11-755 Machine Learning for Signal Processing

Hidden Markov Models

Class 15. 12 Oct 2010
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Administrivia
o HW2 — due Tuesday

o Is everyone on the “projects” page?
Where are your project proposals?
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Recap: What is an HMM

v \ v

A

“Probabilistic function of a markov chain”

Models a dynamical system

System goes through a number of states

u Following a Markov chain model

On arriving at any state it generates observations
according to a state-specific probability distribution
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A Thought Experiment
1 just c;IIéd out the 6 from the
T guy.. gotta switch to pattern‘é/—
S o———

-

~_
blug

63154124 .. 44163212..

Two “shooters” roll dice

A caller calls out the number rolled. We only get to hear what he calls out

The caller behaves randomly

2 Ifhe has just called a number rolled by the blue shooter, his next call is that of the red
shooter 70% of the time

o Butif he has just called the red shooter, he has only a 40% probability of calling the red
shooter again in the next call

How do we characterize this?
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P(X | blue)

A Thought Experiment

0.3 ’, 0.4

o When he’s on the blue circle he calls out the blue dice

o When he’s on the red circle he calls out the red dice

o The histograms represent the probability distribution of the
numbers for the blue and red dice
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The dots and arrows represent the “states” of the caller

A Thought Experiment

0.3 ’, 0.4

P(X | blue)

When the caller is in any state, he calls a number based on the
probability distribution of that state

o We call these state output distributions

At each step, he moves from his current state to another state
following a probability distribution

o We call these transition probabilities

The caller is an HMM!!!

12 Oct 2010 11755/18797 6




What is an HMM

HMMs are statistical models for (causal) processes

The model assumes that the process can be in one of a
number of states at any time instant

The state of the process at any time instant depends only
on the state at the previous instant (causality, Markovian)

At each instant the process generates an observation from
a probability distribution that is specific to the current state

The generated observations are all that we get to see
o the actual state of the process is not directly observable
Hence the qualifier hidden
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Hidden Markov Models

Q QO O

A

A Hidden Markov Model consists of two components

o Astate/transition backbone that specifies how many states there are, and how they
can follow one another

o Aset of probability distributions, one for each state, which specifies the distribution
of all vectors in that state

(;? %E? O! O Markov chain

A Data distributions

* This can be factored into two separate probabilistic entities
— A probabilistic Markov chain with states and transitions
— Aset of data probability distributions, associated with the states
11755/18797

How an HMM models a process
G

HMM assumed to be
generating data

state
sequence OO0 —0———0—0 @00 @ —>O—I—0—>0
state

distributions l l

observation I
sequence
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HMM Parameters
0.6 0.7

The topology of the HMM 0.4

o Number of states and allowed
transitions

o E.g. here we have 3 states and
cannot go from the blue state to
the red

The transition probabilities

o Often represented as a matrix as
here

a Tjis the probability that when in
state i, the process will move to j

The probability =; of beginning

at any state s;

o The complete set is represented
asm

Bosbhe state output distributions., "

o N x> o

=
Il

v © o

v w o

HMM state output distributions

« The state output distribution is the distribution of data produced from
any state

« Typically modelled as Gaussian

1 ostewloitom

@Yol

P(x|s,) = Gaussian(x; 4,0;) =

The paremeters are p; and ©;

« More typically, modelled as Gaussian mixtures
K-1 )

P(x|s) = w Gaussian(x; 4 ;,©; ;)
j=0

« Other distributions may also be used
« E.g. histograms in the dice case
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The Diagonal Covariance Matrix
Diagonal covariance:
off-diagonal elements

Full covariance:
all elements are
non-zero

-0.5(x4)70(x-1) -3, (ke 202

For GMMs it is frequently assumed that the feature
vector dimensions are all independent of each other

Result: The covariance matrix is reduced to a diagonal

form

o The determinant of the diagonal ® matrix is easy
to compute
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Three Basic HMM Problems

What is the probability that it will generate a
specific observation sequence

Given a observation sequence, how do we
determine which observation was generated
from which state

o The state segmentation problem

How do we learn the parameters of the HMM
from observation sequences
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Computing the Probability of an
Observation Sequence

Two aspects to producing the observation:
o Progressing through a sequence of states
o Producing observations from these states
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Progressing through states
@

HMM assumed to be
generating data

state
seqguence  —0—0—0—>0—0—0 0000000000

The process begins at some state (red) here
From that state, it makes an allowed transition
o To arrive at the same or any other state

From that state it makes another allowed
transition
o And so on
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Probability that the HMM will follow
a particular state sequence

P(Sllsz’sav"') = P(Sl) P(Szlsl) P(Sslsz)"'

P(s,) is the probability that the process will initially be
in state s,

P(s;| s)) is the transition probability of moving to state
s; at the next time instant when the system is
currently in s;

o Also denoted by Tj earlier
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Generating Observations from States
@

HMM assumed to be
enerating data

state
seqguence [ )

v v v v

_— N
Ssevalon | P p PP ELLLLLLd

At each time it generates an observation from
the state it is in at that time
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Probability that the HMM will generate a
particular observation sequence given a
state sequence ( )

P(0,,0,,0;,...[5,,8;,5,,...) = P(0/]8,) P(0,[s,) P(0yS,)...

