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Hidden Markov Models

Class 15.  12 Oct 2010

112 Oct 2010 11755/18797



Administrivia
 HW2 – due Tuesday

 Is everyone on the “projects” page?
 Where are your project proposals?Where are your project proposals?
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RecapRecap: : What is an HMMWhat is an HMM

 “Probabilistic function of a markov chain”
 Models a dynamical system
 System goes through a number of states

 Following a Markov chain model

 On arriving at any state it generates observations 
according to a state-specific probability distributionaccording to a state specific probability distribution
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A Thought Experiment
I just called out the 6 from the blue
guy.. gotta switch to pattern 2..

6 4 1 5 3 2 2 2 …

6 3 1 5 4 1 2 4 4 4 1 6 3 2 1 2
 Two “shooters” roll dice
 A caller calls out the number rolled. We only get to hear what he calls out

6 3 1 5 4 1 2 4 … 4 4 1 6 3 2 1 2 …

 The caller behaves randomly
 If he has just called a number rolled by the blue shooter, his next call is that of the red 

shooter 70% of the time
 But if he has just called the red shooter he has only a 40% probability of calling the red But if he has just called the red shooter, he has only a 40% probability of calling the red 

shooter again in the next call

 How do we characterize this?
12 Oct 2010 411755/18797



A Thought Experiment
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 The dots and arrows represent the “states” of the caller
 When he’s on the blue circle he calls out the blue dice
 When he’s on the red circle he calls out the red dice
 The histograms represent the probability distribution of the 

numbers for the blue and red dice
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A Thought Experiment
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 When the caller is in any state, he calls a number based on the 
probability distribution of that state
 We call these state output distributions

 At each step, he moves from his current state to another state 
following a probability distribution
 We call these transition probabilities

 The caller is an HMM!!!
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What is an HMM
 HMMs are statistical models for (causal) processes

 The model assumes that the process can be in one of aThe model assumes that the process can be in one of a 
number of states at any time instant

 The state of the process at any time instant depends only p y p y
on the state at the previous instant (causality, Markovian)

 At each instant the process generates an observation from p g
a probability distribution that is specific to the current state

 The generated observations are all that we get to see
 the actual state of the process is not directly observable 

 Hence the qualifier hidden
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Hidden Markov Models

 A Hidden Markov Model consists of two components
 A state/transition backbone that specifies how many states there are and how they A state/transition backbone that specifies how many states there are, and how they 

can follow one another
 A set of probability distributions, one for each state, which specifies the distribution 

of all vectors in that state

Markov chain

• This can be factored into two separate probabilistic entities

Data distributions

This can be factored into two separate probabilistic entities
– A probabilistic Markov chain with states and transitions
– A set of data probability distributions, associated with the states

11755/18797



How an HMM models a processHow an HMM models a process

HMM assumed to be 
generating data

state 

state 

sequence

distributions

observation
sequence
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HMM Parameters
0 6 0 7

 The topology of the HMM
 Number of states and allowed 

transitions

0.6
0.4 0.7

0 3
 E.g. here we have 3 states and 

cannot go from the blue state to 
the red

0.3

0.5

0.5

 The transition probabilities
 Often represented as a matrix as 

here

0 5











 3.7.0
04.6.

T
here

 Tij is the probability that when in 
state i, the process will move to j





 5.05.

 The probability i of beginning 
at any state si
 The complete set is represented p p

as 

 The state output distributions12 Oct 2010 1011755/18797



HMM state output distributions
• The state output distribution is the distribution of data produced from 

any state
• Typically modelled as Gaussian• Typically modelled as Gaussian

 
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• The paremeters are i and i

• More typically, modelled as Gaussian mixtures
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jijijii xGaussianwsxP 

• Other distributions may also be used
• E.g. histograms in the dice case





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j

jijijii xGaussianwsxP 

.g. stog a s t e d ce case
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The Diagonal Covariance Matrix
Full covariance:
all elements are
non-zero

Diagonal covariance:
off-diagonal elements
are zero

-0.5(x-)T-1(x-) i (xi-i)2 / 2i
2

 For GMMs it is frequently assumed that the feature 
vector dimensions are all independent of each othervector dimensions are all independent of each other

 Result: The covariance matrix is reduced to a diagonal Result: The covariance matrix is reduced to a diagonal 
form
 The determinant of the diagonal  matrix is easy The determinant of the diagonal  matrix is easy 

to compute
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Three Basic HMM Problems

 What is the probability that it will generate a 
ifi b tispecific observation sequence

 Given a observation sequence how do we Given a observation sequence, how do we 
determine which observation was generated 
from which statefrom which state
 The state segmentation problem

 How do we learn the parameters of the HMM 
from observation sequencesfrom observation sequences 
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Computing the Probability of  an 
Observation Sequence

 Two aspects to producing the observation:
 Progressing through a sequence of states
 Producing observations from these states
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Progressing through states

HMM assumed to be 
generating data

state 
sequence

 The process begins at some state (red) here
 From that state, it makes an allowed transition

 To arrive at the same or any other state
 From that state it makes another allowed 

transition
A d And so on
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Probability that the HMM will follow 
i la particular state sequence

P s s s P s P s s P s s( , , ,...) ( ) ( | ) ( | )...1 2 3 1 2 1 3 2

 P(s1) is the probability that the process will initially be 

( , , , ) ( ) ( | ) ( | )1 2 3 1 2 1 3 2

( 1) p y p y
in state s1

P( | ) i th t iti b bilit f i t t t P(si | si) is the transition probability of moving to state 
si at the next time instant when the system is 
currently in siy i
 Also denoted by Tij earlier
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Generating Observations from States

HMM assumed to be 
generating data

state 

state 

sequence

distributions

observation
sequence

 At each time it generates an observation from 
the state it is in at that time
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Probability that the HMM will generate a 
particular observation sequence given aparticular observation sequence given a 
state sequence (state sequence known)

