
11-755 Machine Learning for Signal Processing

Expectation Maximizationp
Mixture Models
Cl iClustering

Class 14.  6 Oct 2010

1



Administrivia
 Many homeworks still due

 Is everyone on the “projects” page?
 Where are your project proposals?Where are your project proposals?
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Covered

 Learning distributions from data
 Given a collection of examples from some data, 

estimate its distribution
 Solution: Assign a model to the distribution
 Learn parameters of model from data

 Complex models: Learning must be done 
using Expectation Maximization

 Following slides: An intuitive explanation 
using a simple example of multinomialsusing a simple example of multinomials
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A Thought Experiment

COVEREDCOVERED

 A person shoots a loaded dice repeatedly

6 3 1 5 4 1 2 4 …

 You observe the series of outcomes
 You can form a good idea of how the dice is loaded

 Figure out what the probabilities of the various numbers are for dice
 P(number) = count(number)/sum(rolls)
 This is a maximum likelihood estimate

 Estimate that makes the observed sequence of numbers most probable
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The Multinomial Distribution

 A probability distribution over a discrete 
ll ti f it i M lti i lcollection of items is a Multinomial

)()set discrete a  tobelongs :( XPXXP 

 E.g. the roll of diceg
 X : X in (1,2,3,4,5,6)

COVERED
 Or the toss of a coin
 X : X in (head, tails)

COVERED
( ead, ta s)
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Maximum Likelihood Estimation
n1

n2 n4

n5
n6n3
n6

p1
p3 p4

p6
p pp1 p2

p4
p5 p1

p2

p3

p4

p5 p6 COVERED
 Basic principle: Assign a form to the distribution

 E.g. a multinomial E.g. a multinomial
 Or a Gaussian

 Find the distribution that best fits the histogram g
of the data
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Defining “Best Fit”
 The data are generated by draws from the 

distribution COVERED I.e. the generating process draws from the distribution

Ass mption The distrib tion has a high probabilit

COVERED
 Assumption: The distribution has a high probability 

of generating the observed data
 Not necessarily true Not necessarily true

 Select the distribution that has the highest 
b bilit f ti th d tprobability of generating the data

 Should assign lower probability to less frequent 
observations and vice versa
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Maximum Likelihood Estimation: Multinomial

 Probability of generating (n1, n2, n3, n4, n5, n6)

 nipConstnnnnnnP )(

 Find p1 p2 p3 p4 p5 p6 so that the above is maximized


i

i
ipConstnnnnnnP ),,,,,( 654321

 Find p1,p2,p3,p4,p5,p6 so that the above is maximized

 Alternately maximize

    l)l ()(l

COVERED
 Log() is a monotonic function

   
i

ii pnConstnnnnnnP log)log(),,,,,(log 654321

 argmaxx f(x) =  argmaxx log(f(x))

 Solving for the probabilities gives us
 Requires constrained optimization to 

 i
i n

np
EVENTUALLY
ITS JUST
COUNTING! Requires constrained optimization to 

ensure probabilities sum to 1


j
jn COUNTING!
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Segue:  Gaussians

COVEREDCOVERED

 )()(5.0exp
||)2(

1),;()( 1 


 


  XXXNXP T

d

 Parameters of a Gaussian: 
 Mean , Covariance ,
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Maximum Likelihood: Gaussian
 Given a collection of observations (X1, X2,…), 

estimate mean  and covariance COVERED

  


 

i
i

T
id

XXXXP )()(5.0exp
||)2(

1,...),( 1
21 



COVERED
      

i
i

T
i XXCXXP )()(||log5.0,...),(log

||)(
1

21 

 Maximizing w.r.t  and  gives us

   T11 ITS STILL   
i

T
ii

i
i XX

N
X

N
 11          

ITS STILL
JUST
COUNTING!
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Laplacian

COVEREDCOVERED





 


xbxLxP ||exp1);()( 

 Parameters: Mean , scale b (b > 0)








bb
bxLxP exp

2
),;()( 

 ( )
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Maximum Likelihood: Laplacian
 Given a collection of observations (x1, x2,…), 

estimate mean  and scale bCOVEREDestimate mean  and scale b

   


i

i

b
xbNCxxP ||)log(,...),(log 21

COVERED

 Maximizing w.r.t  and b gives us

i b

 Maximizing w.r.t  and b gives us

  ii xbx ||11           
i

i
i

i NN
|| 
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Dirichlet
(f iki di )(from wikipedia)

COVEREDCOVERED

K 3  Cl k i  f  t  l ft

log of the density as we change α from
α=(0.3, 0.3, 0.3) to (2.0, 2.0, 2.0), 
keeping all the individual αi's equal to 
each other.

P t

K=3. Clockwise from top left:
α=(6, 2, 2), (3, 7, 5), (6, 2, 6), (2, 3, 4)




















i
i

i

i
i

ixXDXP 1
)(

);()( 






 Parameters are s
 Determine mode and curvature

 Defined only of probability vectors


 i

i

Defined only of probability vectors
 X = [x1 x2 .. xK], i xi = 1,  xi >= 0 for all i
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Maximum Likelihood: Dirichlet
 Given a collection of observations (X1, X2,…), 

estimate  COVEREDestimate 

     















 

i
i

i
iij

j i
i NNXXXP  loglog)log()1(,...),(log ,21

COVERED
 No closed form solution for s.

 Needs gradient ascent

  iij i

 Needs gradient ascent

 Several distributions have this property: the ML p p y
estimate of their parameters have no closed 
form solution
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Continuing the Thought Experiment

COVEREDCOVERED
6 3 1 5 4 1 2 4 … 4 4 1 6 3 2 1 2 …

 Two persons shoot loaded dice repeatedly
 The dice are differently loaded for the two of them

 We observe the series of outcomes for both personsp

 How to determine the probability distributions of the two dice?
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Estimating Probabilities

 Observation: The sequence of 
numbers from the two dice

6 4 5 1 2 3 4 5 2 2 1 4 3 4 6 2 1 6… 

COVERED As indicated by the colors, we 
know who rolled what number

COVERED
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Estimating Probabilities

 Observation: The sequence of 
numbers from the two dice

6 4 5 1 2 3 4 5 2 2 1 4 3 4 6 2 1 6… 

COVERED As indicated by the colors, we 
know who rolled what number

COVERED
 Segregation: Separate the 

blue observations from the red

6 5 2 4 2 1 3 6 1.. 4 1 3 5 2 4 4 2 6..
Collection of “blue”
numbers

Collection of “red”
numbers
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Estimating Probabilities
 Observation: The sequence of 

numbers from the two dice
 As indicated by the colors we

6 4 5 1 2 3 4 5 2 2 1 4 3 4 6 2 1 6… 

COVERED As indicated by the colors, we 
know who rolled what number

 Segregation: Separate the blue

COVERED
 Segregation: Separate the blue 

observations from the red

F h t t

6 5 2 4 2 1 3 6 1.. 4 1 3 5 2 4 4 2 6..