Computed from the Gaussian or Gaussian mixture for state s;

* P(0;| s) is the probability of generating
observation o, when the system is in state s;
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Proceeding through States and Producing
Qbservations

HMM assumed to be
generating data

state
sequence  #—9—0—0—0—0 00000000000

v

%b. v v v v v o v v v v v

istributions

NS NN

ol I NN

= At each time it produces an observation and
makes a transition
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Probability that the HMM will generate a
particular state sequence and from it, a
particular observation sequence

P(0,,0,,0;,...,5,,5,,5;,...) =

P(0,,0,,0,,...5,,5,,5;,---) P(S.,S,.5,,...) =
P(0,[s) P(0,l5,) P(0,]s,)... P(5,) P(,]8,) P(S,]s,)-..
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Probability of Generating an Observation
Sequence

= The precise state sequence is not known

= All possible state sequences must be
considered

P(o,,0,,0,,...) = a"%sible P(0,,0,,0,,...,5,,5,,5;s...) =
state.sequences

> P(0]s)P(0,]s,) P(0yls,).. P(s) P(s,[8) P(S;[s,)-..

all.possible
state.sequences
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Computing it Efficiently

Explicit summing over all state sequences is not
tractable
o A very large number of possible state sequences

Instead we use the forward algorithm

= A dynamic programming technique.
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‘ Mlustrative Example

= Example: a generic HMM with 5 states and a “terminating
state”.

o Left to right topology
= P(s) =1 for state 1 and O for others

o The arrows represent transition for which the probability is not 0

= Notation:
o P(siIs) =T
o We represent P(o, | s;) = by(t) for brevity
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Diversion: The Trellis

a(s,t)

State index

Feature vectors

t-1 t ;
(time)
I 10 1

= The trellis is a graphical representation of all possible paths through the
HMM to produce a given observation

= The Y-axis represents HMM states, X axis represents observations

Every edge in the graph represents a valid transition in the HMM over a

single time step

= Every node represents the event of a particular observation being
generated from a particular state
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The Forward Algorithm

a(s,t) = P(X,, X,,..., X, State(t) = s)

a(s,t)

time

State index

t1 t
a(s,t) is the total probability of ALL state
sequences that end at state s at time t, and
all observations until x,
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The Forward Algorithm
a(s,t) = P(X, X,,..., X, State(t) = s)

first

a(s,t-1) a(s,t)

forward recursion

State index

a(1,t-1) < - time
a(s,t)=Y a(s' t-1)P(s|s')P(x|s)

a(s,t) can be recursively computed in terms of
a(s',t'), the forward probabilities at time t-1
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The Forward Algorithm
Totalprob =" a(s,T)

State index
- %

time

In the final observation the alpha at each state gives the
probability of all state sequences ending at that state
General model: The total probability of the observation
is the sum of the alpha values at all states
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The absorbing state

Observation sequences are assumed to end
only when the process arrives at an

absorbing state
o No observations are produced from the absorbing
state

12 0ct 2010

The Forward Algorithm
Totalprob = a(Saeoming: T +1) .0

State index

T time
a(sabsorbing ’T +:I') = Z a(S'rT)P(Sabsorbing | Sl)
3

Absorbing state model: The total probability is the alpha
computed at the absorbing state after the final
observation
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Problem 2: State segmentation
Given only a sequence of observations, how

do we determine which sequence of states
was followed in producing it?

12 Oct 2010




The HMM as a generator

HMM assumed to be
generating data

state
sequence

v v

_— PLELEE L
sssesaton | | | L L EERN R

sequence

= The process goes through a series of states
and produces observations from them
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States are hidden

HMM assumed to be
generating data

state
sequence

state
distribution

observation
ewence 1 1T 1T LTTLTITILITTLTI

= The observations do not reveal the underlying
state
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The state segmentation problem

HMM assumed to be
generating data

state
sequence 00— 0—0—0 00000000000

= i

observation
sogence 1 1 11111

= State segmentation: Estimate state sequence
given observations
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Estimating the State Sequence

= Many different state sequences are capable of
producing the observation

= Solution: Identify the most probable state
sequence
o The state sequence for which the probability of
progressing through that sequence and generating the
observation sequence is maximum

o ie P(0,,0,,0,,...,5,,5,,S,,...) is maximum
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Estimating the state sequence
= Once again, exhaustive evaluation is impossibly
expensive
= But once again a simple dynamic-programming
solution is available
P(0,,0,,0;,...,5,,5,,S;,..) =

P(0,[s) P(0,[s,) P(0,]s;)... P(s,) P(s,]8,) P(S,]s;)...

