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11-755 Machine Learning for Signal Processing

Hidden Markov Models

Class 15.  12 Oct 2010

112 Oct 2010 11755/18797

Administrivia
 HW2 – due Tuesday

 Is everyone on the “projects” page?
 Where are your project proposals?

212 Oct 2010 11755/18797

RecapRecap: : What is an HMMWhat is an HMM

 “Probabilistic function of a markov chain”

 Models a dynamical system

 System goes through a number of states
 Following a Markov chain model

 On arriving at any state it generates observations 
according to a state-specific probability distribution

12 Oct 2010 311755/18797

A Thought Experiment
I just called out the 6 from the blue
guy.. gotta switch to pattern 2..

6 4 1 5 3 2 2 2 …

 Two “shooters” roll dice

 A caller calls out the number rolled. We only get to hear what he calls out

 The caller behaves randomly

 If he has just called a number rolled by the blue shooter, his next call is that of the red 
shooter 70% of the time

 But if he has just called the red shooter, he has only a 40% probability of calling the red 
shooter again in the next call

 How do we characterize this?

6 3 1 5 4 1 2 4 … 4 4 1 6 3 2 1 2 …
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A Thought Experiment
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 The dots and arrows represent the “states” of the caller
 When he’s on the blue circle he calls out the blue dice

 When he’s on the red circle he calls out the red dice

 The histograms represent the probability distribution of the 
numbers for the blue and red dice
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A Thought Experiment
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 When the caller is in any state, he calls a number based on the 
probability distribution of that state
 We call these state output distributions

 At each step, he moves from his current state to another state 
following a probability distribution
 We call these transition probabilities

 The caller is an HMM!!!
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What is an HMM
 HMMs are statistical models for (causal) processes

 The model assumes that the process can be in one of a 
number of states at any time instant

 The state of the process at any time instant depends only 
on the state at the previous instant (causality, Markovian)

 At each instant the process generates an observation from 
a probability distribution that is specific to the current state

 The generated observations are all that we get to see
 the actual state of the process is not directly observable 

 Hence the qualifier hidden

12 Oct 2010 711755/18797

 A Hidden Markov Model consists of two components
 A state/transition backbone that specifies how many states there are, and how they 

can follow one another

A t f b bilit di t ib ti f h t t hi h ifi th di t ib ti

Hidden Markov Models

 A set of probability distributions, one for each state, which specifies the distribution 
of all vectors in that state

• This can be factored into two separate probabilistic entities
– A probabilistic Markov chain with states and transitions
– A set of data probability distributions, associated with the states

Markov chain

Data distributions

11755/18797

HMM assumed to be 
generating data

How an HMM models a processHow an HMM models a process

state 
sequence

state 
distributions

observation
sequence
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HMM Parameters
 The topology of the HMM

 Number of states and allowed 
transitions

 E.g. here we have 3 states and 
cannot go from the blue state to 
the red

 The transition probabilities
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 04.6.

 Often represented as a matrix as 
here

 Tij is the probability that when in 
state i, the process will move to j

 The probability i of beginning 
at any state si

 The complete set is represented 
as 

 The state output distributions
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3.7.0T
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HMM state output distributions

• The state output distribution is the distribution of data produced from 
any state

• Typically modelled as Gaussian
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• The paremeters are i and i

• More typically, modelled as Gaussian mixtures

• Other distributions may also be used

• E.g. histograms in the dice case
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The Diagonal Covariance Matrix

F GMM it i f tl d th t th f t

Full covariance:
all elements are
non-zero

-0.5(x-)T-1(x-)

Diagonal covariance:
off-diagonal elements
are zero

i (xi-i)2 / 2i
2

 For GMMs it is frequently assumed that the feature 
vector dimensions are all independent of each other

 Result: The covariance matrix is reduced to a diagonal 
form

 The determinant of the diagonal  matrix is easy 
to compute

12 Oct 2010 1211755/18797
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Three Basic HMM Problems

 What is the probability that it will generate a 
specific observation sequence

 Given a observation sequence, how do we 
determine which observation was generateddetermine which observation was generated 
from which state
 The state segmentation problem

 How do we learn the parameters of the HMM 
from observation sequences 

12 Oct 2010 1311755/18797

Computing the Probability of  an 
Observation Sequence

 Two aspects to producing the observation:
 Progressing through a sequence of states

 Producing observations from these states

12 Oct 2010 1411755/18797

HMM assumed to be 
generating data

Progressing through states

state 
sequence

 The process begins at some state (red) here

 From that state, it makes an allowed transition
 To arrive at the same or any other state

 From that state it makes another allowed 
transition
 And so on

12 Oct 2010 1511755/18797

Probability that the HMM will follow 
a particular state sequence

 P(s1) is the probability that the process will initially be 
in state s1

P s s s P s P s s P s s( , , ,...) ( ) ( | ) ( | )...1 2 3 1 2 1 3 2

 P(si | si) is the transition probability of moving to state 
si at the next time instant when the system is 
currently in si