P o o o s s s P o s P o s P o s( , , ,...| , , ,...) ( | ) ( | ) ( | )...1 2 3 1 2 3 1 1 2 2 3 3

Computed from the Gaussian or Gaussian mixture for state s1

• P(oi | si) is the probability of generating 
observation oi when the system is in state si
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Proceeding through States and Producing 
Observations

HMM assumed to be 
generating data

Observations

generating data

state 

state 

sequence

distributions

observation
sequence

 At each time it produces an observation and 
makes a transition
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Probability that the HMM will generate a 
particular state sequence and from it, a 

particular observation sequence

P o o o s s s( ) P o o o s s s( , , ,..., , , ,...)1 2 3 1 2 3 

P o o o s s s P s s s( , , ,...| , , ,...) ( , , ,...)1 2 3 1 2 3 1 2 3 

P o s P o s P o s P s P s s P s s( | ) ( | ) ( | )... ( ) ( | ) ( | )...1 1 2 2 3 3 1 2 1 3 2
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Probability of  Generating an Observation 
SequenceSequence

 The precise state sequence is not knownp q
 All possible state sequences must be 

considered

P o o o s s s( , , ,..., , , ,...)1 2 3 1 2 3 P o o o( , , ,...)1 2 3 
all possible

state sequences

( , , , , , , , )
.
.

1 2 3 1 2 3( , , , )1 2 3

P o s P o s P o s P s P s s P s s
all possible

state sequences

( | ) ( | ) ( | )... ( ) ( | ) ( | )...
.

1 1 2 2 3 3 1 2 1 3 2
state sequences.
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Computing it Efficiently

 Explicit summing over all state sequences is not 
tractabletractable
 A very large number of possible state sequences

 Instead we use the forward algorithm

 A dynamic programming technique.
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Illustrative Example

 Example: a generic HMM with 5 states and a “terminating 
state”. 
 Left to right topology Left to right topology

 P(si) = 1 for state 1 and 0 for others

 The arrows represent transition for which the probability is not 0

 Notation:
 P(si | si) = Tij

 We represent P(ot | si) = bi(t) for brevity
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Diversion: The Trellis
de

x
S

ta
te

 in s (s,t)

Feature vectors
(time)t-1 t

 The trellis is a graphical representation of all possible paths through the 
HMM to produce a given observation
Th Y i t HMM t t X i t b ti The Y-axis represents HMM states, X axis represents observations

 Every edge in the graph represents a valid transition in the HMM over a 
single time step 

 Every node represents the event of a particular observation being Every node represents the event of a particular observation being 
generated from a particular state
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The Forward Algorithm
))(,,...,,(),( 21 ststatexxxPts t 

nd
ex

S
ta

te
 in s (s,t)

time
t-1 t

 (s t) is the total probability of ALL state (s,t) is the total probability of ALL state 
sequences that end at state s at time t, and 
all observations until xtall observations until xt
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The Forward Algorithm
))(,,...,,(),( 21 ststatexxxPts t 

Can be recursively 
estimated starting 
from the first time nd

ex

instant 
(forward recursion)

s

S
ta

te
 in (s,t)(s,t-1)

time
t-1 t

(1,t-1)

  )|()'|()1,'(),( t sxPssPtsts 

 (s,t) can be recursively computed in terms of 
( ’ t’) th f d b biliti t ti t 1


'

)|()|(),(),(
s

t

(s’,t’), the forward probabilities at time t-1 
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 TsTotalprob )(
The Forward Algorithm


s

TsTotalprob ),(
nd

ex
S

ta
te

 in

time
T

 In the final observation the alpha at each state gives the In the final observation the alpha at each state gives the 
probability of all state sequences ending at that state

 General model: The total probability of the observation 
i th f th l h l t ll t tis the sum of the alpha values at all states
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The absorbing state

 Observation sequences are assumed to end 
only when the process arrives at an 
b bi t tabsorbing state

 No observations are produced from the absorbing 
statestate

2812 Oct 2010 11755/18797



)1( TT l b
The Forward Algorithm

)1,(  TsTotalprob absorbing
nd

ex
S

ta
te

 in

 )'|(),'()1,( b bib bi ssPTsTs 
timeT


'

)|(),()1,(
s

absorbingabsorbing ssPTsTs 

 Absorbing state model: The total probability is the alpha 
computed at the absorbing state after the finalcomputed at the absorbing state after the final 
observation
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Problem 2: State segmentation

 Given only a sequence of observations, how 
d d t i hi h f t tdo we determine which sequence of states 
was followed in producing it?
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The HMM as a generator

HMM assumed to be 
generating data

state 

state 

sequence

distributions

observation
sequence

 The process goes through a series of states 
and produces observations from them
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States are hidden

HMM assumed to be 
generating data

state 

state 

sequence

distributions

observation
sequence

 The observations do not reveal the underlying 
state
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The state segmentation problem

HMM assumed to be 
generating data

state 

state 

sequence

distributions

observation
sequence

 State segmentation: Estimate state sequence 
given observations
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Estimating the State Sequence
 Many different state sequences are capable of 

producing the observationp oduc g e obse a o

 Solution: Identify the most probable state 
sequencesequence
 The state sequence for which the probability of 

progressing through that sequence and generating the 

P o o o s s s( , , ,..., , , ,...)1 2 3 1 2 3 
observation sequence is maximum

 i.e is maximum
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Estimating the state sequence
 Once again, exhaustive evaluation is impossibly 

expensive
 But once again a simple dynamic-programming 

solution is available

P o s P o s P o s P s P s s P s s( | ) ( | ) ( | )... ( ) ( | ) ( | )...1 1 2 2 3 3 1 2 1 3 2

