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Administrivia
 Registration: Anyone on waitlist still?

 Our TA is here
 Sourish Chaudhuri
 schaudhu@cs.cmu.edu

 Homework:  Against “class3” on course website
 Linear algebra
 Use the discussion lists on blackboard.andrew.cmu.edu

 Blackboard if you are not registered on blackboard Blackboard – if you are not registered on blackboard 
please register
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Overview
 Vectors and matrices

B i t / t i ti Basic vector/matrix operations
 Vector products

M t i d t Matrix products
 Various matrix types

M t i i i Matrix inversion
 Matrix interpretation
 Eigenanalysis
 Singular value decomposition
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Book
 Fundamentals of Linear Algebra, Gilbert Strang

 Important to be very comfortable with linear algebra
 Appears repeatedly in the form of Eigen analysis, SVD, y g y

Factor analysis
 Appears through various properties of matrices that are 

used in machine learning particularly when applied toused in machine learning, particularly when applied to 
images and sound

T d ’ l t D fi iti Today’s lecture: Definitions
 Very small subset of all that’s used
 Important subset, intended to help you recollect
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 Important subset, intended to help you recollect
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Incentive to use linear algebra

 Pretty notation!
y j xiaij

i


j
yAx T

 Easier intuition
 Really convenient geometric interpretations
 Operations easy to describe verbally

 Easy code translation!
for i=1:n
for j=1:m

c(i)=c(i)+y(j)*x(i)*a(i,j)
end

C=x*A*y
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end
end
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And other things you can do
F B h’ F i G

eq
ue

nc
y


From Bach’s Fugue in Gm

Fr
e

Rotation + Projection + Time 

 Manipulate Images

j
Scaling Decomposition (NMF)

 Manipulate Images
 Manipulate Sounds
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Scalars, vectors, matrices, …
 A scalar a is a number

 a = 2, a = 3.14, a = -1000, etc., , ,
 A vector a is a linear arrangement of a collection of 

scalars
3 14 

a  1 2 3 ,   a  3.14
32










 A matrix A is a rectangular arrangement of a collection 
of vectors

A
3.12 10





 MATLAB syntax: a=[1 2 3] A=[1 2;3 4]

A 
10.0 2
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 MATLAB syntax: a=[1 2 3], A=[1 2;3 4]
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Vector/Matrix types and shapes
 Vectors are either column or row vectors

a


c  b

c



 




,   r  a b c ,   s   

 A sound can be a vector, a series of daily temperatures 
can be a vector, etc …

 Matrices can be square or rectangularq g

S 
a b
c d








,   R 

a b c
d e f








,   M 











Images can be a matrix collections of sounds can be a

  f 
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 Images can be a matrix, collections of sounds can be a 
matrix, etc …
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Dimensions of a matrix
 The matrix size is specified by the number of 

rows and columns
a

 cba
c
b
a

















 rc   ,

 c = 3x1 matrix: 3 rows and 1 column
 r = 1x3 matrix:  1 row and 3 columns




















fed
cba

dc
ba

RS   ,

 S = 2 x 2 matrix
 R = 2 x 3 matrix

Pacman = 321 x 399 matrix
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 Pacman = 321 x 399 matrix
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Representing an image as a matrix
 3 pacmen
 A 321x399 matrix

 Row and Column = position
 A 3x128079 matrix

 Triples of x,y and value
 A 1x128079 vector

“U li ” th t i “Unraveling” the matrix

 Note: All of these can be recast as
















1.1.00.1.11
10.10.65.1.21
10.2.22.2.11Y

X
v

 Note: All of these can be recast as 
the matrix that forms the image
 Representations 2 and 4 are equivalent

 1..000.11.11

Values only; X and Y are 
implicit
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 The position is not represented
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Example of a vector
 Vectors usually hold sets of 

numerical attributesnumerical attributes
 X, Y, value

 [1, 2, 0]

[-2.5av  6st]

[1av  8st]