 From each set compute 
probabilities for each of the 6 
possible outcomes

0.15

0.2

0.25

0.3

0.15

0.2

0.25

0.3

rolls observed ofnumber  total
rolled number was  timesof no.)( numberP 0

0.05

0.1

1 2 3 4 5 6
0

0.05

0.1

1 2 3 4 5 6

18



A Thought Experiment
6 4 1 5 3 2 2 2 …

6 3 1 5 4 1 2 4 4 4 1 6 3 2 1 2
 Now imagine that you cannot observe the dice yourself
 Instead there is a “caller” who randomly calls out the outcomes

6 3 1 5 4 1 2 4 … 4 4 1 6 3 2 1 2 …

 40% of the time he calls out the number from the left shooter, and 60% of the 
time, the one from the right (and you know this)

At ti d t k hi h f th t h i lli t At any time, you do not know which of the two he is calling out
 How do you determine the probability distributions for the two dice?
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A Thought Experiment
6 4 1 5 3 2 2 2 …

6 3 1 5 4 1 2 4 4 4 1 6 3 2 1 2

 How do you now determine the probability 
distributions for the two sets of dice

6 3 1 5 4 1 2 4 … 4 4 1 6 3 2 1 2 …

distributions for the two sets of dice …

 .. If you do not even know what fraction of time the 
blue numbers are called, and what fraction are red? 
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A Mixture Multinomial
 The caller will call out a number X in any given callout IF

 He selects “RED”, and the Red die rolls the number X
OR OR

 He selects “BLUE” and the Blue die rolls the number X

P(X) P(Red)P(X|Red) + P(Blue)P(X|Blue) P(X) = P(Red)P(X|Red) + P(Blue)P(X|Blue)
 E.g. P(6) = P(Red)P(6|Red) + P(Blue)P(6|Blue)

 A distribution that combines (or mixes) multiple A distribution that combines (or mixes) multiple 
multinomials is a mixture multinomial

 ZXPZPXP )|()()( 
Z

ZXPZPXP )|()()(

Mixture weights Component multinomials
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Mixture Distributions

 ZXPZPXP )|()()(  
Z

zzXNZPXP ),;()()( 
Mixture Gaussian

Z

Mixture weights Component distributions

Z

  
Z i

izzi
Z

zz bXLZPXNZPXP ),;()(),;()()( ,
Mixture of Gaussians and Laplacians

 Mixture distributions mix several component distributions
 Component distributions may be of varied typep y yp

 Mixing weights must sum to 1.0
 Component distributions integrate to 1.0
 Mixture distribution integrates to 1.0
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Maximum Likelihood Estimation
 For our problem:

 Z = color of dice


Z

ZXPZPXP )|()()(
 Z = color of dice

  









X

n

ZX

n
X

X ZXPZPConstXPConstnnnnnnP )|()()(),,,,,( 654321

 Maximum likelihood solution: Maximize

  





 ZXPZPnConstnnnnnnP )|()(log)log())(log(

 No closed form solution (summation inside log)! 

  






X Z

X ZXPZPnConstnnnnnnP )|()(log)log()),,,,,(log( 654321

( g)
 In general ML estimates for mixtures do not have a 

closed form
 USE EM!
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Expectation Maximization
 It is possible to estimate all parameters in this setup 

using the Expectation Maximization (or EM) algorithm

 First described in a landmark paper by Dempster, Laird 
and Rubinand Rubin
 Maximum Likelihood Estimation from incomplete data, 

via the EM Algorithm, Journal of the Royal Statistical 
Society, Series B, 1977

 Much work on the algorithm since then Much work on the algorithm since then

 The principles behind the algorithm existed for several 
years prior to the landmark paper howeveryears prior to the landmark paper, however.
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Expectation Maximization
 Iterative solution

Get some initial estimates for all parameters Get some initial estimates for all parameters
 Dice shooter example: This includes probability 

distributions for dice AND the probability with whichdistributions for dice AND the probability with which 
the caller selects the dice

Two steps that are iterated: Two steps that are iterated:
 Expectation Step: Estimate statistically, the values 

of unseen variablesof unseen variables
 Maximization Step: Using the estimated values of 

the unseen variables as truth, estimates of the ,
model parameters
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EM: The auxiliary function

 EM iteratively optimizes the following 
ili f tiauxiliary function

 Q(, ’) = Z P(Z|X,’) log(P(Z,X | ))

 Z are the unseen variables
 Assuming Z is discrete (may not be) Assuming Z is discrete (may not be)

 ’ are the parameter estimates from the 
previous iterationprevious iteration

 are the estimates to be obtained in the 
current iterationcurrent iteration
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Expectation Maximization as counting
Instance from blue dice Instance from red dice Dice unknown

6 6 6
Instance from blue dice Instance from red dice Dice unknown

Collection of “blue” Collection of “red”
.. ..

Collection of “blue” Collection of “red”
.. ..

Collection of “blue” Collection of “red”

6 6

6 6 6 .. 6 ..

 Hidden variable: Z
Di Th id tit f th di h b h b ll d t

Collection of blue
numbers

Collection of red
numbers

Collection of blue
numbers

Collection of red
numbers

Collection of blue
numbers

Collection of red
numbers

 Dice: The identity of the dice whose number has been called out

 If we knew Z for every observation, we could estimate all terms
 By adding the observation to the correct bin By adding the observation to the correct bin

 Unfortunately, we do not know Z – it is hidden from us!

 Solution: FRAGMENT THE OBSERVATION Solution:  FRAGMENT THE OBSERVATION
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Fragmenting the Observation

 EM is an iterative algorithm
 At each time there is a current estimate of parameters At each time there is a current estimate of parameters

 The “size” of the fragments is proportional to the a 
posteriori probability of the component distributionsposteriori probability of the component distributions
 The a posteriori probabilities of the various values of Z are 

computed using Bayes’ rule:p g y

)()|()()|()|( ZPZXCPZPZXPXZP 

Every dice gets a fragment of size P(dice | number)

)()|(
)(

)|( C
XP

 Every dice gets a fragment of size P(dice | number)
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Expectation Maximization

 Hypothetical Dice Shooter Example:
We obtain an initial estimate for the probability distribution of the We obtain an initial estimate for the probability distribution of the 
two sets of dice (somehow):  

0.3

0.35

0 35
0.4

0.45

ue
)

)

