}{\sum_{x} P(k \mid x)} \sum_{x} P(k \mid x) x \qquad b_{k} = \frac{1}{\sum_{x} P(k \mid x)} \sum_{x} P(k \mid x) |x - \mu_{k}|$$

 In a mixture of Gaussians and Laplacians, Gaussians use the Gaussian update rules, Laplacians use the Laplacian rule

- The EM algorithm is used whenever proper statistical analysis of a phenomenon requires the knowledge of a hidden or missing variable (or a set of hidden/missing variables)
 - □ The hidden variable is often called a "latent" variable

Some examples:

- Estimating mixtures of distributions
 - Only data are observed. The individual distributions and mixing proportions must both be learnt.
- Estimating the distribution of data, when some attributes are missing
- Estimating the dynamics of a system, based only on observations that may be a complex function of system state

Solve this problem:

- Caller rolls a dice and flips a coin
 - He calls out the number rolled if the coin shows head
 - Otherwise he calls the number+1
 - Determine p(heads) and p(number) for the dice from a collection of ouputs
- Caller rolls two dice
 - He calls out the sum
 - Determine P(dice) from a collection of ouputs

Unknown: Whether it was head or tails

- Unknown: How to partition the number
- Count_{blue}(3) += P(3,1 | 4)
- Count_{blue}(2) += P(2,2 | 4)
- Count_{blue}(1) += P(1,3 | 4)

- E.g. mixture of mixtures
- Fragments are further fragmented...
 - Work this out

More later

- Will see a couple of other instances of the use of EM
 - E.g. HMM training
 - Homework problems

Clustering

- What is clustering
 - Clustering is the determination of naturally occurring grouping of data/instances (with low within-group variability and high between-group variability)

- What is clustering
 - Clustering is the determination of naturally occurring grouping of data/instances (with low within-group variability and high between-group variability)

- What is clustering
 - Clustering is the determination of naturally occurring grouping of data/instances (with low within-group variability and high between-group variability)
- How is it done
 - Find groupings of data such that the groups optimize a "within-groupvariability" objective function of some kind

- What is clustering
 - Clustering is the determination of naturally occurring grouping of data/instances (with low within-group variability and high between-group variability)
- How is it done
 - Find groupings of data such that the groups optimize a "within-groupvariability" objective function of some kind
 - The objective function used affects the nature of the discovered clusters
 - E.g. Euclidean distance and distance from center result in different clusters in this example

- What is clustering
 - Clustering is the determination of naturally occurring grouping of data/instances (with low within-group variability and high between-group variability)
- How is it done
 - Find groupings of data such that the groups optimize a "within-groupvariability" objective function of some kind
 - The objective function used affects the nature of the discovered clusters
 - E.g. Euclidean distance and distance from center result in different clusters in this example

Why Clustering

- Automatic grouping into "Classes"
 - Different clusters may show different behavior
- Quantization
 - All data within a cluster are represented by a single point
- Preprocessing step for other algorithms
 Indexing, categorization, etc.

Clustering criteria

- Compactness criterion
 - Measure that shows how "good" clusters are
 - The objective function

Distance of a point from a cluster

To determine the cluster a data vector belongs to

- Distance based measures
 - Total distance between each element in the cluster and every other element in the cluster

- Distance based measures
 - Total distance between each element in the cluster and every other element in the cluster

- Distance based measures
 - Total distance between each element in the cluster and every other element in the cluster
 - Distance between the two farthest points in the cluster

- Distance based measures
 - Total distance between each element in the cluster and every other element in the cluster
 - Distance between the two farthest points in the cluster
 - Total distance of every element in the cluster from the centroid of the cluster

- Distance based measures
 - Total distance between each element in the cluster and every other element in the cluster
 - Distance between the two farthest points in the cluster
 - Total distance of every element in the cluster from the centroid of the cluster

- Distance based measures
 - Total distance between each element in the cluster and every other element in the cluster
 - Distance between the two farthest points in the cluster
 - Total distance of every element in the cluster from the centroid of the cluster

- Distance based measures
 - Total distance between each element in the cluster and every other element in the cluster
 - Distance between the two farthest points in the cluster
 - Total distance of every element in the cluster from the centroid of the cluster
 - Distance measures are often weighted Minkowski metrics

$$dist = \sqrt[n]{w_1|a_1 - b_1|^n + w_2|a_2 - b_2|^n + \dots + w_M|a_M - b_M|^n}$$

- How far is a data point from a cluster?
 - Euclidean or Minkowski distance from the centroid of the cluster