P o o o s s s( , , ,..., , , ,...)1 2 3 1 2 3 

 Needed:
)|()|()|()|()()|(maarg PPPPPP )|()|()|()|()()|(maxarg 23331222111,...,, 321

ssPsoPssPsoPsPsoPsss
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Estimating the state sequence
 Once again, exhaustive evaluation is impossibly 

expensive
 But once again a simple dynamic-programming 

solution is available

P o s P o s P o s P s P s s P s s( | ) ( | ) ( | )... ( ) ( | ) ( | )...1 1 2 2 3 3 1 2 1 3 2

P o o o s s s( , , ,..., , , ,...)1 2 3 1 2 3 

 Needed:
)|()|()|()|()()|(maarg PPPPPP )|()|()|()|()()|(maxarg 23331222111,...,, 321

ssPsoPssPsoPsPsoPsss
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The HMM as a generator

HMM assumed to be 
generating data

state 

state 

sequence

distributions

observation
sequence

 Each enclosed term represents one forward 
transition and a subsequent emission
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The state sequence

 The probability of a state sequence ?,?,?,?,sx,sy ending 
t ti t d d i ll b ti tilat time t , and producing all observations until ot
 P(o1..t-1, ?,?,?,?, sx , ot,sy) = P(o1..t-1,?,?,?,?, sx ) P(ot|sy)P(sy|sx)

 The best state sequence that ends with sx,sy at t will 
have a probability equal to the probability of the best 
state sequence ending at t-1 at sx times P(ot|sy)P(sy|sx)
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Extending the state sequence

state sx sy

state 
di t ib ti

sequence

distributions

observation
sequence

t

 The probability of a state sequence ?,?,?,?,sx,sy
ending at time t and producing observations until ot
 P(o1..t-1,ot, ?,?,?,?, sx ,sy) = P(o1..t-1,?,?,?,?, sx )P(ot|sy)P(sy|sx)
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Trellis
 The graph below shows the set of all possible 

state sequences through this HMM in five time 
instantsinstants

time
t
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The cost of extending a state sequence
 The cost of extending a state sequence ending 

at sx is only dependent on the transition from sx
to s and the observation probability at sto sy, and the observation probability at sy

P(ot|sy)P(sy|sx)

sy

sx

time
t
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The cost of extending a state sequence
 The best path to sy through sx is simply an 

extension of the best path to sxx
BestP(o1..t-1,?,?,?,?, sx )
P(ot|sy)P(sy|sx)

sy

sx

time
t
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The Recursion

 The overall best path to sy is an extension of 
th b t th t f th t t t ththe best path to one of the states at the 
previous time

sy

time
t
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The Recursion

 Prob. of best path to sy = 
Max BestP(o ? ? ? ? s ) P(o |s )P(s |s )Maxsx BestP(o1..t-1,?,?,?,?, sx ) P(ot|sy)P(sy|sx)

sy

time
t
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Finding the best state sequence

 The simple algorithm just presented is called the VITERBI The simple algorithm just presented is called the VITERBI 
algorithm in the literature
 After A.J.Viterbi, who invented this dynamic programming algorithm 

for a completely different purpose: decoding error correction codes!
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Viterbi Search (contd.)

Initial state initialized with path score P(s )b (1)
time

Initial state initialized with path-score = P(s1)b1(1)

All other states have score 0 since P(si) = 0 for them12 Oct 2010 4611755/18797



Viterbi Search (contd.)

State with best path-score
State with path-score < best
State without a valid path-score

P (t)j = max [P (t-1) t   b  (t)]i ij ji
State transition probability i to j

Total path-score ending up at state j at time t

State transition probability, i to j

Score for state j, given the input at time t

time
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Viterbi Search (contd.)

P (t)j = max [P (t-1) t   b  (t)]i ij ji
State transition probability, i to j

Total path-score ending up at state j at time t

State transition probability, i to j

Score for state j, given the input at time t

time
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Viterbi Search (contd.)

time
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Viterbi Search (contd.)

time
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Viterbi Search (contd.)

time
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Viterbi Search (contd.)

time
12 Oct 2010 5211755/18797



Viterbi Search (contd.)

time
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Viterbi Search (contd.)

time
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Viterbi Search (contd.)

time
12 Oct 2010 5511755/18797



Viterbi Search (contd.)
THE BEST STATE SEQUENCE IS THE ESTIMATE OF THE STATE
SEQUENCE FOLLOWED IN GENERATING THE OBSERVATION

time
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Problem3: Training HMM parameters

 We can compute the probability of an 
observation and the best state sequence givenobservation, and the best state sequence given 
an observation, using the HMM’s parameters

 But where do the HMM parameters come from?

 They must be learned from a collection of 
observation sequences
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Learning HMM parameters: Simple 
procedure – counting

 Given a set of training instances
It ti l Iteratively:

1. Initialize HMM parameters
2. Segment all training instances
3. Estimate transition probabilities and state 

output probability parameters by counting
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Learning by counting example

 Explanation by example in next few slides
 2-state HMM, Gaussian PDF at states, 3 

observation sequences
 Example shows ONE iteration
 How to count after state sequences are obtained
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Example: Learning HMM Parameters
 We have an HMM with two states s1 and s2.
 Observations are vectors xij

 i th sequence j th vector i-th sequence,  j-th vector

 We are given the following three observation sequences
 And have already estimated state sequences

Time 1 2 3 4 5 6 7 8 9 10
state S1 S1 S2 S2 S2 S1 S1 S2 S1 S1
Obs Xa1 Xa2 Xa3 Xa4 Xa5 Xa6 Xa7 Xa8 Xa9 Xa10