= Needed:
argmaxg o o P(0,]5,)P(s;)P(0,]5,)P(s; [ 5,)P(0; | S3)P(s; | S,)
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Estimating the state sequence

= Once again, exhaustive evaluation is impossibly
expensive
= But once again a simple dynamic-programming
solution is available
P(0,,0,,0;,...,5,,5,,5;,...) =

P(0,[s) P(0,15,) P(0,]S;)... P(5,) P(s,]8,) P(S,]S,)-..

= Needed: —
gm0, |SPEIF( 5P 3P0 )P )
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The HMM as a generator

HMM assumed to be
generating data

state
sequence

state

distributions

observation
sequence

= Each enclosed term represents one forward
transition and a subsequent emission
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The state sequence

= The probability of a state sequence 2,2,2,2,88y ending
attime t, and producing all observations until o
9 P(0y. 11, 2.2,2,2, 8¢, 08,) = P(04.12,7,7.2,2, 5, ) P(0ds))P(s,ls,)

= The best state sequence that ends with s,,s, at t will
have a probability equal to the probability of the best
state sequence ending at t-1 at s, times P(o,|s)P(s,Is,)
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Extending the state sequence

state
seguence

state
distributions

observation
sequence

= The probability of a state sequence ?,2,2,2,s,.s,
ending at time t and producing observations until o,
a P(0y14,0, 7,2,2,2,8,,8,) = P(01,1.1,7,2,2,2, 5, )P(0ys,)P(s,ls,)
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‘ Trellis

= The graph below shows the set of all possible
state sequences through this HMM in five time
instants

%%?% /
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‘ The cost of extending a state sequence

= The cost of extending a state sequence ending
at s, is only dependent on the transition from s,
to s,, and the observation probability at s,

P(o(s,)P(s,ls,)
Z 7
% / / S
time
11755/18797 t
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‘ The cost of extending a state sequence

= The best path to s, through s, is simply an

extension of the best path to s,
BestP(0, ,.4,,2,2,2, 8, )
P(ods,)P(s,ls)

time
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The Recursion

= The overall best path to s, is an extension of
the best path to one of the states at the
previous time

time
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The Recursion

= Prob. of best path to s, =
Max, BestP(0; 11,7,%,2,% 8, ) P(0]s)P(s,ls,)

| Finding the best state sequence

= The simple algorithm just presented is called the VITERBI
algorithm in the literature

o After A.J.Viterbi, who invented this dynamic programming algorithm
for a completely different purpose: decoding error correction codes!
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Sy
time
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| Viterbi Search (contd.)
itial initialized with path- =P(s,)b, (1 .
Initial state initialized with path-score = P(s,)b,(1) time
10w All other states have score 0,singe, P(S;) = O for them “

‘ Viterbi Search (contd.)

@ State with best path-score
© state with path-score < best
@ State without a valid path-score

PO = max R (+1) tb; 0]

State transition probability, i to j
Score for state j, given the input at time t
Total path-score ending up at state j at time t

time
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‘ Viterbi Search (contd.)

P = max R (+1) t;b; 0]

State transition probability, i to j
Score for state j, given the input at time t
Total path-score ending up at state j at time t

time
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‘ Viterbi Search (contd.)

‘ Viterbi Search (contd.)

time
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‘ Viterbi Search (contd.)
time

time
‘ Viterbi Search (contd.)
time

‘ Viterbi Search (contd.)
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| Viterbi Search (contd.)

‘ Viterbi Search (contd.)

THE BEST STATE SEQUENCE IS THE ESTIMATE OF THE STATE
SEQUENCE FOLLOWED IN GENERATING THE OBSERVATION

120ct 2010 11755/18797
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‘ Problem3: Training HMM parameters
= We can compute the probability of an
observation, and the best state sequence given
an observation, using the HMM's parameters

= But where do the HMM parameters come from?

= They must be learned from a collection of
observation sequences

12 0ct 2010 11755/18797

| Learning HMM parameters: Simple
procedure — counting

= Given a set of training instances
= Iteratively:

1. Initialize HMM parameters

2. Segment all training instances

3. Estimate transition probabilities and state
output probability parameters by counting

120t 2010 11755/18797 s

‘ Learning by counting example

= Explanation by example in next few slides

= 2-state HMM, Gaussian PDF at states, 3
observation sequences

= Example shows ONE iteration
o How to count after state sequences are obtained
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‘ Example: Learning HMM Parameters

= We have an HMM with two states s1 and s2.

