11-755/18-797 Machine Learning for Signal Processing

Fundamentals of Linear A l gebra

Class 2. 26 August 2009

Instructor: Bhiksha Raj

Administrivia

- \mathbb{R}^2 Registration: Anyone on waitlist still?
- $\overline{\mathcal{A}}$ Our TA is here
	- **□ Sourish Chaudhuri**
	- □ <u>schaudhu@cs.cmu.edu</u>
- Homework: Against "class3" on course website
	- \Box Linear algebra
	- \Box Use the discussion lists on blackboard.andrew.cmu.edu
- $\overline{\mathbb{R}}$ Blackboard – if you are not registered on blackboard please register

Overview

- **Nectors and matrices**
- \blacksquare Basic vector/matrix operations
- Vector products
- \blacksquare Matrix products
- Various matrix types
- **Natrix inversion**
- **Matrix interpretation**
- \blacksquare Eigenanalysis
- **Singular value decomposition**

Book

- Fundamentals of Linear Algebra, Gilbert Strang
- \mathbb{R}^n Important to be very comfortable with linear algebra
	- \Box Appears repeatedly in the form of Eigen analysis, SVD, Factor analysis
	- □ Appears through various properties of matrices that are used in machine learning, particularly when applied to images and sound
- \mathcal{L}_{max} Today's lecture: Definitions
	- Very small subset of all that's used
	- \Box $\, \Box \,$ Important subset, intended to help you recollect

Incentive to use linear algebra

Pretty notation!

$$
\mathbf{x}^T \cdot \mathbf{A} \cdot \mathbf{y} \longleftrightarrow \sum_j y_j \sum_i x_i a_{ij}
$$

Easier intuition

Really convenient geometric interpretations

□ Operations easy to describe verbally

■ Easy code translation!

 $C=x*A*v$

And other things you can do From Bach's Fugue in Gm ↑ **Frequency** *equency* 集集集集 74401759 Rotation + Projection + *Time* j

Scaling **Decomposition (NMF)**

■ Manipulate Images \mathbb{R}^2 Manipulate Sounds

Scalars, vectors, matrices, …

- A *scalar* a is a number
	- $a = 2, a = 3.14, a = -1000, \text{ etc.}$
- A *vector* a is a linear arrangement of a collection of scalars

$$
\mathbf{a} = \begin{bmatrix} 1 & 2 & 3 \end{bmatrix} \quad \mathbf{a} = \begin{bmatrix} 3.14 \\ -32 \end{bmatrix}
$$

- A *matrix* A is a rectangular arrangement of a collection of vectors $A = \begin{bmatrix} 3.12 & -10 \\ 1 & 3.12 \end{bmatrix}$ $\begin{bmatrix} 3.12 & -10 \\ 10.0 & 2 \end{bmatrix}$ $\mathbf{A} = \begin{bmatrix} 10.0 & 2 \end{bmatrix}$
- \blacksquare MATLAB syntax: a=[1 2 3], A=[1 2;3 4]