0 05

0.1

0.15

0.2

0.25

0 05
0.1

0.15
0.2

0.25
0.3

0.35

P(
X 

| b
lu

P(
X 

| r
ed

)
 We obtain an initial estimate for the probability with which the 

0

0.05

1 2 3 4 5 6

0
0.05

1 2 3 4 5 60.1 0.05

P
p y

caller calls out the two shooters (somehow)

0.5 0.5

P(Z) 29



Expectation Maximization

 Hypothetical Dice Shooter Example:
I iti l ti t Initial estimate:  
 P(blue) = P(red) = 0.5
 P(4 | blue) = 0.1, for P(4 | red) = 0.05 P(4 | blue)  0.1, for P(4 | red)   0.05

 Caller has just called out 4
 Posterior probability of colors: 

025.05.005.0)()|4()4|( CCredZPredZXCPXredP  )()|()|(
05.05.01.0)()|4()4|( CCblueZPblueZXCPXblueP 

67.0)4|(33.0)4|(  XbluePXredP   ; :gNormalizin )|()|( ;g
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Expectation Maximization
6 4 5 1 2 3 4 5 2 2 1 4 3 4 6 2 1 6

4 (0.33) 4 (0.67)
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Expectation Maximization

 Every observed roll of the dice 
contributes to both “Red” and 

6 4 5 1 2 3 4 5 2 2 1 4 3 4 6 2 1 6

“Blue”
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Expectation Maximization

 Every observed roll of the dice 
contributes to both “Red” and 

6 4 5 1 2 3 4 5 2 2 1 4 3 4 6 2 1 6

“Blue”

6 (0.8) 6 (0.2)
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Expectation Maximization

 Every observed roll of the dice 
contributes to both “Red” and 

6 4 5 1 2 3 4 5 2 2 1 4 3 4 6 2 1 6

“Blue”

6 (0.8), 6 (0.2),4 (0.33) 4 (0.67)
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Expectation Maximization

 Every observed roll of the dice 
contributes to both “Red” and 

6 4 5 1 2 3 4 5 2 2 1 4 3 4 6 2 1 6

“Blue”

6 (0.8), 6 (0.2),4 (0.33), 4 (0.67),
5 (0.33), 5 (0.67),
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Expectation Maximization

 Every observed roll of the dice 
contributes to both “Red” and 

6 4 5 1 2 3 4 5 2 2 1 4 3 4 6 2 1 6

“Blue”

6 (0.8), 4 (0.33),
5 (0.33), 1 (0.57),
2 (0.14), 3 (0.33),
4 (0 33) 5 (0 33)

6 (0.2), 4 (0.67),
5 (0.67), 1 (0.43),
2 (0.86), 3 (0.67),
4 (0 67) 5 (0 67)4 (0.33), 5 (0.33),

2 (0.14), 2 (0.14),
1 (0.57), 4 (0.33),
3 (0 33) 4 (0 33)

4 (0.67), 5 (0.67),
2 (0.86), 2 (0.86),
1 (0.43), 4 (0.67),
3 (0 67) 4 (0 67)3 (0.33), 4 (0.33),

6 (0.8), 2 (0.14),
1 (0.57), 6 (0.8)

3 (0.67), 4 (0.67),
6 (0.2), 2 (0.86),
1 (0.43), 6 (0.2)
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Expectation Maximization

 Every observed roll of the dice 
contributes to both “Red” and “Blue”

Called P(red|X) P(blue|X)
6 .8 .2
4 .33 .67
5 33 67

 Total count for “Red” is the sum of 
all the posterior probabilities in the 
red column

5 .33 .67
1 .57 .43
2 .14 .86
3 .33 .67red column

 7.31

 Total count for “Blue” is the sum of 

4 .33 .67
5 .33 .67
2 .14 .86
2 .14 .86

all the posterior probabilities in the 
blue column
 10.69

1 .57 .43
4 .33 .67
3 .33 .67
4 33 67

 Note: 10.69 + 7.31 = 18 = the total 
number of instances

4 .33 .67
6 .8 .2
2 .14 .86
1 .57 .43
6 8 26 .8 .2

7.31 10.69 37



Expectation Maximization

 Total count for “Red” : 7.31
 Red:

Called P(red|X) P(blue|X)
6 .8 .2
4 .33 .67
5 33 67

 Total count for 1:  1.71 5 .33 .67
1 .57 .43
2 .14 .86
3 .33 .67
4 .33 .67
5 .33 .67
2 .14 .86
2 .14 .86
1 .57 .43
4 .33 .67
3 .33 .67
4 33 674 .33 .67
6 .8 .2
2 .14 .86
1 .57 .43
6 8 26 .8 .2

7.31 10.69 38



Expectation Maximization

 Total count for “Red” : 7.31
 Red:

Called P(red|X) P(blue|X)
6 .8 .2
4 .33 .67
5 33 67

 Total count for 1:  1.71
 Total count for 2:  0.56

5 .33 .67
1 .57 .43
2 .14 .86
3 .33 .67
4 .33 .67
5 .33 .67
2 .14 .86
2 .14 .86
1 .57 .43
4 .33 .67
3 .33 .67
4 33 674 .33 .67
6 .8 .2
2 .14 .86
1 .57 .43
6 8 26 .8 .2

7.31 10.69 39



Expectation Maximization

 Total count for “Red” : 7.31
 Red:

Called P(red|X) P(blue|X)
6 .8 .2
4 .33 .67
5 33 67

 Total count for 1:  1.71
 Total count for 2:  0.56
 Total count for 3:  0.66

5 .33 .67
1 .57 .43
2 .14 .86
3 .33 .67
4 .33 .67
5 .33 .67
2 .14 .86
2 .14 .86
1 .57 .43
4 .33 .67
3 .33 .67
4 33 674 .33 .67
6 .8 .2
2 .14 .86
1 .57 .43
6 8 26 .8 .2

7.31 10.69 40



Expectation Maximization

 Total count for “Red” : 7.31
 Red:

Called P(red|X) P(blue|X)
6 .8 .2
4 .33 .67
5 33 67

 Total count for 1:  1.71
 Total count for 2:  0.56
 Total count for 3:  0.66

5 .33 .67
1 .57 .43
2 .14 .86
3 .33 .67

 Total count for 4:  1.32 4 .33 .67
5 .33 .67
2 .14 .86
2 .14 .86
1 .57 .43
4 .33 .67
3 .33 .67
4 33 674 .33 .67
6 .8 .2
2 .14 .86
1 .57 .43
6 8 26 .8 .2

7.31 10.69 41



Expectation Maximization

 Total count for “Red” : 7.31
 Red:

Called P(red|X) P(blue|X)
6 .8 .2
4 .33 .67
5 33 67

 Total count for 1:  1.71
 Total count for 2:  0.56
 Total count for 3:  0.66

5 .33 .67
1 .57 .43
2 .14 .86
3 .33 .67

 Total count for 4:  1.32
 Total count for 5:  0.66

4 .33 .67
5 .33 .67
2 .14 .86
2 .14 .86
1 .57 .43
4 .33 .67
3 .33 .67
4 33 674 .33 .67
6 .8 .2
2 .14 .86
1 .57 .43
6 8 26 .8 .2