= Observations are vectors x;
a i-th sequence, j-th vector
= We are given the following three observation sequences
o And have already estimated state sequences

Time [1 |2 [3 T[4 [5 [6 |7 [8 [9 TJ10 |
Observation 1 state [S1 |S1 [S2 [S2 |s2 [S1 [S1 |s2 [si [si I

%

0bs [ X [Xep [ Xen [Xou [ X [ Ko [ X [ Ko [ XKoo [Xag

Time[1 [2 [3 [4 [5 [6 [7 [8 J9 |
Observation 2 state |[S2 [S2 [S1 st |s2 [s2 |s2 |s2 [si |
Obs [ X [Xp [Xen [ X [Xes [Xos [Xeg [ X | X

Time [1 |2 [3 [4 [5 [6 |7 |8
Observation 3 state [S1 [S2 |S1 [s1 [s1 |s2 [s2 [s2 |
Obs [ X [Xop [Xeg [Xep [Xeg [Xea X [Xas |
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‘ Example: Learning HMM Parameters

= Initial state probabilities (usually denoted as =):
o We have 3 observations

o 2 of these begin with S1, and one with S2
o n(S1)=2/3, n(S2) = 1/3

Observation 1

Observation 2

Observation 3
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‘ Example: Learning HMM Parameters

= Transition probabilities:
o State S1 occurs 11 times in non-terminal locations

Observation 1

Time [1 |2 [6 17 T8 o=
Observation 2 state |S2 | S2 (| S1 1 2 |s2 [s2 [s2 (s1
Obs | X [ Xy e | Ko | Xog [ Xeg | Xy o

[Time 2 6 |7 |8
Observation 3 state | S1_)Ys2 ([s1 st ()si_Jsz [s2 [s2
Obs X | X - = X [ Xg | Xes
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‘ Example: Learning HMM Parameters

= Transition probabilities: Q

o State S1 occurs 11 times in non-terminal locations
o Ofthese, it is followed immediately by S1 6 times

Observation 1

Time | 1 2 6 7 8
Observation 2 state [S2 |S2 {|S1 1 2) [s2 |s2 [s2 {(s1
Obs | Xy | X e " 6 [ X [ Xig [ Xeg [ X
Time 2 7 8
Observation 3 state{ | s1_) s2 (| si{Rsi{(sy Ds) [s2 [s2
Obs T X v i C e [ X | X
120ct2010 11735/18797 @

‘ Example: Learning HMM Parameters

= Transition probabilities:
o State S1 occurs 11 times in non-terminal locations
o Ofthese, it is followed immediately by S1 6 times
o ltis followed immediately by S2 5 times

&8

Observation 1

Observation 2

Observation 3
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‘ Example: Learning HMM Parameters

&8

o State S1 occurs 11 times in non-terminal locations
o Ofthese, it is followed immediately by S1 6 times
Q
a

= Transition probabilities:

Itis followed immediately by S2 5 times
P(S1|S1)=6/11; P(S2|S1)=5/11

[Time[2 T2 3 T4 [5 [6 J7 [8 [9 TJi0 |
Observation 1 state [S1 |S1 [S2 |s2 [s2 [S1 [s1 |s2 [s1 [s1 |
Obs [ Xy [ Xy [Xan [Xas [Xen [Xas [Xap [Xen [ X0 [Xun ]
[Time[1 T2 3 T4 [5 [6 |7 8 9 |
Observation 2 state |[S2 |S2 [SL [si |s2 [s2 [s2 |s2 |si |
Obs [ X [ Xy [Xen [ Xow [Xee [Xog [Xeg [Xon [Xeo |
[Time[1 T2 T3 T4 [5 6 [7 [8 |
Observation 3 |Lite [s1 Ts2 [s1 st [s1 Js2 [s2 [s2
Obs [ X [ X [Xeg [Xey [Xeg [Xea [Xg [X
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‘ Example: Learning HMM Parameters

= Transition probabilities:
o State S2 occurs 13 times in non-terminal locations

&8

Observation 1

Observation 2

Observation 3

12 Oct 2010 11755/18797
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‘ Example: Learning HMM Parameters

= Transition probabilities: Q

o State S2 occurs 13 times in non-terminal locations
a  Ofthese, it is followed immediately by S1 5 times

[Time[1 T2 6 5 No0 ]
Observation 1 state [S1 | s1 \S2 Ws2 WsA Js1 SR Jst [g1
Obs | X, | X " - Nt X0