Vector/Matrix types and shapes

U Vectors are either column or row vectors

$$
\mathbf{c} = \begin{bmatrix} a \\ b \\ c \end{bmatrix}, \quad \mathbf{r} = \begin{bmatrix} a & b & c \end{bmatrix}, \quad \mathbf{s} = \begin{bmatrix} -1 \\ 1 \end{bmatrix}, \quad \text{and} \quad \mathbf{r} = \begin{bmatrix} 1 & b & c \end{bmatrix} \quad \text{and} \quad \mathbf{r} = \begin{bmatrix} 1 & b & c \end{bmatrix} \quad \text{and} \quad \mathbf{r} = \begin{bmatrix} 1 & b & c \end{bmatrix} \quad \text{and} \quad \mathbf{r} = \begin{bmatrix} 1 & b & c \end{bmatrix} \quad \text{and} \quad \mathbf{r} = \begin{bmatrix} 1 & b & c \end{bmatrix} \quad \text{and} \quad \mathbf{r} = \begin{bmatrix} 1 & b & c \end{bmatrix} \quad \text{and} \quad \mathbf{r} = \begin{bmatrix} 1 & b & c \end{bmatrix} \quad \text{and} \quad \mathbf{r} = \begin{bmatrix} 1 & b & c \end{bmatrix} \quad \text{and} \quad \mathbf{r} = \begin{bmatrix} 1 & b & c \end{bmatrix} \quad \text{and} \quad \mathbf{r} = \begin{bmatrix} 1 & b & c \end{bmatrix} \quad \text{and} \quad \mathbf{r} = \begin{bmatrix} 1 & b & c \end{bmatrix} \quad \text{and} \quad \mathbf{r} = \begin{bmatrix} 1 & b & c \end{bmatrix} \quad \text{and} \quad \mathbf{r} = \begin{bmatrix} 1 & b & c \end{bmatrix} \quad \text{and} \quad \mathbf{r} = \begin{bmatrix} 1 & b & c \end{bmatrix} \quad \text{and} \quad \mathbf{r} = \begin{bmatrix} 1 & b & c \end{bmatrix} \quad \text{and} \quad \mathbf{r} = \begin{bmatrix} 1 & b & c \end{bmatrix} \quad \text{and} \quad \mathbf{r} = \begin{bmatrix} 1 & b & c \end{bmatrix} \quad \text{and} \quad \mathbf{r} = \begin{bmatrix} 1 & b & c \end{bmatrix} \quad \text{and} \quad \mathbf{r} = \begin{bmatrix} 1 & b & c \end{bmatrix} \quad \text{and} \quad \mathbf{r} = \begin{bmatrix} 1 & b & c \end{bmatrix} \quad \text{
$$

- \Box A sound can be a vector, a series of daily temperatures can be a vector, etc …
- Matrices can be square or rectangular

$$
\mathbf{S} = \begin{bmatrix} a & b \\ c & d \end{bmatrix}, \quad \mathbf{R} = \begin{bmatrix} a & b & c \\ d & e & f \end{bmatrix}, \quad \mathbf{M} = \begin{bmatrix} a & b & c \\ d & d & d \end{bmatrix}
$$

 \Box Images can be a matrix, collections of sounds can be a \Box matrix, etc …

11-755/18-797 26 Aug 2010 8

Dimensions of a matrix

■ The matrix size is specified by the number of rows and columns

$$
\mathbf{c} = \begin{bmatrix} a \\ b \\ c \end{bmatrix}, \mathbf{r} = \begin{bmatrix} a & b & c \end{bmatrix}
$$

 \Box c = 3x1 matrix: 3 rows and 1 column

 \Box r = 1x3 matrix: 1 row and 3 columns

$$
\mathbf{S} = \begin{bmatrix} a & b \\ c & d \end{bmatrix}, \ \mathbf{R} = \begin{bmatrix} a & b & c \\ d & e & f \end{bmatrix}
$$

- \Box S = 2 x 2 matrix
- \Box R = 2 x 3 matrix
- **□ Pacman = 321 x 399 matrix**

Representing an image as a matrix

Values only; X and Y are implicit

■ 3 pacmen

 \mathbb{R}^n

- A 321x399 matrix
	- Row and Column = position
- A 3x128079 matrix
	- □ Triples of x,y and value
- A 1x128079 vector
	- □ "Unraveling" the matrix
	- Note: All of these can be recast as the matrix that forms the image
		- \Box Representations 2 and 4 are equivalent
			- T. The position is not represented

Example of a vector

- **Nectors usually hold sets of** numerical attributes
	- X, Y, value
		- \blacksquare $[1, 2, 0]$
	- □ Earnings, losses, suicides
		- [\$0 \$1.000.000 3]
	- □ Etc …
- Consider a "relative Manhattan" vector
	- \Box Provides a relative position by giving a number of avenues and streets to cross, e.g. [3av 33st]

Vectors

- \mathbb{R}^n Ordered collection of numbers
	- □ Examples: [3 4 5], [a b c d], ..
	- [3 4 5] != [4 3 5] **Order is important**
- $\mathcal{L}_{\mathrm{max}}$ Typically viewed as identifying (*the path from origin to*) a location in an N-dimensional space $(3,4,5)$