Observation 1

Time 1 2 3 4 5 6 7 8 9
state S2 S2 S1 S1 S2 S2 S2 S2 S1
Ob X X X X X X X X X

Observation 2
Obs Xb1 Xb2 Xb3 Xb4 Xb5 Xb6 Xb7 Xb8 Xb9

Time 1 2 3 4 5 6 7 8
S1 S2 S1 S1 S1 S2 S2 S2state S1 S2 S1 S1 S1 S2 S2 S2

Obs Xc1 Xc2 Xc3 Xc4 Xc5 Xc6 Xc7 Xc8

Observation 3
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Example: Learning HMM Parameters
 Initial state probabilities (usually denoted as ):

 We have 3 observations
 2 of these begin with S1, and one with S2
 (S1) = 2/3, (S2) = 1/3

Time 1 2 3 4 5 6 7 8 9 10
state S1 S1 S2 S2 S2 S1 S1 S2 S1 S1
Obs Xa1 Xa2 Xa3 Xa4 Xa5 Xa6 Xa7 Xa8 Xa9 Xa10

Observation 1

Time 1 2 3 4 5 6 7 8 9
state S2 S2 S1 S1 S2 S2 S2 S2 S1
Ob X X X X X X X X X

Observation 2
Obs Xb1 Xb2 Xb3 Xb4 Xb5 Xb6 Xb7 Xb8 Xb9

Time 1 2 3 4 5 6 7 8
S1 S2 S1 S1 S1 S2 S2 S2state S1 S2 S1 S1 S1 S2 S2 S2

Obs Xc1 Xc2 Xc3 Xc4 Xc5 Xc6 Xc7 Xc8

Observation 3
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Example: Learning HMM Parameters
 Transition probabilities:

 State S1 occurs 11 times in non-terminal locations
 Of these, it is followed by S1 X times
 It is followed by S2 Y times
 P(S1 | S1) = x/ 11;   P(S2 | S1) = y / 11( | ) ; ( | ) y

Time 1 2 3 4 5 6 7 8 9 10
state S1 S1 S2 S2 S2 S1 S1 S2 S1 S1
Obs Xa1 Xa2 Xa3 Xa4 Xa5 Xa6 Xa7 Xa8 Xa9 Xa10

Observation 1

Time 1 2 3 4 5 6 7 8 9
state S2 S2 S1 S1 S2 S2 S2 S2 S1
Ob X X X X X X X X X

Observation 2
Obs Xb1 Xb2 Xb3 Xb4 Xb5 Xb6 Xb7 Xb8 Xb9

Time 1 2 3 4 5 6 7 8
S1 S2 S1 S1 S1 S2 S2 S2state S1 S2 S1 S1 S1 S2 S2 S2

Obs Xc1 Xc2 Xc3 Xc4 Xc5 Xc6 Xc7 Xc8

Observation 3
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Example: Learning HMM Parameters
 Transition probabilities:

 State S1 occurs 11 times in non-terminal locations
 Of these, it is followed immediately by S1 6 times
 It is followed by S2 Y times
 P(S1 | S1) = x/ 11;   P(S2 | S1) = y / 11( | ) ; ( | ) y

Time 1 2 3 4 5 6 7 8 9 10
state S1 S1 S2 S2 S2 S1 S1 S2 S1 S1
Obs Xa1 Xa2 Xa3 Xa4 Xa5 Xa6 Xa7 Xa8 Xa9 Xa10

Observation 1

Time 1 2 3 4 5 6 7 8 9
state S2 S2 S1 S1 S2 S2 S2 S2 S1
Ob X X X X X X X X X

Observation 2
Obs Xb1 Xb2 Xb3 Xb4 Xb5 Xb6 Xb7 Xb8 Xb9

Time 1 2 3 4 5 6 7 8
S1 S2 S1 S1 S1 S2 S2 S2state S1 S2 S1 S1 S1 S2 S2 S2

Obs Xc1 Xc2 Xc3 Xc4 Xc5 Xc6 Xc7 Xc8

Observation 3
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Example: Learning HMM Parameters
 Transition probabilities:

 State S1 occurs 11 times in non-terminal locations
 Of these, it is followed immediately by S1 6 times
 It is followed immediately by S2 5 times
 P(S1 | S1) = x/ 11;   P(S2 | S1) = y / 11( | ) ; ( | ) y

Time 1 2 3 4 5 6 7 8 9 10
state S1 S1 S2 S2 S2 S1 S1 S2 S1 S1
Obs Xa1 Xa2 Xa3 Xa4 Xa5 Xa6 Xa7 Xa8 Xa9 Xa10

Observation 1

Time 1 2 3 4 5 6 7 8 9
state S2 S2 S1 S1 S2 S2 S2 S2 S1
Ob X X X X X X X X X

Observation 2
Obs Xb1 Xb2 Xb3 Xb4 Xb5 Xb6 Xb7 Xb8 Xb9

Time 1 2 3 4 5 6 7 8
S1 S2 S1 S1 S1 S2 S2 S2state S1 S2 S1 S1 S1 S2 S2 S2

Obs Xc1 Xc2 Xc3 Xc4 Xc5 Xc6 Xc7 Xc8

Observation 3
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Example: Learning HMM Parameters
 Transition probabilities:

 State S1 occurs 11 times in non-terminal locations
 Of these, it is followed immediately by S1 6 times
 It is followed immediately by S2 5 times
 P(S1 | S1) = 6/ 11;   P(S2 | S1) = 5 / 11( | ) ; ( | )

Time 1 2 3 4 5 6 7 8 9 10
state S1 S1 S2 S2 S2 S1 S1 S2 S1 S1
Obs Xa1 Xa2 Xa3 Xa4 Xa5 Xa6 Xa7 Xa8 Xa9 Xa10