- How far is a data point from a cluster?
 - Euclidean or Minkowski distance from the centroid of the cluster
 - Distance from the closest point in the cluster

- How far is a data point from a cluster?
 - Euclidean or Minkowski distance from the centroid of the cluster
 - Distance from the closest point in the cluster
 - Distance from the farthest point in the cluster

- How far is a data point from a cluster?
 - Euclidean or Minkowski distance from the centroid of the cluster
 - Distance from the closest point in the cluster
 - Distance from the farthest point in the cluster
 - Probability of data measured on cluster distribution

- How far is a data point from a cluster?
 - Euclidean or Minkowski distance from the centroid of the cluster
 - Distance from the closest point in the cluster
 - Distance from the farthest point in the cluster
 - Probability of data measured on cluster distribution
 - Fit of data to cluster-based regression

Optimal clustering: Exhaustive

enumeration

- All possible combinations of data must be evaluated
 - If there are M data points, and we desire N clusters, the number of ways of separating M instances into N clusters is

$$\frac{1}{M!}\sum_{i=0}^{N}(-1)^{i}\binom{N}{i}(N-i)^{M}$$

- Exhaustive enumeration based clustering requires that the objective function (the "Goodness measure") be evaluated for every one of these, and the best one chosen
- This is the only correct way of optimal clustering
 Unfortunately, it is also computationally unrealistic

- Linear quantization (uniform quantization):
 - Each digital value represents an equally wide range of analog values
 - Regardless of distribution of data
 - Digital-to-analog conversion represented by a "uniform" table

- Non-Linear quantization:
 - Each digital value represents a different range of analog values
 - Finer resolution in high-density areas
 - Mu-law / A-law assumes a gaussian-like distribution of data
 - Digital-to-analog conversion represented by a "non-uniform" table

- If data distribution is not Gaussianish?
 - Mu-law / A-law are not optimal
 - How to compute the optimal ranges for quantization
 - Or the optimal table

- Lloyd quantizer: An iterative algorithm for computing optimal quantization tables for non-uniformly distributed data
- Learned from "training" data

Lloyd Quantizer

- Randomly initialize quantization points
 - Right column entries of quantization table

Lloyd Quantizer

- Randomly initialize quantization points
 - Right column entries of quantization table
- Assign all training points to the nearest quantization point
 - Draw boundaries

Lloyd Quantizer

- Randomly initialize quantization points
 - Right column entries of quantization table
- Assign all training points to the nearest quantization point
 - Draw boundaries
- Reestimate quantization points

- Randomly initialize quantization points
 - Right column entries of quantization table
- Assign all training points to the nearest quantization point
 - Draw boundaries
- Reestimate quantization points
- Iterate until convergence

Generalized Lloyd Algorithm: K-means clustering

- K means is an iterative algorithm for clustering vector data
 - McQueen, J. 1967. "Some methods for classification and analysis of multivariate observations." Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, 281-297
- General procedure:
 - Initially group data into the required number of clusters somehow (initialization)
 - Assign each data point to the closest cluster
 - Once all data points are assigned to clusters, redefine clusters
 - Iterate

- Problem: Given a set of data vectors, find natural clusters
- Clustering criterion is scatter: distance from the centroid
 - Every cluster has a centroid
 - The centroid represents the cluster
- Definition: The centroid is the weighted mean of the cluster
 - Weight = 1 for basic scheme

1. Initialize a set of centroids randomly

- 1. Initialize a set of centroids randomly
- 2. For each data point x, find the distance from the centroid for each cluster
 - $d_{cluster} = \text{distance}(x, m_{cluster})$

- 1. Initialize a set of centroids randomly
- 2. For each data point x, find the distance from the centroid for each cluster
 - $d_{cluster} = \text{distance}(x, m_{cluster})$
- 3. Put data point in the cluster of the closest centroid
 - Cluster for which *d*_{cluster} is minimum

- 1. Initialize a set of centroids randomly
- 2. For each data point x, find the distance from the centroid for each cluster
 - $d_{cluster} = \text{distance}(x, m_{cluster})$
- 3. Put data point in the cluster of the closest centroid
 - Cluster for which *d*_{cluster} is minimum

- 1. Initialize a set of centroids randomly
- 2. For each data point x, find the distance from the centroid for each cluster
 - $d_{cluster} = \mathbf{distance}(x, m_{cluster})$
- 3. Put data point in the cluster of the closest centroid
 - Cluster for which *d*_{cluster} is minimum