- A vector is a geometric notation for how to get from $(0,0)$ to some location in the space
- A matrix is simply a collection of destinations!
	- Properties of matrices are *average* properties of the \Box traveller's path to these destinations

11-755/18-797 26 Aug 2010 11-755/18-797 2010 11-755/18-797

Basic arithmetic operations

- Addition and subtraction
	- □ Element-wise operations

$$
\mathbf{a} + \mathbf{b} = \begin{bmatrix} a_1 \\ a_2 \\ a_3 \end{bmatrix} + \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix} = \begin{bmatrix} a_1 + b_1 \\ a_2 + b_2 \\ a_3 + b_3 \end{bmatrix} \quad \mathbf{a} - \mathbf{b} = \begin{bmatrix} a_1 \\ a_2 \\ a_3 \end{bmatrix} - \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix} = \begin{bmatrix} a_1 - b_1 \\ a_2 - b_2 \\ a_3 - b_3 \end{bmatrix}
$$

$$
\mathbf{A} + \mathbf{B} = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} + \begin{bmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{bmatrix} = \begin{bmatrix} a_{11} + b_{11} & a_{12} + b_{12} \\ a_{21} + b_{21} & a_{22} + b_{22} \end{bmatrix}
$$

■ MATLAB syntax: a+b and a -B syntax: a+b and a-b

Operations tell us how to get from $({0})$ **to the** result of the vector operations (a) $(3,4,5) + (3,-2,-3) = (6,2,2)$

■ Adding random values to different representations of the image

Vector norm

■ Measure of how big a vector is: **Notated as** $\|\mathbf{x}\|$ **[-2av 17st] A State Bulliang Corporation** $\begin{bmatrix} a & b & \cdots \end{bmatrix} = \sqrt{a^2 + b^2 + \cdots^2}$ ■ In Manhattan vectors a measure of distance $\left\| \begin{bmatrix} -2 & 17 \end{bmatrix} \right\| = 17.11$ $\begin{bmatrix} -6 & 10 \end{bmatrix} = 11.66$ ■ MATLAB syntax: norm(x)

Assuming Euclidean Geometry

Transposition

■ A transposed row vector becomes a column (and vice versa)

$$
\mathbf{x} = \begin{bmatrix} a \\ b \\ c \end{bmatrix}, \quad \mathbf{x}^T = \begin{bmatrix} a & b & c \end{bmatrix} \quad \mathbf{y} = \begin{bmatrix} a & b & c \end{bmatrix}, \quad \mathbf{y}^T = \begin{bmatrix} a \\ b \\ c \end{bmatrix}
$$

■ A transposed matrix gets all its row (or column) vectors transposed in order

$$
\mathbf{X} = \begin{bmatrix} a & b & c \\ d & e & f \end{bmatrix}, \quad \mathbf{X}^T = \begin{bmatrix} a & d \\ b & e \\ c & f \end{bmatrix} \qquad \mathbf{M} = \begin{bmatrix} \vdots & \vdots & \vdots \\ \vdots & \vdots &
$$

Vector multiplication

- $\mathcal{L}_{\mathcal{A}}$ Multiplication is not element-wise!
- $\mathcal{L}_{\mathcal{A}}$ Dot product, or inner product
	- Vectors must have the same number of elements
	- \Box Row vector times column vector = scalar

$$
\begin{bmatrix} a & b & c \end{bmatrix} \begin{bmatrix} d \\ e \\ f \end{bmatrix} = a \cdot d + b \cdot e + c \cdot f
$$

Cross product, outer product or vector direct product

- $\mathcal{L}_{\mathcal{A}}$
	- □ Column vector times row vector = matrix

$$
\begin{bmatrix} a \\ b \\ c \end{bmatrix} \cdot \begin{bmatrix} d & e & f \end{bmatrix} = \begin{bmatrix} a \cdot d & a \cdot e & a \cdot f \\ b \cdot d & b \cdot e & b \cdot f \\ c \cdot d & c \cdot e & c \cdot f \end{bmatrix}
$$