Observation 1

Time 1 2 3 4 5 6 7 8 9
state S2 S2 S1 S1 S2 S2 S2 S2 S1
Ob X X X X X X X X X

Observation 2
Obs Xb1 Xb2 Xb3 Xb4 Xb5 Xb6 Xb7 Xb8 Xb9

Time 1 2 3 4 5 6 7 8
S1 S2 S1 S1 S1 S2 S2 S2state S1 S2 S1 S1 S1 S2 S2 S2

Obs Xc1 Xc2 Xc3 Xc4 Xc5 Xc6 Xc7 Xc8

Observation 3
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Example: Learning HMM Parameters
 Transition probabilities:

 State S2 occurs 13 times in non-terminal locations
 Of these, it is followed immediately by S1 6 times
 It is followed immediately by S2 5 times
 P(S1 | S1) = 6/ 11;   P(S2 | S1) = 5 / 11( | ) ; ( | )

Time 1 2 3 4 5 6 7 8 9 10
state S1 S1 S2 S2 S2 S1 S1 S2 S1 S1
Obs. Xa1 Xa2 Xa3 Xa4 Xa5 Xa6 Xa7 Xa8 Xa9 Xa10

Observation 1

Time 1 2 3 4 5 6 7 8 9
state S2 S2 S1 S1 S2 S2 S2 S2 S1
Ob X X X X X X X X X

Observation 2
Obs Xb1 Xb2 Xb3 Xb4 Xb5 Xb6 Xb7 Xb8 Xb9

Time 1 2 3 4 5 6 7 8
S1 S2 S1 S1 S1 S2 S2 S2state S1 S2 S1 S1 S1 S2 S2 S2

Obs Xc1 Xc2 Xc3 Xc4 Xc5 Xc6 Xc7 Xc8

Observation 3
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Example: Learning HMM Parameters
 Transition probabilities:

 State S2 occurs 13 times in non-terminal locations
 Of these, it is followed immediately by S1 5 times
 It is followed immediately by S2 5 times
 P(S1 | S1) = 6/ 11;   P(S2 | S1) = 5 / 11( | ) ; ( | )

Time 1 2 3 4 5 6 7 8 9 10
state S1 S1 S2 S2 S2 S1 S1 S2 S1 S1
Obs Xa1 Xa2 Xa3 Xa4 Xa5 Xa6 Xa7 Xa8 Xa9 Xa10

Observation 1

Time 1 2 3 4 5 6 7 8 9
state S2 S2 S1 S1 S2 S2 S2 S2 S1
Ob X X X X X X X X X

Observation 2
Obs Xb1 Xb2 Xb3 Xb4 Xb5 Xb6 Xb7 Xb8 Xb9

Time 1 2 3 4 5 6 7 8
S1 S2 S1 S1 S1 S2 S2 S2state S1 S2 S1 S1 S1 S2 S2 S2

Obs Xc1 Xc2 Xc3 Xc4 Xc5 Xc6 Xc7 Xc8

Observation 3

12 Oct 2010 6711755/18797



Example: Learning HMM Parameters
 Transition probabilities:

 State S2 occurs 13 times in non-terminal locations
 Of these, it is followed immediately by S1 5 times
 It is followed immediately by S2 8 times
 P(S1 | S1) = 6/ 11;   P(S2 | S1) = 5 / 11( | ) ; ( | )

Time 1 2 3 4 5 6 7 8 9 10
state S1 S1 S2 S2 S2 S1 S1 S2 S1 S1
Obs Xa1 Xa2 Xa3 Xa4 Xa5 Xa6 Xa7 Xa8 Xa9 Xa10

Observation 1

Time 1 2 3 4 5 6 7 8 9
state S2 S2 S1 S1 S2 S2 S2 S2 S1
Ob X X X X X X X X X

Observation 2
Obs Xb1 Xb2 Xb3 Xb4 Xb5 Xb6 Xb7 Xb8 Xb9

Time 1 2 3 4 5 6 7 8
S1 S2 S1 S1 S1 S2 S2 S2state S1 S2 S1 S1 S1 S2 S2 S2

Obs Xc1 Xc2 Xc3 Xc4 Xc5 Xc6 Xc7 Xc8

Observation 3
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Example: Learning HMM Parameters
 Transition probabilities:

 State S2 occurs 13 times in non-terminal locations
 Of these, it is followed immediately by S1 5 times
 It is followed immediately by S2 8 times
 P(S1 | S2) = 5 / 13;   P(S2 | S2) = 8 / 13( | ) ; ( | )

Time 1 2 3 4 5 6 7 8 9 10
state S1 S1 S2 S2 S2 S1 S1 S2 S1 S1
Obs Xa1 Xa2 Xa3 Xa4 Xa5 Xa6 Xa7 Xa8 Xa9 Xa10

Observation 1

Time 1 2 3 4 5 6 7 8 9
state S2 S2 S1 S1 S2 S2 S2 S2 S1
Ob X X X X X X X X X

Observation 2
Obs Xb1 Xb2 Xb3 Xb4 Xb5 Xb6 Xb7 Xb8 Xb9

Time 1 2 3 4 5 6 7 8
S1 S2 S1 S1 S1 S2 S2 S2state S1 S2 S1 S1 S1 S2 S2 S2

Obs Xc1 Xc2 Xc3 Xc4 Xc5 Xc6 Xc7 Xc8

Observation 3
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Parameters learnt so far
 State initial probabilities, often denoted as 

 (S1) = 2/3 = 0.66
 (S2) = 1/3 = 0.33

 State transition probabilities
 P(S1 | S1) = 6/11 = 0.545;  P(S2 | S1) = 5/11 = 0.455
 P(S1 | S2) = 5/13 = 0.385; P(S2 | S2) = 8/13 = 0.615

R t d t iti t i Represented as a transition matrix











 455.0545.0)1|2()1|1( SSPSSP




















615.0385.0
455.0545.0

)2|2()2|1(
)1|2()1|1(

SSPSSP
SSPSSP

A

E h f thi t i t t 1 0Each row of this matrix must sum to 1.0
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Example: Learning HMM Parameters
 State output probability for S1