Observation 2

Time [ 1 3 5
Observation 3 state [S1 ([ )si &_1 s1 {(s2 (s2 Q s2
Obs [ Xy [ [ X R [T TR
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‘ Example: Learning HMM Parameters

= Transition probabilities: Q

o State S2 occurs 13 times in non-terminal locations
o Ofthese, it is followed immediately by S1 5 times
o Itis followed immediately by S2 8 times

Observation 1

Observation 2

Time |1 3 4 5 .
Observation 3 state [S1 ([S2 JS1 [S1 |S1 (S S:
Obs | X, = [ X [ X | X

12 0ct 2010 11755/18797 8

‘ Example: Learning HMM Parameters

= Transition probabilities: Q

State S2 occurs 13 times in non-terminal locations

a
o Ofthese, it is followed immediately by S1 5 times
o Itis followed immediately by S2 8 times
0 P(S1]S2)=5/13; P(S2|S2)=8/13
[Time[2 T2 3 T4 [5 [6 [7 [8 [9 TJi0 |
ob tion 1 state [S1 [S1 [S2 [s2 [s2 [si [s1 |s2 [s1 [s1 |
Servation Obs |0, | X X [ Xas e [ %o 100 [ X 1% [ %o |
[Time[1 T2 3 T4 [5 [6 J7 8 J9 |
Observation 2 state |[S2 |S2 [SL [si |s2 [s2 [s2 |s2 [si |
Obs [ X [Xup [Xen [ Xow [Xee [Xos [Xeg [Xon [Xeo |
[Tme [T 2 [3 [4 [5 6 [7 s |
Observation 3 |Lite [s1 Ts2 [s1 st [s1 Js2 [s2 [s2
s [ X X [X X [Xe [Xea [Xg X
12062010 1753/18797 ©

Parameters learnt so far

= State initial probabilities, often denoted as «
o m(S1)=2/3=0.66
o m(S2)=1/3=0.33

= State transition probabilities
o P(S1|S1)=6/11=0.545; P(S2 | S1)=5/11 = 0.455
o P(S1]|S2)=5/13=0.385; P(S2 | S2) = 8/13 = 0.615
o Represented as a transition matrix

_(P(s1]S1) P(S2|S1)) (0.545 0.455
" P(s11S2) P(S2|S2)) (0.385 0.615

Each row of this matrix must sum to 1.0
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‘ Example: Learning HMM Parameters
= State output probability for S1

o There are 13 observations in S1 Q

[Time[2 T2 3 T4 [5 [6 [7 [8 [9 Ji0 |
state [S1 [S1 [S2 [S2 |s2 |si |si |s2 [st |st
Obs [Xar [Xop | Xan | Xay | Xer [Xos [Xep | Xan [Xoo [ Xorg

Observation 1

[Time [T T2 |3 fa s e [7 [8 [9 ]
Observation 2 state [S2 |s2 [S1 |s1 [s2 [S2 [s2 |s2
Obs [ X [ Xy [ X [ X [ X [Xos [Xey [Xon [Xea |

[Time[1 T2 T3 T4 [5 J6 [7 8 |
Observation 3 |Lite Ist [s2 [s1 [s1 [s1 [s2 [s2 [s2
s [ Xor [ Xop [ Koo [Xeg [ Ko [ X [ X [X
12 Oct 2010 11755/18797 7

Example: Learning HMM Parameters

= State output probability for S1
o There are 13 observations in S1

o Segregate them out and count

= Compute parameters (mean and variance) of Gaussian
output density for state S1
[Time]1 T2 6 J7 9 T[10 | 1 Frat
sae ST ST Ts1 {51 [sT {51 | P18 = e SO0 ) O (K~ )
s [Xo [Xop [Xan [Xor [Xao [Xaio ]

L (X + Xgp + Xog+ Xog + Xog + Xagg + Xpg +
T13 Xy +>< +><C+XE+XE+Xc

(Xa =1 )Xoy = 1) + (X o= 11 X oo = 1) +

L .
?l;l-m 13| (Koo =4 )Xo =4n )"+ (Ko = 1)Ko =41 -
(o= ) Xey =) + (X =g X = ) +

[Obs [Xo X [Xu [Xs |
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‘ Example: Learning HMM Parameters
= State output probability for S2

o There are 14 observations in S2 Q

Observation 1

[Time[1 2 73 T4 [5 T6 [7 [8 9 |
state [S2 [S2 [s1 [s1 [s2 [s2 [s2 [s2 [si
Obs [ X [ | X [ X0 [Xee [ X0 [ X | X

Time[1 [2 [3 T[4 1[5 6 7 8
state [S1 |S2 [S1 [s1 [si1 [S2 [S2 |s2
Obs [ X [Xeop [X [Xo [Xe [Xeg [Xo [Xeg