■ MATLAB syntax: a*b $\mathcal{L}_{\mathcal{A}}$

dot product as Projection

- T. Multiplying the "yard" vectors
	- \Box Instead of avenue/street we'll use yards
	- $a = [200 1600],$ $b = [770, 300]$
- **The dot product of the two vectors** relates to the length of a *projection*
	- □ How much of the first vector have we covered by following the second one?
	- □ The answer comes back as a unit of the first vector so we divide by its length \approx $\frac{393\text{yd}}{200\text{yd}}$ \approx $\frac{393\text{yd}}{200\text{yd}}$ \approx $\frac{393\text{yd}}{200\text{yd}}$ \approx $\frac{300\text{yd}}{200\text{yd}}$

- Vectors are spectra
	- \Box Energy at a discrete set of frequencies
	- \Box Actuall y 1x4096
	- \Box X axis is the *index* of the number in the vector
		- T. Represents frequency
	- \Box Y axis is the value of the number in the vector ,我们就是一个人,我们就是一个人,我们就是一个人,我们就是一个人,我们就是一个人,我们就是一个人,我们就是一个人,我们就是一个人,我们就是一个人,我们就是一个人
		- T. Represents magnitude

- \blacksquare How much of D is also in S r.
	- \Box How much can you fake a D by playing an S
	- \Box $D.S / |D||S| = 0.1$
	- \Box $\hspace{0.1em}\rule{0.7pt}{1.5em}\hspace{0.1em}$ Not very much
- **T** How much of D is in D2?
	- \Box $D.D2 / |D| / |D2| = 0.5$
	- Not bad, you can fake it \Box
- \mathbb{R}^3 To do this, D, S, and D2 *must be the same size*

- The column vector is the spectrum
- The row vector is an amplitude modulation
- \blacksquare The crossproduct is a spectrogram
	- \Box Shows how the energy in each frequency varies with time
	- \Box The pattern in each column is a scaled version of the spectrum
	- Each row is a scaled version of the modulation \Box

Matrix multiplication

■ Generalization of vector multiplication □ Dot product of each vector pair

$$
\mathbf{A} \cdot \mathbf{B} = \begin{bmatrix} \leftarrow & \mathbf{a}_1 & \rightarrow \\ \leftarrow & \mathbf{a}_2 & \rightarrow \end{bmatrix} \cdot \begin{bmatrix} \uparrow & \uparrow \\ \mathbf{b}_1 & \mathbf{b}_2 \\ \downarrow & \downarrow \end{bmatrix} = \begin{bmatrix} \mathbf{a}_1 \cdot \mathbf{b}_1 & \mathbf{a}_1 \cdot \mathbf{b}_2 \\ \mathbf{a}_2 \cdot \mathbf{b}_1 & \mathbf{a}_2 \cdot \mathbf{b}_2 \end{bmatrix}
$$

□ Dimensions must match!!

- Π Columns of first matrix = rows of second
- × Result inherits the number of rows from the first matrix and the number of columns from the second matrix
- MATLAB syntax: a*b

- Multiplication of a vector X by a matrix Y expresses the vector X \mathbb{R}^3 in terms of projections of X on the row vectors of the matrix Y
	- \Box It scales and rotates the vector
	- \Box Alternately viewed, it scales and rotates the space th \Box – the underlying plane

- \mathbb{R}^3 **The** *normals* to the row vectors in the matrix become **that** the new axes
	- □ X axis = normal to the *second* row vector
		- \mathbb{R}^3 Scaled by the inverse of the length of the *first* row vector

- П The k-th axis corresponds to the normal to the hyperplane represented by the 1..k-1,k+1..N-th row vectors in the matrix
	- \Box Any set of K-1 vectors represent a hyperplane of dimension K-1 or less
- H The distance along the new axis equals the length of the projection on the k-th row vector
	- \Box Expressed in inverse-lengths of the vector

Matrix Multiplication: Column space

$$
\begin{bmatrix} a & b & c \\ d & e & f \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = x \begin{bmatrix} a \\ d \end{bmatrix} + y \begin{bmatrix} b \\ e \end{bmatrix} + z \begin{bmatrix} c \\ f \end{bmatrix}
$$