 Also denoted by Tij earlier

12 Oct 2010 1611755/18797

HMM assumed to be 
generating data

Generating Observations from States

state 
sequence

state 
distributions

observation
sequence

 At each time it generates an observation from 
the state it is in at that time

12 Oct 2010 1711755/18797

P o o o s s s P o s P o s P o s( , , ,...| , , ,...) ( | ) ( | ) ( | )...1 2 3 1 2 3 1 1 2 2 3 3

Probability that the HMM will generate a 
particular observation sequence given a 
state sequence (state sequence known)

• P(oi | si) is the probability of generating 
observation oi when the system is in state si

Computed from the Gaussian or Gaussian mixture for state s1

12 Oct 2010 1811755/18797
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HMM assumed to be 
generating data

Proceeding through States and Producing 
Observations

state 
sequence

state 
distributions

observation
sequence

 At each time it produces an observation and 
makes a transition

12 Oct 2010 1911755/18797

Probability that the HMM will generate a 
particular state sequence and from it, a 

particular observation sequence

P o o o s s s( , , ,..., , , ,...)1 2 3 1 2 3 

P P( | ) ( )

P o s P o s P o s P s P s s P s s( | ) ( | ) ( | )... ( ) ( | ) ( | )...1 1 2 2 3 3 1 2 1 3 2

P o o o s s s P s s s( , , ,...| , , ,...) ( , , ,...)1 2 3 1 2 3 1 2 3 
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Probability of  Generating an Observation 
Sequence

 The precise state sequence is not known
 All possible state sequences must be 

considered

P o s P o s P o s P s P s s P s s
all possible

state sequences

( | ) ( | ) ( | )... ( ) ( | ) ( | )...
.

.

1 1 2 2 3 3 1 2 1 3 2

P o o o s s s
all possible

state sequences

( , , ,..., , , ,...)
.

.

1 2 3 1 2 3 P o o o( , , ,...)1 2 3 
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Computing it Efficiently

 Explicit summing over all state sequences is not 
tractable
 A very large number of possible state sequences

 Instead we use the forward algorithm Instead we use the forward algorithm

 A dynamic programming technique.

12 Oct 2010 2211755/18797

Illustrative Example

 Example: a generic HMM with 5 states and a “terminating 
t t ”state”. 

 Left to right topology
 P(si) = 1 for state 1 and 0 for others

 The arrows represent transition for which the probability is not 0

 Notation:
 P(si | si) = Tij

 We represent P(ot | si) = bi(t) for brevity

12 Oct 2010 2311755/18797

Diversion: The Trellis

Feature vectors

S
ta

te
 in

de
x

t 1 t

s (s,t)

(time)t-1 t

 The trellis is a graphical representation of all possible paths through the 
HMM to produce a given observation

 The Y-axis represents HMM states, X axis represents observations

 Every edge in the graph represents a valid transition in the HMM over a 
single time step 

 Every node represents the event of a particular observation being 
generated from a particular state

12 Oct 2010 2411755/18797
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The Forward Algorithm

ta
te

 in
de

x

s (s,t)

))(,,...,,(),( 21 ststatexxxPts t 

time

S
t

t-1 t

 (s,t) is the total probability of ALL state 
sequences that end at state s at time t, and 
all observations until xt
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The Forward Algorithm

Can be recursively 
estimated starting 
from the first time 
instant 
(forward recursion)

s

ta
te

 in
de

x

))(,,...,,(),( 21 ststatexxxPts t 

(s,t)(s,t-1)

time
t-1 t

( )

S
t

 (s,t) can be recursively computed in terms of 
(s’,t’), the forward probabilities at time t-1 

(1,t-1)
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)|()'|()1,'(),(
s

t sxPssPtsts 
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TsTotalprob ),(
The Forward Algorithm

ta
te

 in
de

x

time

S
t

T

 In the final observation the alpha at each state gives the 
probability of all state sequences ending at that state

 General model: The total probability of the observation 
is the sum of the alpha values at all states

12 Oct 2010 2711755/18797

The absorbing state

 Observation sequences are assumed to end 
only when the process arrives at an 
absorbing state
 No observations are produced from the absorbing 

state

2812 Oct 2010 11755/18797

)1,(  TsTotalprob absorbing
The Forward Algorithm

ta
te

 in
de

x


'

)'|(),'()1,(
s

absorbingabsorbing ssPTsTs 
time

S
t

T

 Absorbing state model: The total probability is the alpha 
computed at the absorbing state after the final 
observation
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Problem 2: State segmentation

 Given only a sequence of observations, how 
do we determine which sequence of states 
was followed in producing it?