7.31 10.69 42



Expectation Maximization

 Total count for “Red” : 7.31
 Red:

Called P(red|X) P(blue|X)
6 .8 .2
4 .33 .67
5 33 67

 Total count for 1:  1.71
 Total count for 2:  0.56
 Total count for 3:  0.66

5 .33 .67
1 .57 .43
2 .14 .86
3 .33 .67

 Total count for 4:  1.32
 Total count for 5:  0.66
 Total count for 6:  2.4

4 .33 .67
5 .33 .67
2 .14 .86
2 .14 .86
1 .57 .43
4 .33 .67
3 .33 .67
4 33 674 .33 .67
6 .8 .2
2 .14 .86
1 .57 .43
6 8 26 .8 .2

7.31 10.69 43



Expectation Maximization
 Total count for “Red” : 7.31
 Red:

Total count for 1: 1 71

Called P(red|X) P(blue|X)
6 .8 .2
4 .33 .67
5 33 67 Total count for 1:  1.71

 Total count for 2:  0.56
 Total count for 3:  0.66
 Total count for 4: 1 32

5 .33 .67
1 .57 .43
2 .14 .86
3 .33 .67

 Total count for 4:  1.32
 Total count for 5:  0.66
 Total count for 6:  2.4

4 .33 .67
5 .33 .67
2 .14 .86
2 .14 .86

 Updated probability of Red dice:
 P(1 | Red) = 1.71/7.31 = 0.234
 P(2 | Red) = 0.56/7.31 = 0.077

1 .57 .43
4 .33 .67
3 .33 .67
4 33 67( | )

 P(3 | Red) = 0.66/7.31 = 0.090
 P(4 | Red) = 1.32/7.31 = 0.181
 P(5 | Red) = 0.66/7.31 = 0.090

4 .33 .67
6 .8 .2
2 .14 .86
1 .57 .43
6 8 2

 P(6 | Red) = 2.40/7.31 = 0.328 6 .8 .2

7.31 10.69 44



Expectation Maximization

 Total count for “Blue” : 10.69
 Blue:

Called P(red|X) P(blue|X)
6 .8 .2
4 .33 .67
5 33 67

 Total count for 1:  1.29 5 .33 .67
1 .57 .43
2 .14 .86
3 .33 .67
4 .33 .67
5 .33 .67
2 .14 .86
2 .14 .86
1 .57 .43
4 .33 .67
3 .33 .67
4 33 674 .33 .67
6 .8 .2
2 .14 .86
1 .57 .43
6 8 26 .8 .2

7.31 10.69 45



Expectation Maximization

 Total count for “Blue” : 10.69
 Blue:

Called P(red|X) P(blue|X)
6 .8 .2
4 .33 .67
5 33 67

 Total count for 1:  1.29
 Total count for 2:  3.44

5 .33 .67
1 .57 .43
2 .14 .86
3 .33 .67
4 .33 .67
5 .33 .67
2 .14 .86
2 .14 .86
1 .57 .43
4 .33 .67
3 .33 .67
4 33 674 .33 .67
6 .8 .2
2 .14 .86
1 .57 .43
6 8 26 .8 .2

7.31 10.69 46



Expectation Maximization

 Total count for “Blue” : 10.69
 Blue:

Called P(red|X) P(blue|X)
6 .8 .2
4 .33 .67
5 33 67

 Total count for 1:  1.29
 Total count for 2:  3.44
 Total count for 3:  1.34

5 .33 .67
1 .57 .43
2 .14 .86
3 .33 .67
4 .33 .67
5 .33 .67
2 .14 .86
2 .14 .86
1 .57 .43
4 .33 .67
3 .33 .67
4 33 674 .33 .67
6 .8 .2
2 .14 .86
1 .57 .43
6 8 26 .8 .2

7.31 10.69 47



Expectation Maximization

 Total count for “Blue” : 10.69
 Blue:

Called P(red|X) P(blue|X)
6 .8 .2
4 .33 .67
5 33 67

 Total count for 1:  1.29
 Total count for 2:  3.44
 Total count for 3:  1.34

5 .33 .67
1 .57 .43
2 .14 .86
3 .33 .67

 Total count for 4:  2.68 4 .33 .67
5 .33 .67
2 .14 .86
2 .14 .86
1 .57 .43
4 .33 .67
3 .33 .67
4 33 674 .33 .67
6 .8 .2
2 .14 .86
1 .57 .43
6 8 26 .8 .2

7.31 10.69 48



Expectation Maximization

 Total count for “Blue” : 10.69
 Blue:

Called P(red|X) P(blue|X)
6 .8 .2
4 .33 .67
5 33 67

 Total count for 1:  1.29
 Total count for 2:  3.44
 Total count for 3:  1.34

5 .33 .67
1 .57 .43
2 .14 .86
3 .33 .67

 Total count for 4:  2.68
 Total count for 5:  1.34

4 .33 .67
5 .33 .67
2 .14 .86
2 .14 .86
1 .57 .43
4 .33 .67
3 .33 .67
4 33 674 .33 .67
6 .8 .2
2 .14 .86
1 .57 .43
6 8 26 .8 .2

7.31 10.69 49



Expectation Maximization

 Total count for “Blue” : 10.69
 Blue:

Called P(red|X) P(blue|X)
6 .8 .2
4 .33 .67
5 33 67

 Total count for 1:  1.29
 Total count for 2:  3.44
 Total count for 3:  1.34

5 .33 .67
1 .57 .43
2 .14 .86
3 .33 .67

 Total count for 4:  2.68
 Total count for 5:  1.34
 Total count for 6:  0.6

4 .33 .67
5 .33 .67
2 .14 .86
2 .14 .86
1 .57 .43
4 .33 .67
3 .33 .67
4 33 674 .33 .67
6 .8 .2
2 .14 .86
1 .57 .43
6 8 26 .8 .2

7.31 10.69 50



Expectation Maximization
 Total count for “Blue” : 10.69
 Blue:

 Total count for 1: 1 29

Called P(red|X) P(blue|X)
6 .8 .2
4 .33 .67
5 33 67 Total count for 1:  1.29

 Total count for 2:  3.44
 Total count for 3:  1.34
 Total count for 4:  2.68

5 .33 .67
1 .57 .43
2 .14 .86
3 .33 .67

 Total count for 5:  1.34
 Total count for 6:  0.6

4 .33 .67
5 .33 .67
2 .14 .86
2 .14 .86

 Updated probability of Blue dice:
 P(1 | Blue) = 1.29/11.69 = 0.122
 P(2 | Blue) = 0.56/11.69 = 0.322

