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‘ Sounds — an example

= A sequence of notes
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‘ Sounds — an example
= A sequence of sounds

= A proper speech utterance from the same
sounds
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Template Sounds Combine to Form a Signal

The individual component sounds “combine” to form the
final complex sounds that we perceive

o Notes form music

o Phoneme-like structures combine in utterances

o Component sounds — notes, phonemes — too are complex

Sound in general is composed of such “building blocks”
or themes

o Our definition of a building block: the entire structure occurs
repeatedly in the process of forming the signal

Goal: To learn these building blocks automatically, from
analysis of data

2 Nov 2010 11755/18797



Urns and balls

An urn has many balls

Each ball has a number marked on it
o Multiple balls may have the same number

A “picker” draws balls at random..
This is a multinomial
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Signal Separation with the Urn model

What does the probability of drawing balls
from Urns have to do with sounds?

o Or Images?

We shall see..
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The representation
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We represent signals spectrographically

o Sequence of magnitude spectral vectors estimated from (overlapping)
segments of signal

o Computed using the short-time Fourier transform

o Note: Only retaining the magnitude of the STFT for our operations

o We will, however need the phase later for conversion to a signal
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‘ A Multinomial Model tor Spectra

= A magnitude spectral vector obtained from a DFT

represents spectral magnitude against discrete
frequencies

o This may be viewed as a histogram of draws from a multinomial
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FRAME Power spectrum of frame t indices from the DFT

Probability distribution underlying the t-th spectral vector
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‘ A more complex model

= A “picker” has multiple urns

= In each draw he first selects an urn, and then a ball
from the urn

o Overall probability of drawing f is a mixture multinomial
= Since several multinomials (urns) are combined

o Two aspects — the probability with which he selects any
urn, and the probability of frequencies with the urns

HISTOGRAM

I
multiple draws > U
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The Picker Generates a Spectrogram

The picker has a fixed set of Urns
o Each urn has a different probability distribution over f

He draws the spectrum for the first frame
o In which he selects urns according to some probability P,(z)

Then draws the spectrum for the second frame
o In which he selects urns according to some probability P,(z)

And so on, until he has constructed the entire spectrogram
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The Picker Generates a Spectrogram
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The picker has a fixed set of Urns
o Each urn has a different probability distribution over f

He draws the spectrum for the first frame
o In which he selects urns according to some probability P,(z)

Then draws the spectrum for the second frame
o In which he selects urns according to some probability P,(z)

And so on, until he has constructed the entire spectrogram
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The Picker Generates a Spectrogram
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The picker has a fixed set of Urns
o Each urn has a different probability distribution over f
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The Picker Generates a Spectrogram
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The picker has a fixed set of Urns
o Each urn has a different probability distribution over f

He draws the spectrum for the first frame
o In which he selects urns according to some probability P,(z)

Then draws the spectrum for the second frame
o In which he selects urns according to some probability P,(z)

And so on, until he has constructed the entire spectrogram
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The Picker Generates a Spectrogram
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The picker has a fixed set of Urns
o Each urn has a different probability distribution over f

He draws the spectrum for the first frame
o In which he selects urns according to some probability P,(z)

Then draws the spectrum for the second frame
o In which he selects urns according to some probability P,(z)

And so on, until he has constructed the entire spectrogram
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The Picker Generates a Spectrogram
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The picker has a fixed set of Urns

o Each urn has a different probability distribution over f

He draws the spectrum for the first frame

o In which he selects urns according to some probability P,(z)

Then draws the spectrum for the second frame

o In which he selects urns according to some probability P,(z)

And so on, until he has constructed the entire spectrogram

o The number of draws in each frame represents the rms energy in
that frame
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‘ The Picker Generates a Spectrogram
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= The URNS are the same for every frame

o These are the component multinomials or bases for the source
that generated the signal

= The only difference between frames is the probability with which
he selects the urns

—P(f) zzzpt(z) (f | z)—— SOURCE specific

Frame-specific
bases

spectral distribution
Frame(time) specific mixture weight
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Spectral View ot Component Multinomials

Each component multinomial (urn) is actually a normalized
histogram over frequencies P(f |z)

o l.e. aspectrum

Component multinomials represent latent spectral structures
(bases) for the given sound source

The spectrum for every analysis frame is explained as an
additive combination of these latent spectral structures
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Spectral View ot Component Multinomials

By “learning” the mixture multinomial model for any
sound source we “discover” these latent spectral
structures for the source

The model can be learnt from spectrograms of a
small amount of audio from the source using the EM

algorithm
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EM learning of bases
Initialize bases

o P(f|z) for all z, for all f
Must decide on the number of urns

For each frame
o Initialize P,(z)
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EM Update Equations

lterative process:

o Compute a posteriori probability of the zt" urn for
the source for each f

(2] 1= PP |2

> R@)P(]2)

o Compute mixture weight of z" urn
ZP(ZI f)S.(f)
ZZP(Z | £)S.(f)
o Compute the probabilities of the frequencies for
the zth urn ZP(ZH)S(f)
P ZZP( [195.()
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Learning Structures
Speech Sig bases
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How meaningtul are these structures

If bases capture data structure they must

o Allow prediction of data

Hearing only the low-frequency components of a
note, we can still know the note

Which means we can predict its higher frequencies

o Be resolvable in complex sounds

Must be able to pull them out of complex mixtures
o Denoising
o Signal Separation from Monaural Recordings
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The musician vs. the signal processor

Some badly damaged music is given to a signal processing whiz
and a musician
o They must “repair” it. What do they do?