12 Oct 2010 3011755/18797
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HMM assumed to be 
generating data

The HMM as a generator

state 
sequence

state 
distributions

observation
sequence

 The process goes through a series of states 
and produces observations from them

12 Oct 2010 3111755/18797

HMM assumed to be 
generating data

state 
sequence

States are hidden

state 
distributions

observation
sequence

 The observations do not reveal the underlying 
state

12 Oct 2010 3211755/18797

HMM assumed to be 
generating data

state 
sequence

The state segmentation problem

state 
distributions

observation
sequence

 State segmentation: Estimate state sequence 
given observations

12 Oct 2010 3311755/18797

Estimating the State Sequence
 Many different state sequences are capable of 

producing the observation

 Solution: Identify the most probable state 
sequence
 The state sequence for which the probability of

P o o o s s s( , , ,..., , , ,...)1 2 3 1 2 3 

 The state sequence for which the probability of 
progressing through that sequence and generating the 
observation sequence is maximum

 i.e is maximum

12 Oct 2010 3411755/18797

Estimating the state sequence
 Once again, exhaustive evaluation is impossibly 

expensive

 But once again a simple dynamic-programming 
solution is available
P o o o s s s( , , ,..., , , ,...)1 2 3 1 2 3 

 Needed:

P o s P o s P o s P s P s s P s s( | ) ( | ) ( | )... ( ) ( | ) ( | )...1 1 2 2 3 3 1 2 1 3 2

)|()|()|()|()()|(maxarg 23331222111,...,, 321
ssPsoPssPsoPsPsoPsss
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Estimating the state sequence
 Once again, exhaustive evaluation is impossibly 

expensive

 But once again a simple dynamic-programming 
solution is available
P o o o s s s( , , ,..., , , ,...)1 2 3 1 2 3 

 Needed:

P o s P o s P o s P s P s s P s s( | ) ( | ) ( | )... ( ) ( | ) ( | )...1 1 2 2 3 3 1 2 1 3 2

)|()|()|()|()()|(maxarg 23331222111,...,, 321
ssPsoPssPsoPsPsoPsss
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HMM assumed to be 
generating data

The HMM as a generator

state 
sequence

state 
distributions

observation
sequence

 Each enclosed term represents one forward 
transition and a subsequent emission
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The state sequence

 The probability of a state sequence ?,?,?,?,sx,sy ending 
at time t , and producing all observations until ot

 P(o1..t-1, ?,?,?,?, sx , ot,sy) = P(o1..t-1,?,?,?,?, sx ) P(ot|sy)P(sy|sx)

 The best state sequence that ends with sx,sy at t will 
have a probability equal to the probability of the best 
state sequence ending at t-1 at sx times P(ot|sy)P(sy|sx)

12 Oct 2010 3811755/18797

Extending the state sequence

state 
distributions

state 
sequence

sx sy

observation
sequence

 The probability of a state sequence ?,?,?,?,sx,sy

ending at time t and producing observations until ot

 P(o1..t-1,ot, ?,?,?,?, sx ,sy) = P(o1..t-1,?,?,?,?, sx )P(ot|sy)P(sy|sx)

t

12 Oct 2010 3911755/18797

Trellis
 The graph below shows the set of all possible 

state sequences through this HMM in five time 
instants

time
t

12 Oct 2010 4011755/18797

The cost of extending a state sequence
 The cost of extending a state sequence ending 

at sx is only dependent on the transition from sx
to sy, and the observation probability at sy

P( | )P( | )

time
t

sy

sx

P(ot|sy)P(sy|sx)
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The cost of extending a state sequence
 The best path to sy through sx is simply an 

extension of the best path to sx
BestP(o1..t-1,?,?,?,?, sx )
P(ot|sy)P(sy|sx)

time
t

sy

sx

12 Oct 2010 4211755/18797
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The Recursion

 The overall best path to sy is an extension of 
the best path to one of the states at the 
previous time

time
t

sy

12 Oct 2010 4311755/18797

The Recursion

 Prob. of best path to sy = 
Maxsx

BestP(o1..t-1,?,?,?,?, sx ) P(ot|sy)P(sy|sx)

time
t

sy

12 Oct 2010 4411755/18797

Finding the best state sequence

 The simple algorithm just presented is called the VITERBI 
algorithm in the literature
 After A.J.Viterbi, who invented this dynamic programming algorithm 

for a completely different purpose: decoding error correction codes!

12 Oct 2010 4511755/18797

Viterbi Search (contd.)

time
Initial state initialized with path-score = P(s1)b1(1)

All other states have score 0 since P(si) = 0 for them12 Oct 2010 4611755/18797

Viterbi Search (contd.)

State with best path-score
State with path-score < best

time

State with path score < best
State without a valid path-score

P (t)j = max [P (t-1) t   b  (t)]i ij ji

Total path-score ending up at state j at time t

State transition probability, i to j

Score for state j, given the input at time t
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Viterbi Search (contd.)