( | ) /

1 .57 .43
4 .33 .67
3 .33 .67
4 33 67

 P(3 | Blue) = 0.66/11.69 = 0.125
 P(4 | Blue) = 1.32/11.69 = 0.250
 P(5 | Blue) = 0.66/11.69 = 0.125
 P(6 | Blue) = 2 40/11 69 = 0 056

4 .33 .67
6 .8 .2
2 .14 .86
1 .57 .43
6 8 2 P(6 | Blue) = 2.40/11.69 = 0.056 6 .8 .2

7.31 10.69 51



Expectation Maximization
 Total count for “Red” : 7.31
 Total count for “Blue” : 10.69

Called P(red|X) P(blue|X)
6 .8 .2
4 .33 .67
5 33 67

 Total instances = 18 
 Note 7.31+10.69 = 18

 We also revise our estimate for the

5 .33 .67
1 .57 .43
2 .14 .86
3 .33 .67

 We also revise our estimate for the 
probability that the caller calls out 
Red or Blue

i th f ti f ti th t h

4 .33 .67
5 .33 .67
2 .14 .86
2 .14 .86

 i.e the fraction of times that he 
calls Red and the fraction of times 
he calls Blue

1 .57 .43
4 .33 .67
3 .33 .67
4 33 67

 P(Z=Red) = 7.31/18 = 0.41
 P(Z=Blue) = 10 69/18 = 0 59

4 .33 .67
6 .8 .2
2 .14 .86
1 .57 .43
6 8 2 P(Z=Blue) = 10.69/18 = 0.59 6 .8 .2

7.31 10.69 52



The updated values
Probabilit of Red dice

Called P(red|X) P(blue|X)
6 .8 .2
4 .33 .67
5 33 67

 Probability of Red dice:
 P(1 | Red) = 1.71/7.31 = 0.234
 P(2 | Red) = 0.56/7.31 = 0.077
 P(3 | Red) = 0 66/7 31 = 0 090 5 .33 .67

1 .57 .43
2 .14 .86
3 .33 .67

 P(3 | Red) = 0.66/7.31 = 0.090
 P(4 | Red) = 1.32/7.31 = 0.181
 P(5 | Red) = 0.66/7.31 = 0.090
 P(6 | Red) = 2.40/7.31 = 0.328

4 .33 .67
5 .33 .67
2 .14 .86
2 .14 .86

 Probability of Blue dice:
 P(1 | Blue) = 1.29/11.69 = 0.122
 P(2 | Blue) = 0.56/11.69 = 0.322

( | )

1 .57 .43
4 .33 .67
3 .33 .67
4 33 67

( | )
 P(3 | Blue) = 0.66/11.69 = 0.125
 P(4 | Blue) = 1.32/11.69 = 0.250
 P(5 | Blue) = 0.66/11.69 = 0.125

 P(Z=Red) = 7.31/18 = 0.41
 P(Z=Blue) = 10 69/18 = 0 59

4 .33 .67
6 .8 .2
2 .14 .86
1 .57 .43
6 8 2

 P(6 | Blue) = 2.40/11.69 = 0.056

 P(Z=Blue) = 10.69/18 = 0.59 6 .8 .2

THE UPDATED VALUES CAN BE USED TO REPEAT THE 
PROCESS. ESTIMATION IS AN ITERATIVE PROCESS 53



The Dice Shooter Example

6 4 1 5 3 2 2 2 …

1. Initialize P(Z),  P(X | Z)
2 Estimate P(Z | X) for each Z for each called out number

6 3 1 5 4 1 2 4 … 4 4 1 6 3 2 1 2 …

2. Estimate P(Z | X) for each Z, for each called out number
• Assign X with to value of Z, with weight P(Z | X)

3. Re-estimate P(X | Z) for every value of X and Z
4 Re estimate P(Z)4. Re-estimate P(Z)
5. If not converged, return to 2
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In Squiggles
 Given a sequence of observations O1, O2, ..
 N is the number of observations of number X NX is the number of observations of number X

 Initialize P(Z), P(X|Z) for dice Z and numbers X
Iterate: Iterate:
 For each number X:
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Solutions may not be unique
 The EM algorithm will give us one of many solutions, 

all equally valid!all equally valid!
 The probability of 6 being called out:

br PPbluePredPP   )|6()|6()6(

 Assigns Pr as the probability of 6 for the red die
 Assigns Pb as the probability of 6 for the blue die

 The following too is a valid solution
  anythingPPP br 0.00.1)6(  

 Assigns 1.0 as the a priori probability of the red die
 Assigns 0.0 as the probability of the blue die

 The solution is NOT unique
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A More Complex Model

  


 
kk

T
kdkk XXkPXNkPXP )()(5.0exp

||)2(
)(),;()()( 1 

 Gaussian mixtures are often good models for 

k k
d

k ||)2( 

the distribution of multivariate data
 Problem: Estimating the parameters, given a 

collection of data
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Gaussian Mixtures: Generating model
6 1 1 4 5 3 1 9 4 2 2 2 4 9 0 5

 
k

kkXNkPXP ),;()()( 
6.1 1.4 5.3 1.9 4.2 2.2 4.9 0.5  

 The caller now has two Gaussians
At each draw he randomly selects a Gaussian by At each draw he randomly selects a Gaussian, by 
the mixture weight distribution

H th d b ti f th t G i He then draws an observation from that Gaussian

 Much like the dice problem (only the outcomes are 
now real numbers and can be anything)

58



Estimating GMM with complete information
 Observation: A collection of 

numbers drawn from a mixture 
of 2 Gaussians

6.1 1.4 5.3 1.9 4.2 2.2 4.9 0.5 … 

of 2 Gaussians
 As indicated by the colors, we 

know which Gaussian 
generated what numbergenerated what number

 Segregation: Separate the blue 
observations from the red

6.1  5.3  4.2  4.9 .. 1.4  1.9  2.2  0.5 ..

observations from the red

 From each set compute 
t f th t G iparameters for that Gaussian
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redred
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Fragmenting the observation
Gaussian  unknown

4.2

Gaussian  unknown

Collection of “blue” Collection of “red”

4.2 4.2

4.2 .. 4.2 ..

 The identity of the Gaussian is not known!