 Earnings, losses, suicides
 [$0 $1.000.000 3]

 Etc Etc …
 Consider a “relative Manhattan” 

vector
 Provides a relative position by 

giving a number of avenues and 
streets to cross e g [3av 33st]

[2av  4st]
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streets to cross, e.g. [3av 33st]
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Vectors
 Ordered collection of numbers

 Examples: [3 4 5], [a b c d], ..
 [3 4 5] != [4 3 5] Order is important [3 4 5] != [4 3 5]  Order is important

 Typically viewed as identifying (the path from origin to) a location 
in an N-dimensional space (3,4,5)

5 (4,3,5)

z
3

y

4

11-755/18-797

x
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Vectors vs. Matrices

(3,4,5)

5

4

 A vector is a geometric notation for how to get 
f (0 0) t l ti i th

3

from (0,0) to some location in the space
 A matrix is simply a collection of destinations!

Properties of matrices are average properties of the
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 Properties of matrices are average properties of the 
traveller’s path to these destinations
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Basic arithmetic operations
 Addition and subtraction
 Element-wise operations Element-wise operations

a  b 
a1

a






 

b1

b






 

a1  b1

a  b






 a  b 

a1

a






 

b1

b






 

a1  b1

a  b






a  b  a2

a3

 



 b2

b3

 



 a2  b2

a3  b3

 




a b  a2

a3

 




b2

b3

 



 a2 b2

a3  b3

 




A B 
a11 a12

a21 a22











b11 b12

b21 b22











a11  b11 a12  b12

a21  b21 a22  b22











 MATLAB syntax: a+b and a-b
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 MATLAB syntax: a+b and a b
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Vector Operations

3

5

(3,4,5)
3

-2(3,-2,-3)

-3

O ti t ll h t t f ({0}) t th
3

4 (6,2,2)

 Operations tell us how to get from ({0}) to the 
result of the vector operations

(3 4 5) + (3 2 3) = (6 2 2)
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 (3,4,5) + (3,-2,-3) = (6,2,2)
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Operations example









10.10.65.1.21
10.2.22.2.11

 10001111






 1.1.00.1.11

+
+

Random(3,columns(M))
 1..000.11.11

















1.1.00.1.11
10.10.65.1.21
10.2.22.2.11

 Adding random values to different 
representations of the image

11-755/18-797

representations of the image
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Vector norm
 Measure of how big a 

vector is:vector is:
 Notated as [-2av  17st]

[-6av  10st]

a b   a2  b2  2

x

 In Manhattan vectors a 
measure of distance

a b ...   a  b  ...

2 17   17.11

6 10  11 66

 MATLAB syntax: 
( )

6 10   11.66

11-755/18-797

norm(x)
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Vector Norm

(3,4,5)Length = sqrt(32 + 42 + 52)

5

4

3

4

 Geometrically the shortest distance to travel from 
the origin to the destination
 As the crow flies
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 As the crow flies
 Assuming Euclidean Geometry
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Transposition
 A transposed row vector becomes a column 

(and vice versa)(and vice versa)

a


 T     T

a


x  b

c



 




,  xT  a b c  y  a b c ,  yT  b

c



 





 A transposed matrix gets all its row (or column) 
vectors transposed in order

     
X 

a b c
d e f








,   X

T 
a d
b e
c f

















M 















,   MT 

















11-755/18-797 MATLAB syntax: a’

c f     
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Vector multiplication
 Multiplication is not element-wise!
 Dot product, or inner product

 Vectors must have the same number of elements Vectors must have the same number of elements
 Row vector times column vector = scalar

b 
d



 d b f

 Cross product outer product or vector direct product

a b c  e
f



 




 a  d  b e  c  f

 Cross product, outer product or vector direct product
 Column vector times row vector = matrix

a




a  d a e a  f





MATLAB s nta *b

b
c



 




 d e f  b  d b e b  f

c  d c e c  f
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 MATLAB syntax: a*b
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dot product as Projection
 Multiplying the “yard” vectors

 Instead of avenue/street we’ll 
use yardsy

 a = [200 1600], 
b = [770 300] 

The dot product of the two vectors

[200yd 1600yd]
norm ≈ 1612

 The dot product of the two vectors 
relates to the length of a projection
 How much of the first vector 

h d b f ll ihave we covered by following 
the second one?