P (t)j = max [P (t-1) t   b  (t)]i ij ji

time

j i ij ji

Total path-score ending up at state j at time t

State transition probability, i to j

Score for state j, given the input at time t

12 Oct 2010 4811755/18797
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Viterbi Search (contd.)

time
12 Oct 2010 4911755/18797

Viterbi Search (contd.)

time
12 Oct 2010 5011755/18797

Viterbi Search (contd.)

time
12 Oct 2010 5111755/18797

Viterbi Search (contd.)

time
12 Oct 2010 5211755/18797

Viterbi Search (contd.)

time
12 Oct 2010 5311755/18797

Viterbi Search (contd.)

time
12 Oct 2010 5411755/18797
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Viterbi Search (contd.)

time
12 Oct 2010 5511755/18797

Viterbi Search (contd.)
THE BEST STATE SEQUENCE IS THE ESTIMATE OF THE STATE
SEQUENCE FOLLOWED IN GENERATING THE OBSERVATION

time
12 Oct 2010 5611755/18797

Problem3: Training HMM parameters

 We can compute the probability of an 
observation, and the best state sequence given 
an observation, using the HMM’s parameters

 But where do the HMM parameters come from?p

 They must be learned from a collection of 
observation sequences

12 Oct 2010 5711755/18797

Learning HMM parameters: Simple 
procedure – counting

 Given a set of training instances

 Iteratively:

I iti li HMM t1. Initialize HMM parameters

2. Segment all training instances

3. Estimate transition probabilities and state 
output probability parameters by counting

12 Oct 2010 5811755/18797

Learning by counting example

 Explanation by example in next few slides

 2-state HMM, Gaussian PDF at states, 3 
observation sequences

 Example shows ONE iteration
 How to count after state sequences are obtained

12 Oct 2010 5911755/18797

Example: Learning HMM Parameters
 We have an HMM with two states s1 and s2.
 Observations are vectors xij

 i-th sequence,  j-th vector

 We are given the following three observation sequences
 And have already estimated state sequences

Time 1 2 3 4 5 6 7 8 9 10
state S1 S1 S2 S2 S2 S1 S1 S2 S1 S1
Obs Xa1 Xa2 Xa3 Xa4 Xa5 Xa6 Xa7 Xa8 Xa9 Xa10

Time 1 2 3 4 5 6 7 8 9
state S2 S2 S1 S1 S2 S2 S2 S2 S1
Obs Xb1 Xb2 Xb3 Xb4 Xb5 Xb6 Xb7 Xb8 Xb9

Time 1 2 3 4 5 6 7 8
state S1 S2 S1 S1 S1 S2 S2 S2
Obs Xc1 Xc2 Xc3 Xc4 Xc5 Xc6 Xc7 Xc8

Observation 1

Observation 2

Observation 3

12 Oct 2010 6011755/18797
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Example: Learning HMM Parameters

 Initial state probabilities (usually denoted as ):
 We have 3 observations

 2 of these begin with S1, and one with S2

 (S1) = 2/3, (S2) = 1/3

Time 1 2 3 4 5 6 7 8 9 10
state S1 S1 S2 S2 S2 S1 S1 S2 S1 S1
Obs Xa1 Xa2 Xa3 Xa4 Xa5 Xa6 Xa7 Xa8 Xa9 Xa10

Time 1 2 3 4 5 6 7 8 9
state S2 S2 S1 S1 S2 S2 S2 S2 S1
Obs Xb1 Xb2 Xb3 Xb4 Xb5 Xb6 Xb7 Xb8 Xb9

Time 1 2 3 4 5 6 7 8
state S1 S2 S1 S1 S1 S2 S2 S2
Obs Xc1 Xc2 Xc3 Xc4 Xc5 Xc6 Xc7 Xc8

Observation 1

Observation 2

Observation 3

12 Oct 2010 6111755/18797

Example: Learning HMM Parameters
 Transition probabilities:

 State S1 occurs 11 times in non-terminal locations

 Of these, it is followed by S1 X times

 It is followed by S2 Y times

 P(S1 | S1) = x/ 11;   P(S2 | S1) = y / 11

Time 1 2 3 4 5 6 7 8 9 10
state S1 S1 S2 S2 S2 S1 S1 S2 S1 S1
Obs Xa1 Xa2 Xa3 Xa4 Xa5 Xa6 Xa7 Xa8 Xa9 Xa10

Time 1 2 3 4 5 6 7 8 9
state S2 S2 S1 S1 S2 S2 S2 S2 S1
Obs Xb1 Xb2 Xb3 Xb4 Xb5 Xb6 Xb7 Xb8 Xb9