Collection of blue
numbers

Collection of red
numbers

 Solution:  Fragment the observation
 Fragment size proportional to a posteriori

probability
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Expectation Maximization
 Initialize P(k), k and k for both 

Gaussians
Number P(red|X) P(blue|X)
6.1 .81 .19
1.4 .33 .67
5 3 75 25

 Important how we do this
 Typical solution: Initialize means 

randomly, k as the global covariance 

5.3 .75 .25
1.9 .41 .59
4.2 .64 .36
2.2 .43 .57

of the data and P(k) uniformly

 Compute fragment sizes for each 
Gaussian for each observation

4.9 .66 .34
0.5 .05 .95

Gaussian, for each observation
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Expectation Maximization
 Each observation contributes 

only as much as its fragment 
size to each statistic

Number P(red|X) P(blue|X)
6.1 .81 .19
1.4 .33 .67
5 3 75 25size to each statistic

 Mean(red) =  
(6.1*0.81 + 1.4*0.33 + 5.3*0.75 + 
1.9*0.41 + 4.2*0.64 + 2.2*0.43 +

5.3 .75 .25
1.9 .41 .59
4.2 .64 .36
2.2 .43 .571.9 0.41  4.2 0.64  2.2 0.43  

4.9*0.66 + 0.5*0.05 ) /
(0.81 + 0.33 + 0.75 + 0.41 + 0.64 + 
0.43 + 0.66 + 0.05)

4.9 .66 .34
0.5 .05 .95

4 08 3 92)
= 17.05 / 4.08 = 4.18

4.08 3.92

 Var(red) = ((6.1-4.18)2*0.81 + (1.4-4.18)2*0.33 + 
(5.3-4.18)2*0.75 + (1.9-4.18)2*0.41 + ( ) ( )
(4.2-4.18)2*0.64 + (2.2-4.18)2*0.43 + 
(4.9-4.18)2*0.66 + (0.5-4.18)2*0.05 ) /

(0.81 + 0.33 + 0.75 + 0.41 + 0.64 + 0.43 + 0.66 + 0.05)

8
08.4)( redP
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EM for Gaussian Mixtures
1. Initialize P(k), k and k for all Gaussians
2 For each observation X compute a posteriori2. For each observation X compute a posteriori

probabilities for all Gaussian
 );()( XNkP 
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3. Update mixture weights, means and variances 
for all Gaussians
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4. If not converged, return to 2
X X
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EM estimation of Gaussian Mixtures
 An Example

Histogram of 4000
instances of a randomly
generated data

Individual parameters
of a two-Gaussian
mixture estimated by EM

Two-Gaussian mixture
estimated by EM
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Expectation Maximization
 The same principle can be extended to mixtures of other 

distributions.

 E.g. Mixture of Laplacians:  Laplacian parameters become




x
k

x

k
x

x

k xxkP
xkP

bxxkP
xkP

||)|(
)|(

1)|(
)|(

1             

 In a mixture of Gaussians and Laplacians, Gaussians  use the 

xx

Gaussian update rules, Laplacians use the Laplacian rule
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Expectation Maximization
 The EM algorithm is used whenever proper statistical 

analysis of a phenomenon requires the knowledge of a 
( f /hidden or missing variable (or a set of hidden/missing 

variables)
 The hidden variable is often called a “latent” variable

 Some examples:
 Estimating mixtures of distributions Estimating mixtures of distributions

 Only data are observed. The individual distributions and mixing 
proportions must both be learnt.

 Estimating the distribution of data when some attributes are Estimating the distribution of data, when some attributes are 
missing

 Estimating the dynamics of a system, based only on observations 
that may be a complex function of system statethat may be a complex function of system state
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Solve this problem:
 Caller rolls a dice and flips a coin
 He calls out the number rolled if the coin shows 

head
 Otherwise he calls the number+1
 Determine p(heads) and p(number) for the dice 

from a collection of ouputs

 Caller rolls two dice
H ll t th He calls out the sum

 Determine P(dice) from a collection of ouputs

67



The dice and the coin
Heads or tail?

4

Heads or tail?

“Heads” count “Tails” count

4 3

4. 3..

 Unknown: Whether it was head or tails Unknown: Whether it was head or tails
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The two dice
4

3,1 1,3,

2,2

U k H t titi th b Unknown: How to partition the number
 Countblue(3) += P(3,1 | 4)
 Countblue(2) += P(2,2 | 4)
 Countblue(1) += P(1,3 | 4)blue( ) ( | )
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Fragmentation can be hierarchical
 

k Z

kZXPkZPkPXP ),|()|()()(

k1 k2

 E g mixture of mixtures

Z1 Z2 Z3 Z4

 E.g. mixture of mixtures
 Fragments are further fragmented..

W k thi t Work this out
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More later

 Will see a couple of other instances of the 
f EMuse of EM

 E.g. HMM training
H k bl Homework problems
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Clustering

72



Clustering
 What is clustering

 Clustering is the determination of 
naturally occurring grouping ofnaturally occurring grouping of 
data/instances (with low within-group 
variability and high between-group 
variability)
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Clustering
 What is clustering

 Clustering is the determination of 
naturally occurring grouping ofnaturally occurring grouping of 
data/instances (with low within-group 
variability and high between-group 
variability)
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Clustering
 What is clustering

 Clustering is the determination of 
naturally occurring grouping ofnaturally occurring grouping of 
data/instances (with low within-group 
variability and high between-group 
variability)

 How is it done
 Find groupings of data such that the 

groups optimize a “within-group-
variability” objective function of some 
kind
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Clustering
 What is clustering

 Clustering is the determination of 
naturally occurring grouping ofnaturally occurring grouping of 
data/instances (with low within-group 
variability and high between-group 
variability)

 How is it done
 Find groupings of data such that the 

groups optimize a “within-group-
variability” objective function of some 
kind

 The objective function used affects 
the nature of the discovered clusters
 E.g. Euclidean distance and distance 

from center result in different clustersfrom center result in different clusters 
in this example
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Clustering
 What is clustering

 Clustering is the determination of 
naturally occurring grouping ofnaturally occurring grouping of 
data/instances (with low within-group 
variability and high between-group 
variability)

 How is it done
 Find groupings of data such that the 

groups optimize a “within-group-
variability” objective function of some 
kind

 The objective function used affects 
the nature of the discovered clusters
 E.g. Euclidean distance and distance 

from center result in different clustersfrom center result in different clusters 
in this example

77



Why Clustering

 Automatic grouping into “Classes”
ff ff Different clusters may show different behavior

Q Quantization
 All data within a cluster are represented by a 

i l i tsingle point

P i t f th l ith Preprocessing step for other algorithms
 Indexing, categorization, etc.
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Clustering criteria

 Compactness criterion
“ Measure that shows how “good” clusters are

 The objective function

 Distance of a point from a cluster
T d t i th l t d t t b l t To determine the cluster a data vector belongs to
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“Compactness” criteria for clustering
 Distance based measures

 Total distance between each 
element in the cluster and 
every other element in the 
clustercluster
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“Compactness” criteria for clustering
 Distance based measures

 Total distance between each 
element in the cluster and 
every other element in the 
clustercluster
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“Compactness” criteria for clustering
 Distance based measures