 The answer comes back as a 
unit of the first vector so we 
divide by its length [770yd  300yd]

norm ≈ 826

200 1600  770





norm
≈ 393yd

11-755/18-797

a bT

a


200 1600  300





200 1600   393yd
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Vector dot product
er

gy
)

D S D2
S

qr
t(e

ne

V t t

frequency frequencyfrequency
 1...1540.911  1.14.16..24.3  0.13.03.0.0

 Vectors are spectra
 Energy at a discrete set of frequencies
 Actually 1x4096y
 X axis is the index of the number in the vector

 Represents frequency
 Y axis is the value of the number in the vector
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 Y axis is the value of the number in the vector
 Represents magnitude
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Vector dot product
er

gy
)

D S D2
S

qr
t(e

ne

f S

frequency frequencyfrequency
 1...1540.911  1.14.16..24.3  0.13.03.0.0

 How much of D is also in S
 How much can you fake a D by playing an S
 D.S / |D||S| = 0.1

N t h Not very much
 How much of D is in D2?

 D.D2 / |D| /|D2| = 0.5
N t b d f k it
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 Not bad, you can fake it
 To do this, D, S, and D2 must be the same size
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Vector cross product

 The column vector is the spectrum
 The row vector is an amplitude modulation

The crossproduct is a spectrogram The crossproduct is a spectrogram
 Shows how the energy in each frequency varies with time
 The pattern in each column is a scaled version of the spectrum

E h i l d i f th d l ti

11-755/18-797

 Each row is a scaled version of the modulation
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Matrix multiplication

 Generalization of vector multiplication
f Dot product of each vector pair

 a  
 



 a b a b 

Di i t t h!!

A B 
 a1 
 a2 








 b1 b2

 



 






a1 b1 a1 b2

a2 b1 a2 b2











 Dimensions must match!!
 Columns of first matrix = rows of second
 Result inherits the number of rows from the first matrix Result inherits the number of rows from the first matrix 

and the number of columns from the second matrix

 MATLAB syntax: a*b
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Multiplying  a Vector by a Matrix
 9.08.0:),1( Y 9.01.0:),2( Y

 9.08.0

YX

 6.0











9.01.0
Y

M lti li ti f t X b t i Y th t X











1.0
6.0

X

 Multiplication of a vector X by a matrix Y expresses the vector X 
in terms of projections of X on the row vectors of the matrix Y
 It scales and rotates the vector

Alt t l i d it l d t t th th

11-755/18-797

 Alternately viewed, it scales and rotates the space – the 
underlying plane
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Matrix Multiplication











6.13.1
7.03.0

Y

 The matrix rotates and scales the space
 Including its own vectors
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Matrix Multiplication

Th l t th t i th t i b The normals to the row vectors in the matrix become 
the new axes
 X axis = normal to the second row vector

11-755/18-797

 Scaled by the inverse of the length of the first row vector
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Matrix Multiplication is projectionj

 The k-th axis corresponds to the normal to the hyperplane 
represented by the 1..k-1,k+1..N-th row vectors in the matrix
 Any set of K-1 vectors represent a hyperplane of dimension K-1 

or less

 The distance along the new axis equals the length of the 
projection on the k-th row vector
 Expressed in inverse-lengths of the vector
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Matrix Multiplication: Column space































 c

z
b

y
a

xy
x

cba

 So much for spaces what does multiplying




























 fe

y
d

z
y

fed

 So much for spaces .. what does multiplying 
a matrix by a vector really do?