Observation 2

Observation 3

120ct 2010 11755/18797 3

‘ Example: Learning HMM Parameters
= State output probability for S2
o There are 14 observations in S2

o Segregate them out and count

=  Compute parameters (mean and variance) of Gaussian
output density for state S2

PX[S,) =mexp(fo.5(x 1) (X ~ 1))

Time [T 2 |5 6 [7 |8 |
state [S2 [S2 [S2 [s2 [s2 [s2 |
Obs [ X [Xip [Xee [Xeg [Xer [Xea |

1[Xﬂ+Xa,+Xas+XaB+Xm+Xh2+Xh5+
a—
Time [2_ 67 _[8 2 18{ Xup + Xur + Xog + Xz + Xeg + Xog + X oo
state [S2 [S2 [S2 [S2
Obs 1

X X %o X 0, =Xy XXy = 11,) +)

1206t 200 11751 b 2

)

We have learnt all the HMM parmeters

= State initial probabilities, often denoted as n
o n(S1)=0.66 n(S2) =1/3=0.33
= State transition probabilities

0.545 0.455
- (0.385 O.615J
= State output probabilities
State output probability for S1 State output probability for S2
exp(-0.5(X — )" ©;1(X - 1,)

P(X|8,) =———exp(-0.5(X — i) ©;(X ~ 1)) P(X \s»:%
@a)’16, (27)° |0,

12 0ct 2010 11755/18797 75

‘ Update rules at each iteration

No. of observation sequences that start at state s,
Total no. of observation sequences

Zl Z Z Xobs,t

bs tistate(t)=s; & state(t+1)=s obs tistate(t)=s,
P(s; | 5;) = et A C
(s;1s) Z zl Hi Z Zl

obs tistate(t)=s;.

7(s) =

obs t:state(t)=s;.

Z(Xubs,t _ﬂi)(xum _/”i)T

_ obs tstate(t)=s;
o > o1

obs tistate(t)=s;.
= Assumes state output PDF = Gaussian

o For GMMs, estimate GMM parameters from
LoemCOllection of observations at any state .

| Training by segmentation: Viterbi
training

— yes
mogels ‘

no

Segmentations

+ Initialize all HMM parameters

+ Segment all training observation sequences into states using the Viterbi
algorithm with the current models

# Using estimated state sequences and training observation sequences,
reestimate the HMM parameters

# This method is also called a “segmental k-means” learning procedure

12 0ct 2010 11755/18797

‘ Alternative to counting: SOFT
counting

= Expectation maximization
= Every observation contributes to every state

12 Oct 2010 11755/18797 78
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| Update rules at each iteration

> P(state(t =1) = si| Obs)

7z(s) = = -
Total no. of observation sequences

> > P(state(t) = s, state(t +1) = s; | Obs)
_— Obs t
P(s; 18] = S°S P(state(t) = 5, | Obs)

Obs t

ZZ P(state(t) =s; | ObS)XOhs‘l

_ Obs t

TS p(state(t) =5, | Obs)
Obs t
D" P(state(t) = 5; | ObS)(X e, — £) (X op = £4)
@ - Obs t

! D> P(state(t) = s, | Obs)

Obs t

= Every observation contributes to every state

120ct 2010 11755/18797 9

| Update rules at each iteration
Y @(state(t =1) = s, | Obs)

m(s)==—" :
Total no. of observation sequences

> > @(state(t) = 5,, state(t +1) = s; | Obs)
_ Obs t
P(s;1s)= S5 P(state(t) = 5, | Obs)

Obs t
> S{P(state(t) =, | ObS)X oy,
Ok 1 ’

A TS p(state(t) =5, | Obs)

obs T
zz (state(t) = s; [ODSY(X oy r = £4)(X ops ¢ _/”u)T
0. = Obs t
' "> P(state(t) = s, | Obs)
Obs 1

= Where did these terms come from?

12 0ct 2010 11755/18797 80

. P(state(t) = | Obs)

= The probability that the process was at s when
it generated X; given the entire observation
= Dropping the “Obs” subscript for brevity

P(state(t) =s| X,, X,,..., X;) oc P(state(t) =s, X;, X,,..., X;)
= We will compute P(state(t) =s;, X, X,,..., X; ) first

o This is the probability that the process visited s at
time t while producing the entire observation

12 0ct 2010 11755/18797 81

‘ P(state(t) =S, X;, X, ..., X; )

= The probability that the HMM was in a particular state s
when generating the observation sequence is the
probability that it followed a state sequence that passed
through s at time t

time

12 Oct 2010 11755/18797 82

‘ P(state(t) =S, X, X, ..., X; )