 Total distance between each 
element in the cluster and 
every other element in the 
clustercluster

 Distance between the two 
farthest points in the clusterp
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“Compactness” criteria for clustering
 Distance based measures

 Total distance between each 
element in the cluster and 
every other element in the 
clustercluster

 Distance between the two 
farthest points in the clusterp

 Total distance of every 
element in the cluster from 
the centroid of the cluster
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“Compactness” criteria for clustering
 Distance based measures

 Total distance between each 
element in the cluster and 
every other element in the 
clustercluster

 Distance between the two 
farthest points in the clusterp

 Total distance of every 
element in the cluster from 
the centroid of the cluster
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“Compactness” criteria for clustering
 Distance based measures

 Total distance between each 
element in the cluster and 
every other element in the 
clustercluster

 Distance between the two 
farthest points in the clusterp

 Total distance of every 
element in the cluster from 
the centroid of the cluster
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“Compactness” criteria for clustering

 Distance based measures
Total distance between each Total distance between each 
element in the cluster and every 
other element in the cluster

 Distance between the two 
farthest points in the cluster

 Total distance of every element in y
the cluster from the centroid of 
the cluster

 Distance measures are often Distance measures are often 
weighted Minkowski metrics

n nnn bawbawbawdist  n
MMM bawbawbawdist  ...222111
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Clustering: Distance from cluster
 How far is a data point from a 

cluster?
 Euclidean or Minkowski distance 

from the centroid of the cluster

 Distance from the closest point in 
the cluster

 Distance from the farthest point 
in the cluster

 Probability of data measured on 
cluster distribution
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Clustering: Distance from cluster
 How far is a data point from a 

cluster?
 Euclidean or Minkowski distance 

from the centroid of the cluster

 Distance from the closest point in 
the cluster

 Distance from the farthest point 
in the cluster

 Probability of data measured on 
cluster distribution
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Clustering: Distance from cluster
 How far is a data point from a 

cluster?
 Euclidean or Minkowski distance 

from the centroid of the cluster

 Distance from the closest point in 
the cluster

 Distance from the farthest point 
in the cluster

 Probability of data measured on 
cluster distribution
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Clustering: Distance from cluster
 How far is a data point from a 

cluster?
 Euclidean or Minkowski distance 

from the centroid of the cluster

 Distance from the closest point in 
the cluster

 Distance from the farthest point 
in the cluster

 Probability of data measured on 
cluster distribution
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Clustering: Distance from cluster
 How far is a data point from a 

cluster?
 Euclidean or Minkowski distance 

from the centroid of the cluster

 Distance from the closest point in 
the cluster

 Distance from the farthest point in 
the cluster

 Probability of data measured on 
cluster distribution

 Fit of data to cluster-based 
regression 91



Optimal clustering: Exhaustive 
enumeration
 All possible combinations of data must be evaluated

 If there are M data points, and we desire N clusters, the 
number of ways of separating M instances into N clusters is

N N













N

i

Mi iN
i
N

M 0
)()1(

!
1

 Exhaustive enumeration based clustering requires that the 
objective function (the “Goodness measure”) be evaluated 
for every one of these, and the best one chosen

 This is the only correct way of optimal clustering
 Unfortunately, it is also computationally unrealisticy p y
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Not-quite non sequitir:  Quantization
e

Signal Value Bits Mapped to
S > 3 75v 11 3 * constal
og

 v
al

ue

S >= 3.75v 11 3 * const
3.75v > S >= 2.5v 10 2 * const
2.5v > S >= 1.25v 01 1 * const
1 25 S 0 0 0

lit
y 

of
 a

na

1.25v > S >= 0v 0 0 

Analog value (arrows are quantization levels)Pr
ob

ab
i

 Linear quantization (uniform quantization):q ( q )
 Each digital value represents an equally wide range of analog 

values
 Regardless of distribution of data Regardless of distribution of data
 Digital-to-analog conversion represented by a “uniform” table
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Not-quite non sequitir:  Quantization
e

al
og

 v
al

ue Signal Value Bits Mapped to
S >= 4v 11 4.5
4v > S >= 2.5v 10 3.25

lit
y 

of
 a

na

2.5v > S >= 1v 01 1.25
1.0v > S >= 0v 0 0.5

Analog value (arrows are quantization levels)Pr
ob

ab
i

 Non-Linear quantization:q
 Each digital value represents a different range of analog values

 Finer resolution in high-density areas
 Mu-law / A-law assumes a gaussian-like distribution of dataMu law / A law assumes a gaussian like distribution of data

 Digital-to-analog conversion represented by a “non-uniform” table
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Non-uniform quantization
og

 v
al

ue
y 

of
 a

na
lo

Analog valuePr
ob

ab
ili

ty

 If data distribution is not Gaussianish?

Analog valueP

 Mu-law / A-law are not optimal
 How to compute the optimal ranges for quantization

 Or the optimal table Or the optimal table
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The Lloyd Quantizer
og

 v
al

ue
y 

of
 a

na
lo

Pr
ob

ab
ili

ty

 Lloyd quantizer: An iterative algorithm for computing

Analog value (arrows show quantization levels)

P

 Lloyd quantizer: An iterative algorithm for computing 
optimal quantization tables for non-uniformly 
distributed data

 Learned from “training” data
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Lloyd Quantizer
 Randomly initialize 

quantization pointsquantization points
 Right column entries of 

quantization table

 Assign all training points 
to the nearest 

ti ti i tquantization point

 Reestimate quantization 
points

 Iterate until convergence Iterate until convergence

97



Lloyd Quantizer
 Randomly initialize 

quantization pointsquantization points
 Right column entries of 

quantization table

 Assign all training points 
to the nearest 

ti ti i tquantization point
 Draw boundaries

 Reestimate quantization 
points

 Iterate until convergence
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Lloyd Quantizer
 Randomly initialize 

quantization pointsquantization points
 Right column entries of 

quantization table

 Assign all training points 
to the nearest 

ti ti i tquantization point
 Draw boundaries

 Reestimate quantization 
points

 Iterate until convergence
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Lloyd Quantizer
 Randomly initialize 

quantization pointsquantization points
 Right column entries of 

quantization table

 Assign all training points 
to the nearest 

ti ti i tquantization point
 Draw boundaries

 Reestimate quantization 
points

 Iterate until convergence
100



Generalized Lloyd Algorithm: K–means clustering

 K means is an iterative algorithm for clustering 
vector data
 McQueen, J. 1967. “Some methods for classification and 

analysis of multivariate observations.” Proceedings of the 
Fifth Berkeley Symposium on Mathematical Statistics andFifth Berkeley Symposium on Mathematical Statistics and 
Probability, 281-297 