- So much for spaces .. what does multiplying a matrix by a vector really do?
- **If** *mixes* the column vectors of the matrix using the numbers in the vector
- The *column* space of the Matrix is the complete set of all vectors that can be formed by mixing its columns

Matrix Multiplication: Row space

$$
\begin{bmatrix} x & y \end{bmatrix} \begin{bmatrix} a & b & c \\ d & e & f \end{bmatrix} = x[a \ b \ c] + y[a \ e \ f]
$$

- Left multiplication mixes the *row vectors* of the matrix.
- The *row space* of the Matrix is the complete set of all vectors that can be formed by mixing its rows

- A physical example \mathbb{R}^n
	- \Box The three column vectors of the matrix X are the spectra of three notes
	- \Box The multiplying column vector Y is just a mixing vector
	- \Box The result is a sound that is the mixture of the three notes

Matrix multiplication: another vie $\rm W$ $\overline{}$ $\overline{}$ $\overline{}$ $\begin{bmatrix} \nabla_a b & \nabla_a b \n\end{bmatrix}$ \vert $\overline{}$ $\begin{bmatrix} b_{11} & b_{1N} \end{bmatrix}$ $\begin{bmatrix} \cdot \end{bmatrix}$ $\begin{bmatrix} a_{11} & \cdots & a_{1N} \end{bmatrix}$ \cdot D $=$ $\sum a_{1k}b_{k1}$. \sum *k* $\sum_{k} a_{1k} \nu_{k1}$ $\sum_{k} a_{1k} \nu_{kK}$ $\left[\begin{array}{ccc} b_{11} & . & b_{NK} \end{array}\right]$ $\left[\begin{array}{cc} \mathcal{L} & a_{1k}b_{k} \end{array}\right]$ $\begin{bmatrix} a_{11} & \cdots & a_{1N} \\ a_{21} & \cdots & a_{2N} \end{bmatrix} \begin{bmatrix} b_{11} & \cdots & b_{NK} \end{bmatrix} \begin{bmatrix} \sum_{k} a_{1k}b_{k1} & \cdots & \sum_{k} a_{1k}b_{k2} & \cdots & \sum_{k} a_{kN}b_{k1} & \cdots & \sum_{k} a_{kN}b_{k2} & \cdots & \sum_{k}$ *a a* $\begin{bmatrix} b_{11} & b_{11} & b_{12} \ b_{21} & b_{22} & b_{22} \end{bmatrix} \begin{bmatrix} b_{11} & b_{12} & b_{13} \ b_{11} & b_{12} & b_{12} \end{bmatrix} \begin{bmatrix} b_{11} & b_{12} & b_{13} \ b_{21} & b_{22} & b_{22} \end{bmatrix}$ 11 \cdots \cdots $\mathbf{A} \cdot \mathbf{B}$ ■ What does this mean? $\left[\sum_k a_{Mk} b_{k1} \right]$ $\left[\sum_k a_{Mk} b_{kK} \right]$ $\begin{bmatrix} \cdot & \cdot & \cdot & \cdot \ a_{M1} & \cdot & \cdot & a_{MN} \end{bmatrix} \begin{bmatrix} \cdot & \cdot & \cdot & \cdot \ b_{N1} & \cdot & b_{NK} \end{bmatrix}$ $\sum a_{\scriptscriptstyle \it Mk} b_{\scriptscriptstyle k1}$. \sum *k* a_{M1} \ldots a_{MN} $\begin{bmatrix} \lfloor b_{N1} & \cdots & b_{NK} \end{bmatrix}$ $\begin{bmatrix} \sum_{k} a_{Mk} b_{k1} & \cdots & \sum_{k} a_{Mk} b_{kK} \end{bmatrix}$ *kMM*1 · · · *w_{MN}* 1 \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots 1 $\begin{bmatrix} a_{11} & b_{12} \end{bmatrix}$ $\begin{bmatrix} a_{11} \\ a_{12} \end{bmatrix}$ $\begin{bmatrix} a_{1N} \\ a_{1N} \end{bmatrix}$ $\begin{bmatrix} a_{11} & \ldots & a_{1N} \end{bmatrix} \begin{bmatrix} b_{11} & \ldots & b_{NK} \end{bmatrix} \begin{bmatrix} a_{11} \end{bmatrix} \qquad \qquad \begin{bmatrix} a_{12} \end{bmatrix} \qquad \qquad \begin{bmatrix} a_{1N} \end{bmatrix}$ $\begin{bmatrix} a_{11} & \ldots & a_{1N} \ a_{21} & \ldots & a_{N} \end{bmatrix} \begin{bmatrix} b_{11} & \ldots & b_{NK} \end{bmatrix}$ *^N NK MN K M K M N NK NK* $M1$ · · M_N *N b b a* b_{21} , *b a b b a* a_{M1} \ldots a_{MN} $\lfloor b_{N1}$ \ldots b_{MN} *a a* *....* ..**..** 21 \cdot v_{2K} | \cdot \cdot | $\$ 2 11 \cdot \cdot \cdot \cdot 1 1 1 11 1 21 \cdots α_2 $\overline{}$ $\overline{}$ $\overline{}$ $\left\lfloor a_{_{MN}}\right\rfloor$ $+ \ldots +$ $\begin{bmatrix} a_{M2} \end{bmatrix}$ $\boldsymbol{+}$ $\overline{}$ $\overline{}$ $\overline{}$ $\begin{bmatrix} a_{M1} \end{bmatrix}$ Ξ $\overline{}$ $\overline{}$ $\overline{}$ \rfloor I \lfloor Î $\overline{}$ $\overline{}$ $\overline{}$ $\begin{bmatrix} a_{M1} & a_{M2} \end{bmatrix} \begin{bmatrix} b_{N1} & b_{NK} \end{bmatrix} \begin{bmatrix} b_{M2} \end{bmatrix}$ $\begin{bmatrix} a_{M2} \end{bmatrix}$ $\begin{bmatrix} a_{M2} \end{bmatrix}$ $\mathcal{L}^{\text{max}}_{\text{max}}$ The outer product of the first column of A and the first row of B + outer product of the second column of A and 11-755/18-797 the second row of B + \dots 26 Aug 2010 34