 There are 13 observations in S1 There are 13 observations in S1

Time 1 2 3 4 5 6 7 8 9 10
state S1 S1 S2 S2 S2 S1 S1 S2 S1 S1
Obs Xa1 Xa2 Xa3 Xa4 Xa5 Xa6 Xa7 Xa8 Xa9 Xa10

Observation 1

Time 1 2 3 4 5 6 7 8 9
state S2 S2 S1 S1 S2 S2 S2 S2 S1
Ob X X X X X X X X X

Observation 2
Obs Xb1 Xb2 Xb3 Xb4 Xb5 Xb6 Xb7 Xb8 Xb9

Time 1 2 3 4 5 6 7 8
S1 S2 S1 S1 S1 S2 S2 S2state S1 S2 S1 S1 S1 S2 S2 S2

Obs Xc1 Xc2 Xc3 Xc4 Xc5 Xc6 Xc7 Xc8

Observation 3
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Example: Learning HMM Parameters
 State output probability for S1

 There are 13 observations in S1
 Segregate them out and count

 Compute parameters (mean and variance) of Gaussian 
output density for state S1output density for state S1

Time 1 2 6 7 9 10
state S1 S1 S1 S1 S1 S1
Obs Xa1 Xa2 Xa6 Xa7 Xa9 Xa10

 )()(5.0exp
||)2(

1)|( 1
1

1

1

1 1 





  XXSXP T

d

Time 3 4 9
state S1 S1 S1
Ob X X X












 31097621

1 13
1 baaaaaa

XXXXXX
XXXXXXX


Obs Xb3 Xb4 Xb9

Time 1 3 4 5

  54219413 ccccbb XXXXXX

     
      












...

1 12121111
TT

T
aa

T
aa

XXXX
XXXX




state S1 S1 S1 S1
Obs Xc1 Xc2 Xc4 Xc5

     
      







 


...
...

13
12121111

141413131
T

cc
T

cc

bbbb

XXXX
XXXX



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Example: Learning HMM Parameters
 State output probability for S2

 There are 14 observations in S2 There are 14 observations in S2

Time 1 2 3 4 5 6 7 8 9 10
state S1 S1 S2 S2 S2 S1 S1 S2 S1 S1
Obs Xa1 Xa2 Xa3 Xa4 Xa5 Xa6 Xa7 Xa8 Xa9 Xa10

Observation 1

Time 1 2 3 4 5 6 7 8 9
state S2 S2 S1 S1 S2 S2 S2 S2 S1
Ob X X X X X X X X X

Observation 2
Obs Xb1 Xb2 Xb3 Xb4 Xb5 Xb6 Xb7 Xb8 Xb9

Time 1 2 3 4 5 6 7 8
S1 S2 S1 S1 S1 S2 S2 S2state S1 S2 S1 S1 S1 S2 S2 S2

Obs Xc1 Xc2 Xc3 Xc4 Xc5 Xc6 Xc7 Xc8

Observation 3
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Example: Learning HMM Parameters
 State output probability for S2

 There are 14 observations in S2
 Segregate them out and count

 Compute parameters (mean and variance) of Gaussian 
output density for state S2output density for state S2

Time 3 4 5 8
state S2 S2 S2 S2
Obs Xa3 Xa4 Xa5 Xa8

 )()(5.0exp
||)2(

1)|( 2
1

22

2

2 





  XXSXP T

d

Time 1 2 5 6 7 8
state S2 S2 S2 S2 S2 S2
Ob X X X X X XObs Xb1 Xb2 Xb5 Xb6 Xb7 Xb8

Time 2 6 7 8
S2 S2 S2 S2














8762876

5218543
2 14

1
ccccbbb

bbbaaaa

XXXXXXX
XXXXXXX



state S2 S2 S2 S2
Obs Xc2 Xc6 Xc7 Xc8    ...

14
1

23231  T
aa XX 
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We have learnt all the HMM parmeters
 State initial probabilities, often denoted as 

 (S1) = 0.66             (S2) = 1/3 = 0.33

 State transition probabilities





 45505450

St t t t b biliti











615.0385.0
455.0545.0

A

 State output probabilities

State output probability for S1 State output probability for S2

 )()(5.0exp
||)2(

1)|( 2
1

22

2

2 





  XXSXP T

d )()(5.0exp
||)2(

1)|( 1
1

11

1

1 





  XXSXP T

d
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Update rules at each iteration

sequencesn observatioofno.Total
 stateat start  that sequencesn observatio of No.)( i

i
ss 

q

 
obs ststateststatet ji )1(&)(:

1  
obs ststatet

tobsX
)(:

,

 




obs ststatet

obs ststateststatet
ij

i

jissP

.)(:

)1(&..)(:

1
)|(

 




obs ststatet

obs ststatet
i

i

i

.)(:

)(:

1


 
 




 obs ststatet

T
itobsitobs

i
i

XX
)(:

,,

1

))(( 

 Assumes state output PDF = Gaussian

 
obs ststatet i .)(:

 For GMMs, estimate GMM parameters from 
collection of observations at any state12 Oct 2010 7611755/18797



Training by segmentation: Viterbi 
training

Initial  Segmentations Models Converged?
yes

models Segmentations Models Converged?
no

 Initialize all HMM parameters

S t ll t i i b ti i t t t i th Vit bi Segment all training observation sequences into states using the Viterbi
algorithm with the current models

 Using estimated state sequences and training observation sequences Using estimated state sequences and training observation sequences, 
reestimate the HMM parameters

 This method is also called a “segmental k-means” learning procedure This method is also called a segmental k-means  learning procedure
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Alternative to counting: SOFT 
counting