 It mixes the column vectors of the matrix It mixes the column vectors of the matrix 
using the numbers in the vector

 The column space of the Matrix is the The column space of the Matrix is the 
complete set of all vectors that can be formed 
by mixing its columns
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by mixing its columns
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Matrix Multiplication: Row space

     fdb
cba





     fedycbax

fed
yx 





 Left multiplication mixes the row vectors of Left multiplication mixes the row vectors of 
the matrix.

 The row space of the Matrix is the complete The row space of the Matrix is the complete 
set of all vectors that can be formed by 
mixing its rows
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mixing its rows
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Matrix multiplication: Mixing vectors





 031

X

1

Y





7











.249
0..

















1
2
1











.

.=

A h i l l





 1..

1 



2

 A physical example
 The three column vectors of the matrix X are the spectra of 

three notes
 The multiplying column vector Y is just a mixing vector
 The result is a sound that is the mixture of the three notes
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Matrix multiplication: Mixing vectors
200 x 200 200 x 200 200 x 200200 x 200 200 x 200 200 x 200





 25.0





 75.0

2 x 1

 Mixing two images
 The images are arranged as columns

40000 x 2 40000 x 1
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 The images are arranged as columns 
 position value not included

 The result of the multiplication is rearranged as an image
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Matrix multiplication: another view
































k

kKk
k

kk
NK

N

N bababb
aa
aa

...

.

...
.

..

..
111

11
221

111

BA

 What does this mean?

























k
kKMk

k
kMkNKN

MNM

bababb
aa

..
..

....
11

1

 What does this mean?

NN aaa
bb

aa .. 11211111
























     NKN

MN

K

M

K

M
NKN

NK

MNM

N bb

a

bb

a

bb

a
bb

bb

aa

aa
.

.

.
....

.

.
.

.

.

.
...

.

..
....

..
1221

2

111

1
1

11

1

221









































































 MNMMMNM 211 

 The outer product of the first column of A and the first 
f B + t d t f th d l f A d
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row of B + outer product of the second column of A and 
the second row of B + ….
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Why is that useful?







0
031





 .....05.075.0175.05.00












 1
.249
0..









 .....195.09.08.07.06.05.0
......5.005.07.09.01

Y



 1..

X

Y

 Sounds: Three notes modulated 
independently
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p y
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Matrix multiplication: Mixing modulated 
spectra







0
031





 .....05.075.0175.05.00












 1
.249
0..









 .....195.09.08.07.06.05.0
......5.005.07.09.01

Y



 1..

X

Y

 Sounds: Three notes modulated 
independently

11-755/18-797

p y
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Matrix multiplication: Mixing modulated 





 .....05.075.0175.05.00

spectra









0
031 








 .....195.09.08.07.06.05.0
......5.005.07.09.01 Y










 1
.249
0..

 1..

X

 Sounds: Three notes modulated 
independently

11-755/18-797

p y
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Matrix multiplication: Mixing modulated 





 .....05.075.0175.05.00

spectra









 .....195.09.08.07.06.05.0
......5.005.07.09.01





 031











.249
0..





 1..

X

 Sounds: Three notes modulated 
independently

11-755/18-797

p y
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Matrix multiplication: Mixing modulated 





 .....05.075.0175.05.00

spectra









 .....195.09.08.07.06.05.0
......5.005.07.09.01





 031











.249
0..





 1..

X

 Sounds: Three notes modulated 
independently
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p y
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Matrix multiplication: Mixing modulated 
spectra

 Sounds: Three notes modulated 
independently

11-755/18-797

p y
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Matrix multiplication: Image transition











22

11

ji
ji





 01.2.3.4.5.6.7.8.9.1











..

..




 19.8.7.6.5.4.3.2.1.0

 ..

 Image1 fades out linearly
 Image 2 fades in linearly
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Matrix multiplication: Image transition





 01.2.3.4.5.6.7.8.9.1









19.8.7.6.5.4.3.2.1.0











22

11

ji
ji









08090
0......8.09.0

222

111
iii
iii











..

..