- 1. Initialize a set of centroids randomly
- 2. For each data point x, find the distance from the centroid for each cluster
 - $d_{cluster} = \text{distance}(x, m_{cluster})$
- 3. Put data point in the cluster of the closest centroid
 - Cluster for which *d*_{cluster} is minimum

- 1. Initialize a set of centroids randomly
- 2. For each data point x, find the distance from the centroid for each cluster
 - $d_{cluster} = \mathbf{distance}(x, m_{cluster})$
- 3. Put data point in the cluster of the closest centroid
 - Cluster for which *d*_{cluster} is minimum

- 1. Initialize a set of centroids randomly
- 2. For each data point x, find the distance from the centroid for each cluster
 - $d_{cluster} = \mathbf{distance}(x, m_{cluster})$
- 3. Put data point in the cluster of the closest centroid
 - Cluster for which *d*_{cluster} is minimum

- 1. Initialize a set of centroids randomly
- 2. For each data point x, find the distance from the centroid for each cluster
 - $d_{cluster} = \text{distance}(x, m_{cluster})$
- 3. Put data point in the cluster of the closest centroid
 - Cluster for which *d*_{cluster} is minimum

- 1. Initialize a set of centroids randomly
- 2. For each data point x, find the distance from the centroid for each cluster
 - $d_{cluster} = \text{distance}(x, m_{cluster})$
- 3. Put data point in the cluster of the closest centroid
 - Cluster for which **d**_{cluster} is minimum
- 4. When all data points are clustered, recompute centroids

$$m_{cluster} = \frac{1}{\sum_{i \in cluster} W_i} \sum_{i \in cluster} W_i x_i$$

- 1. Initialize a set of centroids randomly
- 2. For each data point x, find the distance from the centroid for each cluster
 - $d_{cluster} = \mathbf{distance}(x, m_{cluster})$
- 3. Put data point in the cluster of the closest centroid
 - Cluster for which **d**_{cluster} is minimum
- 4. When all data points are clustered, recompute centroids

$$m_{cluster} = \frac{1}{\sum_{i \in cluster} W_i} \sum_{i \in cluster} W_i x_i$$

5. If not converged, go back to 2

K-Means comments

- The distance metric determines the clusters
 - In the original formulation, the distance is L2 distance
 - Euclidean norm, w_i = 1

distance_{cluster}
$$(x, m_{cluster}) = || x - m_{cluster} ||_2$$

$$m_{cluster} = \frac{1}{N_{cluster}} \sum_{i \in cluster} x_i$$

- □ If we replace every x by $m_{cluster}(x)$, we get *Vector Quantization*
- K-means is an instance of generalized EM
- Not guaranteed to converge for all distance metrics

Initialization

- Random initialization
- Top-down clustering
 - Initially partition the data into two (or a small number of) clusters using K means
 - Partition each of the resulting clusters into two (or a small number of) clusters, also using K means
 - Terminate when the desired number of clusters is obtained

1. Start with one cluster

- 1. Start with one cluster
- 2. Split each cluster into two:
 - Perturb centroid of cluster slightly (by < 5%) to generate two centroids

- 1. Start with one cluster
- 2. Split each cluster into two:
 - Perturb centroid of cluster slightly (by < 5%) to generate two centroids

- 1. Start with one cluster
- 2. Split each cluster into two:
 - Perturb centroid of cluster slightly (by < 5%) to generate two centroids
- Initialize K means with new set of centroids

- 1. Start with one cluster
- 2. Split each cluster into two:
 - Perturb centroid of cluster slightly (by < 5%) to generate two centroids
- Initialize K means with new set of centroids
- 4. Iterate Kmeans until convergence

- 1. Start with one cluster
- 2. Split each cluster into two:
 - Perturb centroid of cluster slightly (by < 5%) to generate two centroids
- Initialize K means with new set of centroids
- 4. Iterate Kmeans until convergence

- 1. Start with one cluster
- 2. Split each cluster into two:
 - Perturb centroid of cluster slightly (by < 5%) to generate two centroids
- Initialize K means with new set of centroids
- 4. Iterate Kmeans until convergence
- 5. If the desired number of clusters is not obtained, return to 2

- Basic K-means results in good clusters in Euclidean spaces
 - Alternately stated, will only find clusters that are "good" in terms of Euclidean distances
- Will not find other types of clusters

- For other forms of clusters we must modify the distance measure
 - E.g. distance from a circle
- May be viewed as a distance in a higher dimensional space
 - I.e Kernel distances
 - Kernel K-means
- Other related clustering mechansims:
 - Spectral clustering
 - Non-linear weighting of adjacency
 - Normalized cuts..