Time 1 2 3 4 5 6 7 8
state S1 S2 S1 S1 S1 S2 S2 S2
Obs Xc1 Xc2 Xc3 Xc4 Xc5 Xc6 Xc7 Xc8

Observation 1

Observation 2

Observation 3

12 Oct 2010 6211755/18797

Example: Learning HMM Parameters
 Transition probabilities:

 State S1 occurs 11 times in non-terminal locations

 Of these, it is followed immediately by S1 6 times

 It is followed by S2 Y times

 P(S1 | S1) = x/ 11;   P(S2 | S1) = y / 11

Time 1 2 3 4 5 6 7 8 9 10
state S1 S1 S2 S2 S2 S1 S1 S2 S1 S1
Obs Xa1 Xa2 Xa3 Xa4 Xa5 Xa6 Xa7 Xa8 Xa9 Xa10

Time 1 2 3 4 5 6 7 8 9
state S2 S2 S1 S1 S2 S2 S2 S2 S1
Obs Xb1 Xb2 Xb3 Xb4 Xb5 Xb6 Xb7 Xb8 Xb9

Time 1 2 3 4 5 6 7 8
state S1 S2 S1 S1 S1 S2 S2 S2
Obs Xc1 Xc2 Xc3 Xc4 Xc5 Xc6 Xc7 Xc8

Observation 1

Observation 2

Observation 3
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Example: Learning HMM Parameters
 Transition probabilities:

 State S1 occurs 11 times in non-terminal locations

 Of these, it is followed immediately by S1 6 times

 It is followed immediately by S2 5 times

 P(S1 | S1) = x/ 11;   P(S2 | S1) = y / 11

Time 1 2 3 4 5 6 7 8 9 10
state S1 S1 S2 S2 S2 S1 S1 S2 S1 S1
Obs Xa1 Xa2 Xa3 Xa4 Xa5 Xa6 Xa7 Xa8 Xa9 Xa10

Time 1 2 3 4 5 6 7 8 9
state S2 S2 S1 S1 S2 S2 S2 S2 S1
Obs Xb1 Xb2 Xb3 Xb4 Xb5 Xb6 Xb7 Xb8 Xb9

Time 1 2 3 4 5 6 7 8
state S1 S2 S1 S1 S1 S2 S2 S2
Obs Xc1 Xc2 Xc3 Xc4 Xc5 Xc6 Xc7 Xc8

Observation 1

Observation 2

Observation 3
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Example: Learning HMM Parameters
 Transition probabilities:

 State S1 occurs 11 times in non-terminal locations

 Of these, it is followed immediately by S1 6 times

 It is followed immediately by S2 5 times

 P(S1 | S1) = 6/ 11;   P(S2 | S1) = 5 / 11

Time 1 2 3 4 5 6 7 8 9 10
state S1 S1 S2 S2 S2 S1 S1 S2 S1 S1
Obs Xa1 Xa2 Xa3 Xa4 Xa5 Xa6 Xa7 Xa8 Xa9 Xa10

Time 1 2 3 4 5 6 7 8 9
state S2 S2 S1 S1 S2 S2 S2 S2 S1
Obs Xb1 Xb2 Xb3 Xb4 Xb5 Xb6 Xb7 Xb8 Xb9

Time 1 2 3 4 5 6 7 8
state S1 S2 S1 S1 S1 S2 S2 S2
Obs Xc1 Xc2 Xc3 Xc4 Xc5 Xc6 Xc7 Xc8

Observation 1

Observation 2

Observation 3
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Example: Learning HMM Parameters
 Transition probabilities:

 State S2 occurs 13 times in non-terminal locations

 Of these, it is followed immediately by S1 6 times

 It is followed immediately by S2 5 times

 P(S1 | S1) = 6/ 11;   P(S2 | S1) = 5 / 11

Time 1 2 3 4 5 6 7 8 9 10
state S1 S1 S2 S2 S2 S1 S1 S2 S1 S1
Obs. Xa1 Xa2 Xa3 Xa4 Xa5 Xa6 Xa7 Xa8 Xa9 Xa10

Time 1 2 3 4 5 6 7 8 9
state S2 S2 S1 S1 S2 S2 S2 S2 S1
Obs Xb1 Xb2 Xb3 Xb4 Xb5 Xb6 Xb7 Xb8 Xb9

Time 1 2 3 4 5 6 7 8
state S1 S2 S1 S1 S1 S2 S2 S2
Obs Xc1 Xc2 Xc3 Xc4 Xc5 Xc6 Xc7 Xc8

Observation 1

Observation 2

Observation 3

12 Oct 2010 6611755/18797
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Example: Learning HMM Parameters
 Transition probabilities:

 State S2 occurs 13 times in non-terminal locations

 Of these, it is followed immediately by S1 5 times

 It is followed immediately by S2 5 times

 P(S1 | S1) = 6/ 11;   P(S2 | S1) = 5 / 11

Time 1 2 3 4 5 6 7 8 9 10
state S1 S1 S2 S2 S2 S1 S1 S2 S1 S1
Obs Xa1 Xa2 Xa3 Xa4 Xa5 Xa6 Xa7 Xa8 Xa9 Xa10

Time 1 2 3 4 5 6 7 8 9
state S2 S2 S1 S1 S2 S2 S2 S2 S1
Obs Xb1 Xb2 Xb3 Xb4 Xb5 Xb6 Xb7 Xb8 Xb9

Time 1 2 3 4 5 6 7 8
state S1 S2 S1 S1 S1 S2 S2 S2
Obs Xc1 Xc2 Xc3 Xc4 Xc5 Xc6 Xc7 Xc8

Observation 1

Observation 2

Observation 3

12 Oct 2010 6711755/18797

Example: Learning HMM Parameters
 Transition probabilities:

 State S2 occurs 13 times in non-terminal locations

 Of these, it is followed immediately by S1 5 times

 It is followed immediately by S2 8 times

 P(S1 | S1) = 6/ 11;   P(S2 | S1) = 5 / 11

Time 1 2 3 4 5 6 7 8 9 10
state S1 S1 S2 S2 S2 S1 S1 S2 S1 S1
Obs Xa1 Xa2 Xa3 Xa4 Xa5 Xa6 Xa7 Xa8 Xa9 Xa10

Time 1 2 3 4 5 6 7 8 9
state S2 S2 S1 S1 S2 S2 S2 S2 S1
Obs Xb1 Xb2 Xb3 Xb4 Xb5 Xb6 Xb7 Xb8 Xb9

Time 1 2 3 4 5 6 7 8
state S1 S2 S1 S1 S1 S2 S2 S2
Obs Xc1 Xc2 Xc3 Xc4 Xc5 Xc6 Xc7 Xc8

Observation 1

Observation 2

Observation 3

12 Oct 2010 6811755/18797

Example: Learning HMM Parameters
 Transition probabilities:

 State S2 occurs 13 times in non-terminal locations

 Of these, it is followed immediately by S1 5 times

 It is followed immediately by S2 8 times

 P(S1 | S2) = 5 / 13;   P(S2 | S2) = 8 / 13

Time 1 2 3 4 5 6 7 8 9 10
state S1 S1 S2 S2 S2 S1 S1 S2 S1 S1
Obs Xa1 Xa2 Xa3 Xa4 Xa5 Xa6 Xa7 Xa8 Xa9 Xa10

Time 1 2 3 4 5 6 7 8 9
state S2 S2 S1 S1 S2 S2 S2 S2 S1
Obs Xb1 Xb2 Xb3 Xb4 Xb5 Xb6 Xb7 Xb8 Xb9

Time 1 2 3 4 5 6 7 8
state S1 S2 S1 S1 S1 S2 S2 S2
Obs Xc1 Xc2 Xc3 Xc4 Xc5 Xc6 Xc7 Xc8

Observation 1

Observation 2

Observation 3
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Parameters learnt so far
 State initial probabilities, often denoted as 

 (S1) = 2/3 = 0.66

 (S2) = 1/3 = 0.33

 State transition probabilities
 P(S1 | S1) = 6/11 = 0.545;  P(S2 | S1) = 5/11 = 0.455

 P(S1 | S2) = 5/13 = 0.385; P(S2 | S2) = 8/13 = 0.615

 Represented as a transition matrix
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Each row of this matrix must sum to 1.0
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Example: Learning HMM Parameters

 State output probability for S1
 There are 13 observations in S1

Time 1 2 3 4 5 6 7 8 9 10
state S1 S1 S2 S2 S2 S1 S1 S2 S1 S1
Obs Xa1 Xa2 Xa3 Xa4 Xa5 Xa6 Xa7 Xa8 Xa9 Xa10

Time 1 2 3 4 5 6 7 8 9
state S2 S2 S1 S1 S2 S2 S2 S2 S1
Obs Xb1 Xb2 Xb3 Xb4 Xb5 Xb6 Xb7 Xb8 Xb9

Time 1 2 3 4 5 6 7 8
state S1 S2 S1 S1 S1 S2 S2 S2
Obs Xc1 Xc2 Xc3 Xc4 Xc5 Xc6 Xc7 Xc8

Observation 1

Observation 2

Observation 3

12 Oct 2010 7111755/18797

Example: Learning HMM Parameters

 State output probability for S1
 There are 13 observations in S1

 Segregate them out and count
 Compute parameters (mean and variance) of Gaussian 

output density for state S1
Time 1 2 6 7 9 10  )()(50exp

1
)|( 1    XXSXP T

state S1 S1 S1 S1 S1 S1
Obs Xa1 Xa2 Xa6 Xa7 Xa9 Xa10

Time 3 4 9
state S1 S1 S1
Obs Xb3 Xb4 Xb9

Time 1 3 4 5
state S1 S1 S1 S1
Obs Xc1 Xc2 Xc4 Xc5
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Example: Learning HMM Parameters