Matrix multiplication: Mixing modulated spectra

 Image1 fades out linearly Image 2 fades in linearly

- \mathbb{R}^3 Each column is one image
	- \Box The columns represent a sequence of images of decreasing intensity
- \mathbb{R}^n ■ Image1 fades out linearly

$\begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$ Image 2 fades in linearly

Image 2 fades in linearly

- \blacksquare An identity matrix is a square matrix where
	- \Box All diagonal elements are 1.0
	- \Box All off-diagonal elements are 0.0
- $\mathcal{L}_{\mathcal{A}}$ \blacksquare Multiplication by an identity matrix does not change vectors

- p. Scales the axes
	- May flip axes

Diagonal matrix to transform images

26 Aug 2010 11-755/18-797 47

Stretching

- \mathbb{R}^n Location-based representation
- Scaling matrix only scales the X axis
	- \Box The Y axis and pixel value are scaled by identity
- **Not a good way of scaling.**

■ Scale only Green

- A permutation matrix simply rearranges the axes
	- \Box The row entries are axis vectors in a different order
	- \Box The result is a combination of rotations and reflections
- $\mathcal{L}^{\text{max}}_{\text{max}}$ The permutation matrix effectively *permutes* the arrangement of the elements in a vector

Permutation Matrix

■ Reflections and 90 degree rotations of images and objects

- $\mathcal{L}_{\mathcal{A}}$ **Reflections and 90 degree rotations of images and objects**
	- \Box Object represented as a matrix of 3-Dimensional "position" vectors
	- \Box \Box Positions identify each point on the surface

A rotation matrix *rotates* the vector by some angle θ

- $\mathcal{L}^{\text{max}}_{\text{max}}$ Alternately viewed, it rotates the axes
	- \Box The new axes are at an angle θ to the old one

11-755/18-797 26 Aug 2010 54

Note the representation: 3-row matrix

- Rotation only applies on the "coordinate" rows
- The value does not change
- Why is pacman grainy?

- 2 degrees of freedom
	- □ 2 separate angles
- What will the rotation matrix be?