 Expectation maximization
 Every observation contributes to every state Every observation contributes to every state
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Update rules at each iteration

sequencesn observatioofno.Total

)|)1((
)(

 
 Obs

i

ObssitstateP
s

q


 

 Obs t
ji

ij Obtt tP

ObsststateststateP
ssP

)|)((

)|)1(,)((
)|(

 
Obs t

i
ij ObsststateP )|)((

 
Obs t

tObsi XObsststateP )|)(( ,

 


Obs t
i

Obs t
i ObsststateP )|)((



  TXXObsststateP ))()(|)(( 









Obs t
i

Obs t
itObsitObsi

i ObsststateP

XXObsststateP

)|)((

))()(|)(( ,, 

 Every observation contributes to every state
Obs t
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Update rules at each iteration

sequencesn observatioofno.Total

)|)1((
)(

 
 Obs

i

i

ObsststateP
s

q


 

 Obs t
ji

ij Obtt tP

ObsststateststateP
ssP

)|)((

)|)1(,)((
)|(

 
Obs t

i
ij ObsststateP )|)((

 
Obs t

tObsi XObsststateP )|)(( ,

 


Obs t
i

Obs t
i ObsststateP )|)((



  TXXObsststateP ))()(|)(( 









Obs t
i

Obs t
itObsitObsi

i ObsststateP

XXObsststateP

)|)((

))()(|)(( ,, 

 Where did these terms come from?
Obs t
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)|)(( ObsststateP 

 The probability that the process was at s when 
it generated X given the entire observationit generated Xt given the entire observation

 Dropping the “Obs” subscript for brevity

))(( tt tPW ill t fi t

),...,,,)((),...,,|)(( 2121 TT XXXststatePXXXststateP 

),...,,,)(( 21 Ti xxxststateP  We will compute first
 This is the probability that the process visited s at 

time t while producing the entire observationtime t while producing the entire observation
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),...,,,)(( 21 TxxxststateP 

 The probability that the HMM was in a particular state s 
when generating the observation sequence is the 
probability that it followed a state sequence that passedprobability that it followed a state sequence that passed 
through s at time t

s

timetime
t
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),...,,,)(( 21 TxxxststateP 

 This can be decomposed into two multiplicative sections
 The section of the lattice leading into state s at time t and the 

section leading out of itsection leading out of it

s

timetime
t
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The Forward Paths
 The probability of the red section is the total probability 

of all state sequences ending at state s at time t
This is simply (s t) This is simply (s,t)

 Can be computed using the forward algorithm

s

timetime
t
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The Backward Paths
 The blue portion represents the probability of all state 

sequences that began at state s at time t
Like the red portion it can be computed using a backward Like the red portion it can be computed using a backward 
recursion

timetime
t
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The Backward Recursion
))(|()( P ))(|,...,,(),( 21 ststatexxxPts Ttt  

Can be recursively 
estimated starting 
from the final time 

(N,t)

s time instant
(backward recursion)

(s,t) (s,t)

t+1t
time

)'|()|'()1'()( 1 sxPssPtsts   

 (s,t) is the total probability of ALL state sequences that 
depart from s at time t and all observations after x

)|()|()1,(),( 1
'

sxPssPtsts t
s

 

depart from s at time t, and all observations after xt
 (s,T) = 1 at the final time instant for all valid final states
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The complete probability
))(,,...,,(),(),( 21 ststatexxxPtsts Ttt  

(N,t)

s(s,t-1) (s,t)

t+1tt-1
time(s1,t-1)
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Posterior probability of a state

 The probability that the process was in state 
t ti t i th t h b d ths at time t, given that we have observed the 

data is obtained by simple normalization








21

21

),'(),'(
),(),(

),...,,,)((
),...,,,)(()|)((
T

T

tsts
tsts

xxxststateP
xxxststatePObsststateP




 This term is often referred to as the gamma 

'' ss

g
term and denoted by s,t
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Update rules at each iteration

sequencesn observatioofno.Total

)|)1((
)(

 
 Obs

i

i

ObsststateP
s

q


 

 Obs t
ji

ij Obtt tP

ObsststateststateP
ssP

)|)((

)|)1(,)((
)|(

 
Obs t

i
ij ObsststateP )|)((

 
Obs t

tObsi XObsststateP )|)(( ,

 


Obs t
i

Obs t
i ObsststateP )|)((



  TXXObsststateP ))()(|)(( 









Obs t
i

Obs t
itObsitObsi

i ObsststateP

XXObsststateP

)|)((

))()(|)(( ,, 

 These have been found
Obs t
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Update rules at each iteration

sequencesn observatioofno.Total

)|)1((
)(

 
 Obs

i

i

ObsststateP
s

q


 

 Obs t
ji

ij Obtt tP

ObsststateststateP
ssP

)|)((

)|)1(,)((
)|(

 
Obs t

i
ij ObsststateP )|)((

 
Obs t

tObsi XObsststateP )|)(( ,

 


Obs t
i

Obs t
i ObsststateP )|)((



  TXXObsststateP ))()(|)(( 









Obs t
i

Obs t
itObsitObsi

i ObsststateP

XXObsststateP

)|)((

))()(|)(( ,, 

 Where did these terms come from?
Obs t
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),...,,,')1(,)(( 21 TxxxststateststateP 

’s’

s

timetime

t t+1
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),...,,,')1(,)(( 21 TxxxststateststateP 

),( ts

’s’

s

timetime

t t+1
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),...,,,')1(,)(( 21 TxxxststateststateP 

),( ts )'|()|'( 1 sxPssP t

’s’

s

timetime

t t+1
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),...,,,')1(,)(( 21 TxxxststateststateP 

),( ts )'|()|'( 1 sxPssP t )1,'( ts

’s’

s

timetime

t t+1
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The a posteriori probability of 
transition