 State output probability for S2
 There are 14 observations in S2

Time 1 2 3 4 5 6 7 8 9 10
state S1 S1 S2 S2 S2 S1 S1 S2 S1 S1
Obs Xa1 Xa2 Xa3 Xa4 Xa5 Xa6 Xa7 Xa8 Xa9 Xa10

Time 1 2 3 4 5 6 7 8 9
state S2 S2 S1 S1 S2 S2 S2 S2 S1
Obs Xb1 Xb2 Xb3 Xb4 Xb5 Xb6 Xb7 Xb8 Xb9

Time 1 2 3 4 5 6 7 8
state S1 S2 S1 S1 S1 S2 S2 S2
Obs Xc1 Xc2 Xc3 Xc4 Xc5 Xc6 Xc7 Xc8

Observation 1

Observation 2

Observation 3
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Example: Learning HMM Parameters

 State output probability for S2
 There are 14 observations in S2

 Segregate them out and count
 Compute parameters (mean and variance) of Gaussian 

output density for state S2
Time 3 4 5 8

1state S2 S2 S2 S2
Obs Xa3 Xa4 Xa5 Xa8

Time 1 2 5 6 7 8
state S2 S2 S2 S2 S2 S2
Obs Xb1 Xb2 Xb5 Xb6 Xb7 Xb8

Time 2 6 7 8
state S2 S2 S2 S2
Obs Xc2 Xc6 Xc7 Xc8
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We have learnt all the HMM parmeters

 State initial probabilities, often denoted as 
 (S1) = 0.66             (S2) = 1/3 = 0.33

 State transition probabilities
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 State output probabilities

 615.0385.0
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Update rules at each iteration

sequencesn observatio of no. Total

 stateat start  that sequencesn observatio of No.
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 Assumes state output PDF = Gaussian
 For GMMs, estimate GMM parameters from 

collection of observations at any state
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 Initialize all HMM parameters

Training by segmentation: Viterbi 
training

Initial  
models Segmentations Models Converged?

yes

no

p

 Segment all training observation sequences into states using the Viterbi
algorithm with the current models

 Using estimated state sequences and training observation sequences, 
reestimate the HMM parameters

 This method is also called a “segmental k-means” learning procedure

12 Oct 2010 11755/18797

Alternative to counting: SOFT 
counting

 Expectation maximization

 Every observation contributes to every state

12 Oct 2010 7811755/18797
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Update rules at each iteration

sequencesn observatio of no. Total
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Update rules at each iteration

sequencesn observatio of no. Total
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 The probability that the process was at s when 
it generated Xt given the entire observation

 Dropping the “Obs” subscript for brevity

),...,,,)((),...,,|)(( 2121 TT XXXststatePXXXststateP 

)|)(( ObsststateP 

),...,,,)(( 21 Ti xxxststateP  We will compute first
 This is the probability that the process visited s at 

time t while producing the entire observation
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 The probability that the HMM was in a particular state s 
when generating the observation sequence is the 
probability that it followed a state sequence that passed 
through s at time t

),...,,,)(( 21 TxxxststateP 

s

time
t
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 This can be decomposed into two multiplicative sections
 The section of the lattice leading into state s at time t and the 

section leading out of it

),...,,,)(( 21 TxxxststateP 

s

time
t
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 The probability of the red section is the total probability 
of all state sequences ending at state s at time t
 This is simply (s,t)

 Can be computed using the forward algorithm

The Forward Paths

time
t

s
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The Backward Paths
 The blue portion represents the probability of all state 

sequences that began at state s at time t
 Like the red portion it can be computed using a backward 

recursion

time
t
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The Backward Recursion

s

Can be recursively 
estimated starting 
from the final time 
time instant
(backward recursion)

))(|,...,,(),( 21 ststatexxxPts Ttt  

(s,t) (s,t)

(N,t)

t+1t

( )

time

 (s,t) is the total probability of ALL state sequences that 
depart from s at time t, and all observations after xt
 (s,T) = 1 at the final time instant for all valid final states
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The complete probability

s(s,t-1) (s,t)

(N,t)

))(,,...,,(),(),( 21 ststatexxxPtsts Ttt  

t+1tt-1
time(s1,t-1)
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Posterior probability of a state

 The probability that the process was in state 
s at time t, given that we have observed the 
data is obtained by simple normalization




 21 ),(),(),...,,,)((
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ObsststateP