= This can be decomposed into two multiplicative sections

o The section of the lattice leading into state s at time t and the
section leading out of it

> time

12 0ct 2010 11755/18797 83

The Forward Paths

= The probability of the red section is the total probability
of all state sequences ending at state s at time t
a This is simply a(s,t)
o Can be computed using the forward algorithm

12 Oct 2010 11755/18797 84
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The Backward Paths

= The blue portion represents the probability of all state
sequences that began at state s at time t
o Like the red portion it can be computed using a backward
recursion

time

120ct 2010 11755/18797

The Backward Recursion
B(5,1) = P(X 1, X iz, X | State(t) = s)

ﬁ(N,t) Can be recursively
estimated starting
from the final time
time instant

B(S't) (backward recursion)

B(s.t)

time

Bls) =2 B(S' t+DP(SI9)P (., | S)

po
= PB(s,t) is the total probability of ALL state sequences that
depart from s at time t, and all observations after x;
a f(s,T) =1 at the final time instant for all valid final states

12 0ct 2010 11755/18797 86

The complete probability
a(s, 1) B(s,t) = P(X.q, Xiizyee Xr , StAtE(L) = 5)

B(N.Y)
afst-1) B(s.t)

o(sy,t-1) time
t-1 t t+1

12 0ct 2010 11755/18797

Posterior probability of a state

= The probability that the process was in state
s at time t, given that we have observed the
data is obtained by simple normalization

P(state(t) = S, X;, X,,..., X; ) a(s,t)B(s,t)

P(state(t) = Obs) = > P(state(t) =8, X, Xpeers Xy ) - D als t)pst)

= This term is often referred to as the gamma
term and denoted by v,

12 Oct 2010 11755/18797

‘ Update rules at each iteration
> @(state(t =1) =5, | Obs)
”(Su) — Obs .
Total no. of observation sequences
> P(state(t) =s,, state(t +1) = s; | Obs)

P(s;[5) = S°S" P(state(t) =, | Obs)

Obs t
Z P(state(t) = s; | ObS)X gps ¢
_ Ok 1 :

B S S P(state(t) = 5, | Obs)

Obs t

Zz (state(t) = s; | ODSY X ops, = £4) (X ops, = £4)"
— Obs t
= > P(state(t) =, |Obs)

Obs t

= These have been found

12 0ct 2010 11755/18797

‘ Update rules at each iteration

> P(state(t =1) =s, | Obs)

”(Su) — Obs -
Total no. of observation sequences

> > ®(state(t) =s;, state(t +1) = s; | Obs)
P(s;|s) ==

> P(state(t) =, | Obs)

Obs t

33" P(state(t) =, | Obs) X o,
_Obs ¢ '

A S S P(state(t) = 5, | Obs)
D" P(state(t) = s; | ObS)(X ons, — £4) (X opsr = £4)"

® =0t
' > P(state(t) = 5; | Obs)

Obs t
= Where did these terms come from?

12 Oct 2010 11755/18797 90
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‘ P(state(t) = s, state(t +1) = S', X, X5 eer X )

‘ P(state(t) = s, state(t +1) =", X, X,,..., X;)

a(s,t)

time

t t+1
11755/18797

time
b s
‘ P(state(t) = s, state(t +1) = S', X;, X5, X7 )
a(s,t) P(s'| )P (x4 | s")
time

‘ P(state(t) = s, state(t +1) = S', X;, X,,..., X7 )

a(s,O)P(sIs)P(x., [87) A(s',t+1)

time

‘ The a posteriori probability of
transition

a(S,)P(S'|5)P(X | $)A(S t+1)

P(state(t) = s, state(t +1) = s'| Obs) = ZZ“(% DP(S, 18P0 [5,) A5, 1+D)
S 5

= The a posteriori probability of a transition
given an observation

‘ Update rules at each iteration

> @(state(t =1) = s, | Obs)
7(s) ="

Total no. of observation sequences

> > ®(state(t) =s;, state(t +1) = s; | Obs)
P(s;|s) ==

> P(state(t) =, | Obs)

Obs t
>3 {P(state(t) =, | ObS)X o,
_Obs ¢ )

A S S P(state(t) = 5, | Obs)
Obs t
Zz (state(t) =s; | ObS)(X ops = £4) (Xopsx = 44 )
@» = Obs t
! > P(state(t) = 5; | Obs)
Obs t
= These have been found
12 Oct 2010 11755/18797
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Training without explicit segmentation:
Baum-Welch training

¢ Every feature vector associated with every state of every HMM with a
probability

= State
Initial iati yes
models Srsgggtlyailtilt?:s Models <Converged?
no
+ Probabilities computed using the forward-backward algorithm