 General procedure:p
 Initially group data into the required number of clusters 

somehow (initialization)
Assign each data point to the closest cluster Assign each data point to the closest cluster

 Once all data points are assigned to clusters, redefine 
clusters

 Iterate 
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K–means
 Problem: Given a set of data 

vectors, find natural clustersvectors, find natural clusters

 Clustering criterion is scatter: 
distance from the centroiddistance from the centroid

 Every cluster has a centroid
 The centroid represents the 

l tcluster

 Definition:  The centroid is 
the weighted mean of the 
cluster

 Weight = 1 for basic scheme 


l
iicluster xw

w
m 1

e g t o bas c sc e e  


clusteri
clusteri

iw
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K–means
1. Initialize a set of centroids

randomly

2. For each data point x, find the 
distance from the centroid for 
each cluster
•

3. Put data point in the cluster of the 
l t t id

),( clustercluster mxd distance

closest centroid
• Cluster for which dcluster is 

minimum

4. When all data points clustered, 
recompute cluster centroid

l xm 1

5. If not converged, go back to 2


clusteri

i
cluster

cluster x
N

m
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K–means
1. Initialize a set of centroids

randomly

2. For each data point x, find the 
distance from the centroid for 
each cluster
•

3. Put data point in the cluster of the 
l t t id

),( clustercluster mxd distance

closest centroid
• Cluster for which dcluster is 

minimum

4. When all data points clustered, 
recompute cluster centroid

l xm 1

5. If not converged, go back to 2


clusteri
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K–means
1. Initialize a set of centroids

randomly

2. For each data point x, find the 
distance from the centroid for 
each cluster
•

3. Put data point in the cluster of the 
l t t id

),( clustercluster mxd distance

closest centroid
• Cluster for which dcluster is 

minimum

4. When all data points clustered, 
recompute cluster centroid

l xm 1

5. If not converged, go back to 2


clusteri
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K–means
1. Initialize a set of centroids

randomly

2. For each data point x, find the 
distance from the centroid for 
each cluster
•

3. Put data point in the cluster of the 
l t t id

),( clustercluster mxd distance

closest centroid
• Cluster for which dcluster is 

minimum

4. When all data points clustered, 
recompute cluster centroid

l xm 1

5. If not converged, go back to 2


clusteri
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K–means
1. Initialize a set of centroids

randomly

2. For each data point x, find the 
distance from the centroid for 
each cluster
•

3. Put data point in the cluster of the 
l t t id

),( clustercluster mxd distance

closest centroid
• Cluster for which dcluster is 

minimum

4. When all data points clustered, 
recompute cluster centroid

l xm 1

5. If not converged, go back to 2
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K–means
1. Initialize a set of centroids

randomly

2. For each data point x, find the 
distance from the centroid for 
each cluster
•

3. Put data point in the cluster of the 
l t t id

),( clustercluster mxd distance

closest centroid
• Cluster for which dcluster is 

minimum

4. When all data points clustered, 
recompute cluster centroid

l xm 1

5. If not converged, go back to 2
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K–means
1. Initialize a set of centroids

randomly

2. For each data point x, find the 
distance from the centroid for 
each cluster
•

3. Put data point in the cluster of the 
l t t id

),( clustercluster mxd distance

closest centroid
• Cluster for which dcluster is 

minimum

4. When all data points clustered, 
recompute cluster centroid

l xm 1

5. If not converged, go back to 2
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K–means
1. Initialize a set of centroids

randomly

2. For each data point x, find the 
distance from the centroid for 
each cluster
•

3. Put data point in the cluster of the 
l t t id

),( clustercluster mxd distance

closest centroid
• Cluster for which dcluster is 

minimum

4. When all data points clustered, 
recompute cluster centroid

l xm 1

5. If not converged, go back to 2
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K–means
1. Initialize a set of centroids

randomly

2. For each data point x, find the 
distance from the centroid for 
each cluster
•

3. Put data point in the cluster of the 
l t t id

),( clustercluster mxd distance

closest centroid
• Cluster for which dcluster is 

minimum

4. When all data points clustered, 
recompute cluster centroid

l xm 1

5. If not converged, go back to 2
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K–means
1. Initialize a set of centroids

randomly

2. For each data point x, find the 
distance from the centroid for 
each cluster
•

3. Put data point in the cluster of the 
l t t id

),( clustercluster mxd distance

closest centroid
• Cluster for which dcluster is 

minimum

4. When all data points are 
clustered, recompute centroids


 iicluster xwm 1

5. If not converged, go back to 2
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K–means
1. Initialize a set of centroids

randomly

2. For each data point x, find the 
distance from the centroid for 
each cluster
•

3. Put data point in the cluster of the 
l t t id

),( clustercluster mxd distance

closest centroid
• Cluster for which dcluster is 

minimum

4. When all data points are 
clustered, recompute centroids


 iicluster xwm 1

5. If not converged, go back to 2
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K-Means comments

 The distance metric determines the clusters
f In the original formulation, the distance is L2 

distance
 Euclidean norm w = 1 Euclidean norm, wi = 1


l

icluster x
N

m 1
2||||),( clusterclustercluster mxmx distance

 If we replace every x by mcluster(x), we get Vector 
Quantization

clustericlusterN

Quantization
 K-means is an instance of generalized EM

Not guaranteed to converge for all distance Not guaranteed to converge for all distance 
metrics
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Initialization
 Random initialization
 Top-down clustering Top-down clustering
 Initially partition the data into two (or a small 

number of) clusters using K meansnumber of) clusters using K means
 Partition each of the resulting clusters into two 

(or a small number of) clusters, also using K 
means

 Terminate when the desired number of clusters 
i bt i dis obtained
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K-Means for Top–Down clustering
1. Start with one cluster 

S lit h l t i t t2. Split each cluster into two:
 Perturb centroid of cluster slightly  (by < 5%) 

to generate two centroids

3. Initialize K means with new set of 
centroids

4. Iterate Kmeans until convergence

5. If the desired number of clusters is 
not obtained, return to 2
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K-means, distances, kernels and spectra

 Basic K means results in good clusters in Basic K-means results in good clusters in 
Euclidean spaces
 Alternately stated will only find clusters that are Alternately stated, will only find clusters that are 

“good” in terms of Euclidean distances
 Will not find other types of clusters Will not find other types of clusters
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Non-euclidean clusters
f([x,y]) -> [x,y,z]
x = x
y = y
z = x2 + y2

 For other forms of clusters we must modify the distance measure
 E.g. distance from a circleg

 May be viewed as a distance in a higher dimensional space
 I.e Kernel distances
 Kernel K-means Kernel K means

 Other related clustering mechansims:
 Spectral clustering

 Non-linear weighting of adjacency Non linear weighting of adjacency

 Normalized cuts..
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