 This term is often referred to as the gamma 
term and denoted by s,t
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Update rules at each iteration

sequencesn observatio of no. Total
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Update rules at each iteration

sequencesn observatio of no. Total
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),...,,,')1(,)(( 21 TxxxststateststateP 
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The a posteriori probability of 
transition
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 The a posteriori probability of a transition 
given an observation
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Update rules at each iteration

sequencesn observatio of no. Total
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State 
association 

b biliti
Initial  
models

 Every feature vector associated with every state of every HMM with a 
probability

Training without explicit segmentation: 
Baum-Welch training

Models Converged?
yes

probabilitiesmodels

 Probabilities computed using the forward-backward algorithm

 Soft decisions taken at the level of HMM state

 In practice, the segmentation based Viterbi training is much easier to 
implement and is much faster

 The difference in performance between the two is small, especially if we have 
lots of training data

Models Converged?

no
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HMM Issues

 How to find the best state sequence: Covered

 How to learn HMM parameters: Covered

 How to compute the probability of an 
observation sequence: Covered
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Magic numbers

 How many states:
 No nice automatic technique to learn this

 You choose
 For speech, HMM topology is usually left to right (no 

backward transitions))

 For other cyclic processes, topology must reflect nature 
of process

 No. of states – 3 per phoneme in speech

 For other processes, depends on estimated no. of 
distinct states in process
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Applications of HMMs

 Classification:
 Learn HMMs for the various classes of time series 

from training data

 Compute probability of test time series using the 
HMMs for each classHMMs for each class

 Use in a Bayesian classifier

 Speech recognition, vision, gene sequencing, 
character recognition, text mining, topic 
detection…
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Applications of HMMs

 Segmentation:
 Given HMMs for various events, find event 

boundaries
 Simply find the best state sequence and the locations 

where state identities change

 Automatic speech segmentation, text 
segmentation by topic, geneome 
segmentation, …
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Implementation Issues
 For long data sequences arithmetic underflow is a 

problem
 Scores are products of numbers that are all less than 1

 The Viterbi algorithm provides a workaround – work 
only with log probabilities
 Multiplication changes to addition computationally faster too Multiplication changes to addition – computationally faster too

 Underflow almost completely eliminated

 For the forward algorithm complex normalization 
schemes must be implemented to prevent underflow
 At some computational expense

 Often not worth it – go with Viterbi
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Classification with HMMs

 Speech recognition of isolated words:

 Training:

HMM for Yes HMM for No

P(Yes) P(X|Yes) P(No) P(X|No)

g
 Collect training instances for each word

 Learn an HMM for each word

 Recognition of an observation X
 For each word compute P(X|word)

 Using forward algorithm

 Alternately, compute P(X,best.state.sequence |word) 
 Computed using the Viterbi segmentation algorithm

 Compute P(word) P(X|word)
 P(word) = a priori probability of word

 Select the word for which P(word) P(X|word) is highest
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Creating composite models
HMM for Open HMM for Close

HMM for File

HMM for Open File

 HMMs with absorbing states can be combined into 
composites
 E.g. train models for open, close and file

 Concatenate them to create models for “open file” and “file close”
 Can recognize “open file” and “file close”

HMM for File Close
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Model graphs
HMM for “open”

HMM f “ l ”

HMM for “file”

 Models can also be composed into graphs
 Not just linearly

 Viterbi state alignment will tell us which 
portions of the graphs were visited for an 
observation X

HMM for “close”
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F
ile

 Trellis for “Open File” vs. “Close File”
 The VITERBI best path tells you what was spoken

Recognizing from graph
O

p
e

n
C

lo
se
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F
ile

 Trellis for “Open File” vs. “Close File”
 The VITERBI best path tells you what was spoken

Recognizing from graph

O
p

e
n

C
lo

se
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“Language” probabilities can be incorporated

P(Close)

P(Open)

P(file|close)

P(file|open)

HMM for “open”

HMM f “ l ”

HMM for “file”

 Transitions between HMMs can be assigned 
a probability
 Drawn from properties of the language

 Here we have shown “Bigram” probabilities

HMM for “close”
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 Recognizing one of four lines from “charge of the light brigade”
Cannon to right of them
Cannon to left of them
Cannon in front of them
Cannon behind them

 Each “word” is an HMM

This is used in speech recognition

to
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 Recognizing one of four lines from “charge of the light 
brigade”
 Graph reduction does not impede recognition of what was spoken

P(right | to)
P(of | right)

Graphs can be reduced sometimes

to

ofCannon them

right

left

frontin

behind

P(cannon)

P(to | cannon)

P(right | to)

P(in | cannon)

P(behind | cannon)

P(of | left)

P(them | of)

P(them|behind)

11755/18797

Speech recognition: An aside

 In speech recognition systems models are 
trained for phonemes
 Actually “triphones” – phonemes in context

 Word HMMs are composed from phoneme 
HMMHMMs

 Language HMMs are composed from word 
HMMs

 The graph is “reduced” using automated 
techniques
 John McDonough talks about WFSTs on 
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