¢ Soft decisions taken at the level of HMM state

+ In practice, the segmentation based Viterbi training is much easier to
implement and is much faster

# The difference in performance between the two is small, especially if we have
lots of training data

12 Oct 2010 11755/18797

HMM Issues

How to find the best state sequence: Covered
How to learn HMM parameters: Covered

How to compute the probability of an
observation sequence: Covered

12 0ct 2010 11755/18797 98

Magic numbers

How many states:
o No nice automatic technique to learn this
o You choose

For speech, HMM topology is usually left to right (no
backward transitions)

For other cyclic processes, topology must reflect nature
of process

No. of states — 3 per phoneme in speech

For other processes, depends on estimated no. of
distinct states in process

12 0ct 2010 11755/18797 9

Applications of HMMs

Classification:

o Learn HMMs for the various classes of time series
from training data

o Compute probability of test time series using the
HMMs for each class

o Use in a Bayesian classifier

o Speech recognition, vision, gene sequencing,
character recognition, text mining, topic
detection...

12 Oct 2010 11755/18797 100

Applications of HMMs

Segmentation:
o Given HMMs for various events, find event
boundaries

Simply find the best state sequence and the locations
where state identities change

Automatic speech segmentation, text

segmentation by topic, geneome
segmentation, ...

12 0ct 2010 11755/18797 101

Implementation Issues

For long data sequences arithmetic underflow is a
problem
o Scores are products of numbers that are all less than 1

The Viterbi algorithm provides a workaround — work
only with log probabilities

o Multiplication changes to addition — computationally faster too
a Underflow almost completely eliminated

For the forward algorithm complex normalization
schemes must be implemented to prevent underflow
o At some computational expense

o Often not worth it — go with Viterbi

12 Oct 2010 11755/18797 102
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‘ Classification with HMMs

HMM for Yes HMM for No
P(Yes) P(X|Yes) P(No) P(X|No)

= Speech recognition of isolated words:
= Training:
o Collect training instances for each word
o Learn an HMM for each word
= Recognition of an observation X
o For each word compute P(X|word)
= Using forward algorithm
. compute P(X,best.state.sequence [word)
o Computed using the Viterbi segmentation algorithm
o Compute P(word) P(X|word)
= P(word) = a priori probability of word
o Select the word for which P(word) P(X|word) is highest

120ct 2010 11755/18797
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‘ Creating composite models

HMM for Open HMM for Close

HMM for File

S8 & °

HMM for File Close

S

= HMMs with absorbing states can be combined into
composites
o E.g. train models for open, close and file
o Concatenate them to create models for “open file” and “file close”
1ocon® Can recognize “open file” and;sfilg,close” 104

‘ Model graphs

HMM for “open”

HMM for “file”

HMM for “close”

= Models can also be composed into graphs
o Not just linearly

= Viterbi state alignment will tell us which
portions of the graphs were visited for an
observation X

12 0ct 2010 11755/18797
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‘ Recognizing from graph

« Trellis for “Open File” vs. “Close File”
# The VITERBI best path tells you what was spoken

File ——>®

Close

2.0.0.03%.0.0

@ L,Q
1
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‘ Recognizing from graph

+ Trellis for “Open File” vs. “Close File”
# The VITERBI best path tells you what was spoken

P
K] E B

[¢-
g q 1
o

d [ 1]

ol
ERE

[ N T N N TN N N T N
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“Language” probabilities can be incorporated

HMM for “open”

P(Open) /’9—'9—'9—” P(filelopen)

= HMM for file”
P(Close) \@ P(ilelclose)

HMM for “close”

= Transitions between HMMs can be assigned
a probability
o Drawn from properties of the language
o Here we have shown “Bigram” probabilities

12 Oct 2010 11755/18797 108
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Eachword is an HVMM —&G 3 o

This is used in speech recognition

Recognizing one of four lines from “charge of the light brigade”
Cannon to right of them
Cannon to left of them
Cannon in front of them
Cannon behind them
Each “word” is an HMM

Cannol

{behind————[then]

11755/18797

Graphs can be reduced sometimes

Recognizing one of four lines from “charge of the light
brigade”

o Graph reduction does not impede recognition of what was spoken

P(of | right)

,
, P(of | left)
.
P(to | cannon)
~

.
. P(them | of)
N

P(canngn) < ’
o
~ ~
<
Cannol

P(in | cannon)” |

P(behind | cannon)— — —~

11755/18797

Speech recognition: An aside

In speech recognition systems models are
trained for phonemes
o Actually “triphones” — phonemes in context
Word HMMs are composed from phoneme
HMMs
Language HMMs are composed from word
HMMs
The graph is “reduced” using automated
techniques
o John McDonough talks about WFSTs on

noad hursday

11755/18797
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