  )1,'()'|()|'(),()|')1(,)(( 1t tssxPssPtsObsststateststateP 

 
1 2

)1,()|()|(),(
)|)(,)((

221121
s s

t tssxPssPts 

 The a posteriori probability of a transition The a posteriori probability of a transition 
given an observation
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Update rules at each iteration
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 These have been found
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Training without explicit segmentation: 

 Every feature vector associated with every state of every HMM with a 

Baum-Welch training
y y y

probability

State 
association 
probabilities

Initial  
models Models Converged?

yes

no
 Probabilities computed using the forward-backward algorithm
 Soft decisions taken at the level of HMM state
 In practice, the segmentation based Viterbi training is much easier to p g g

implement and is much faster
 The difference in performance between the two is small, especially if we have 

lots of training data
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HMM Issues

 How to find the best state sequence: Covered
 How to learn HMM parameters: Covered
 How to compute the probability of an 

observation sequence: Covered
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Magic numbers

 How many states:
 No nice automatic technique to learn this
 You choose

F h HMM t l i ll l ft t i ht ( For speech, HMM topology is usually left to right (no 
backward transitions)

 For other cyclic processes, topology must reflect nature 
of process

 No. of states – 3 per phoneme in speech
 For other processes depends on estimated no of For other processes, depends on estimated no. of 

distinct states in process
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Applications of HMMs

 Classification:
f f Learn HMMs for the various classes of time series 

from training data
 Compute probability of test time series using the Compute probability of test time series using the 

HMMs for each class
 Use in a Bayesian classifier Use in a Bayesian classifier

 Speech recognition, vision, gene sequencing, Speec ecog o , s o , ge e seque c g,
character recognition, text mining, topic 
detection…
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Applications of HMMs

 Segmentation:
G f f Given HMMs for various events, find event 
boundaries
 Simply find the best state sequence and the locations Simply find the best state sequence and the locations 

where state identities change

 Automatic speech segmentation, text 
segmentation by topic, geneome 
segmentation, …
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Implementation Issues
 For long data sequences arithmetic underflow is a 

problem
 Scores are products of numbers that are all less than 1

 The Viterbi algorithm provides a workaround – work 
l ith l b bilitionly with log probabilities

 Multiplication changes to addition – computationally faster too
 Underflow almost completely eliminatedp y

 For the forward algorithm complex normalization 
schemes must be implemented to prevent underflow
 At some computational expense
 Often not worth it – go with Viterbi
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Classification with HMMs
HMM for Yes HMM for No

S h iti f i l t d d

P(Yes) P(X|Yes) P(No) P(X|No)

 Speech recognition of isolated words:
 Training:

 Collect training instances for each word
Learn an HMM for each word Learn an HMM for each word

 Recognition of an observation X
 For each word compute P(X|word)

 Using forward algorithm Using forward algorithm
 Alternately, compute P(X,best.state.sequence |word) 

 Computed using the Viterbi segmentation algorithm

 Compute P(word) P(X|word)
P(word) = a priori probability of word P(word) = a priori probability of word

 Select the word for which P(word) P(X|word) is highest
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Creating composite models
HMM for Open HMM for Close

HMM for FileHMM for File

HMM for Open FileHMM for Open File

HMM for File Close

 HMMs with absorbing states can be combined into 
composites
 E.g. train models for open, close and file E.g. train models for open, close and file
 Concatenate them to create models for “open file” and “file close”

 Can recognize “open file” and “file close”12 Oct 2010 10411755/18797



Model graphs
HMM for “open”

HMM for “file”

HMM for “close”

 Models can also be composed into graphs
 Not just linearly

 Viterbi state alignment will tell us which 
portions of the graphs were visited for an 
observation X
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Recognizing from graph
u Trellis for “Open File” vs. “Close File”

u The VITERBI best path tells you what was spoken

e
Fi

le
C
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se

O
pe

n

12 Oct 2010 10611755/18797



Recognizing from graph
u Trellis for “Open File” vs. “Close File”

u The VITERBI best path tells you what was spoken

e
Fi

le
C

lo
se

O
pe

n

12 Oct 2010 10711755/18797



“Language” probabilities can be incorporated

P(Open) P(file|open)

HMM for “open”

P(Cl )

P(Open)

P(fil | l )

P(file|open)

HMM for “file”
P(Close) P(file|close)

HMM for “close”

 Transitions between HMMs can be assigned 
a probabilitya probability
 Drawn from properties of the language
 Here we have shown “Bigram” probabilities Here we have shown Bigram  probabilities
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This is used in speech recognition
 Recognizing one of four lines from “charge of the light brigade”

Cannon to right of them
Cannon to left of them
Cannon in front of them
Cannon behind them

 Each “word” is an HMM

right of them

to

Cannon

left of them

M

of

Cannon

themfrontin

w
or

d 
is

 a
n 

H
M

M

behind themE
ac

h 
w
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Graphs can be reduced sometimes
 Recognizing one of four lines from “charge of the light 

brigade”
 Graph reduction does not impede recognition of what was spoken Graph reduction does not impede recognition of what was spoken

right

P( | )

P(right | to)
P(of | right)

P(of | left)

to

ofCannon them

leftP(cannon)

P(to | cannon) P(them | of)

ofCannon them

frontinP(in | cannon)

P(them|behind)
behindP(behind | cannon)

P(them|behind)
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Speech recognition: An aside
 In speech recognition systems models are 

trained for phonemesp
 Actually “triphones” – phonemes in context

 Word HMMs are composed from phoneme p p
HMMs

 Language HMMs are composed from wordLanguage HMMs are composed from word 
HMMs

 The graph is “reduced” using automated The graph is reduced  using automated 
techniques
 John McDonough talks about WFSTs on John McDonough talks about WFSTs on 

Thursday
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