.0.........
0.........
0......8.09.0 222 iii

 Each column is one image

 ..
 0......8.09.0 NNN iii

 The columns represent a sequence of images of 
decreasing intensity

 Image1 fades out linearly
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 Image1 fades out linearly
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Matrix multiplication: Image transition





 01.2.3.4.5.6.7.8.9.1











22

11

ji
ji





 19.8.7.6.5.4.3.2.1.0











..

..

 ..

 Image 2 fades in linearly
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Matrix multiplication: Image transition











22

11

ji
ji





 01.2.3.4.5.6.7.8.9.1











..

..




 19.8.7.6.5.4.3.2.1.0

 ..

 Image1 fades out linearly
 Image 2 fades in linearly
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The Identity Matrix










10
01

Y

 An identity matrix is a square matrix wherey q
 All diagonal elements are 1.0
 All off-diagonal elements are 0.0

 Multiplication by an identity matrix does not change vectors
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p y y g
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Diagonal Matrix











10
02

Y
 10

 All off-diagonal elements are zero
Di l l t Diagonal elements are non-zero

 Scales the axes
 May flip axes
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 May flip axes
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Diagonal matrix to transform images

 How?
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Stretching

















101065121
10.2.22.2.11

010
002

















 1.1.00.1.11
10.10.65.1.21

100
010

 Location-based 
representation
Scaling matrix only Scaling matrix – only 
scales the X axis
 The Y axis and pixel value p

are scaled by identity
 Not a good way of scaling.
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Stretching

D =

.5.15.0

.005.1









)2x(
.0000
.5.000 NNA















Newpic
.....

EA
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 Better way
26 Aug 2010 49



Modifying color





 BGR













P














001












100
020 PNewpic

 Scale only Green
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y
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Permutation Matrix

 yx010 5
(3,4,5)

Z (old X)


















































x
z
y

z
y
x

 
001
100
010 5

Y

Z

3
Y (old Z)

Z (old X)

 xz001
3

4
X 4

5
X (old Y)

 A permutation matrix simply rearranges the axes
 The row entries are axis vectors in a different order
 The result is a combination of rotations and reflections

 The permutation matrix effectively permutes the 
arrangement of the elements in a vector
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arrangement of the elements in a vector
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Permutation Matrix


















100
001
010

P

















001
100
010

P
 100  001

















1.1.00.1.11
10.10.65.1.21
10.2.22.2.11

 

 Reflections and 90 degree rotations of 
images and objects

11-755/18-797

images and objects
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Permutation Matrix







001
010

P 





100
010

P











100
001P












001
100P





 Nxxx ..21

 Reflections and 90 degree rotations of images and objects









 N

N

zzz
yyy

..

.. 

21

21

 Reflections and 90 degree rotations of images and objects
 Object represented as a matrix of 3-Dimensional “position” 

vectors
 Positions identify each point on the surface
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 Positions identify each point on the surface
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Rotation Matrix










 


cossin
sincos

x



R newXXR 


cossin'
sincos'

yxy
yxx




















'x
X

y
x

X
(x,y) (x,y)

(x’,y’)
y’
y








'y

X new

Y Y



X X x’ x

 A rotation matrix rotates the vector by some angle 
 Alternately viewed, it rotates the axes
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 The new axes are at an angle  to the old one
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Rotating a picture















 


100
045cos45sin
045sin45cos

R

 

















1.1.00.1.11
..10.65.1.21
..2.22.2.11















 

1.1.00.1.11
..212.2827.23.232
..28.2423.2.20

 Note the representation: 3-row matrix Note the representation: 3 row matrix
 Rotation only applies on the “coordinate” rows
 The value does not change
 Why is pacman grainy?
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 Why is pacman grainy?
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3-D Rotation

Y

Xnew

Ynew

X

Y

Z


Znew


 2 degrees of freedom

X

2 degrees of freedom
 2 separate angles

 What will the rotation matrix be? What will the rotation matrix be?
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