Signal processing :

o Invents many complex algorithms

o Writes proposals for government grants

o Spends $1000,000

o Develops an algorithm that results in less scratchy sounding music

Musician:
o Listens to the music and transcribes it
o Plays it out on his keyboard/piano
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Prediction

Bandwidth Expansion

o Problem: A given speech signal only has frequencies in the

300Hz-3.5Khz range
Telephone quality speech

o Can we estimate the rest of the frequencies

The full basis iIs known

The presence of the basis is
identified from the observation
of a part of it

The obscured remaining spectral
pattern can be guessed
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‘ Bandwidth Expansion

= The picker has drawn the histograms for every frame in the
signal
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‘ Bandwidth Expansion

= The picker has drawn the histograms for every frame in the
signal
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‘ Bandwidth Expansion

= The picker has drawn the histograms for every frame in the
signal
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‘ Bandwidth Expansion

= The picker has drawn the histograms for every frame in the
signal
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‘ Bandwidth Expansion

= The picker has drawn the histograms for every
frame In the signa

!

= However, we are only able to observe the number
of draws of some frequencies and not the others

= We must estimate the number of draws of the
“*Uhseen frequencies

29



Bandwidth Expansion: Step 1 — Learning

= From a collection of full-bandwidth training
data that are similar to the bandwidth-
reduced data, learn spectral bases

o Using the procedure described earlier
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Bandwidth Expansion: Step 2 — Estimation

= Using only the observed frequencies Iin the
bandwidth-reduced data, estimate mixture
welights for the bases learned in step 1.
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Step 2
lterative process:

o Compute a posteriori probability of the zt" urn for
the speaker for each f

R@P(T12)
> R@)P(]2)

Rzl T)=

o Compute mixture weight of z" urn for each frame t

> PR(z] 1)S.(f)

f e(observed frequencies
P (2) = retiearce

2 2 R 1)S(f)

z' fe(observed frequencies)

o P(f|z) was obtained from training data and will not
be reestimated
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Step 3 and Step 4

Compose the complete probability distribution for each
frame, using the mixture weights estimated in Step 2

R(F)=> R(2P(f]2)

Note that we are using mixture weights estimated from
the reduced set of observed frequencies

o This also gives us estimates of the probabilities of the
unobserved frequencies

Use the complete probability distribution P,(£) to predict
the unobserved frequencies!
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Predicting from P,(f ): Simplified Example

-

A single Urn with only red and blue balls

Given that out an unknown number of draws,
exactly m were red, how many were blue?

One Simple solution:

o Total number of draws N = m / P(red)

o The number of tails drawn = N*P(blue)

o Actual multinomial solution is only slightly more complex
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Estimating unobserved trequencies

Expected value of the number of draws:

D si(f)

7 _ f e(observed frequencies)

" > R(f)

f e (observed frequencies)

Estimated spectrum in unobserved
frequencies

S,(f)=N,P,(f)
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‘ Overall Solution

= Learn the “urns” for the signal source
from broadband training data

= For each frame of the reduced
bandwidth test utterance, find mixture
weights for the urns

o Ignore (marginalize) the unseen
frequencies

= Given the complete mixture multinomial
distribution for each frame, estimate
spectrum (histogram) at unseen
frequencies
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Prediction of Audio
: ¢

Some frequency components are missing (left panel)
We know the bases P(f|z)
o But not the mixture weights for any particular spectral frame

We must “fill in” the hole in the image
o To obtain the one to the right
o Easyto do — as explained
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A more fun example

Reduced BW data

Bases learned from this
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Signal Separation from Monaural

Recordings

The problem:

o Multiple sources are producing sound
simultaneously

o The combined signals are recorded over a single
microphone

o The goal is to selectively separate out the signal
for a target source in the mixture

Or at least to enhance the signals from a selected
source
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Problem Specification

The mixed signal contains
components from multiple
sources

Each source has its own “bases”

In each frame

o Each source draws from its own
collection of bases to compose a
spectrum

Bases are selected with a frame
specific mixture weight

o The overall spectrum is a mixture
of the spectra of individual
sources

l.e. a histogram combining draws
from both sources

Underlying model: Spectra are
histograms over frequencies
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Ball-and-urn model for a mixed signal
The caller!!

>

Each sound source is represented by its own picker and urns
o Urns represent the distinctive spectral structures for that source
o Assumed to be known beforehand (learned from some separate training data)

The caller selects a picker at random
o The picker selects an urn randomly and draws a ball
o The caller calls out the frequency on the ball

A spectrum is a histogram of frequencies called out
o The total number of draws of any frequency includes contributions from both sources

2 Nov 2010 11755/18797 41



Separating the sources

Goal: Estimate number of draws from each source

o The probability distribution for the mixed signal is a linear
combination of the distribution of the individual sources

o The individual distributions are mixture multinomials
o And the urns are known

R(f)=R(s)R(f[s)+PR(s2)R(f]s2)

R(F)=PR(s) ) R(zIsDP(f [2,5)+R(s2) D R(zIsDP(F | 2,5)
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Separating the sources

Goal: Estimate number of draws from each source

o The probability distribution for the mixed signal is a linear
combination of the distribution of the individual sources

o The individual distributions are mixture multinomials
o And the urns are known

R (f)=R(s)R(f[s)+PR(s2)R(f]s2)

R(F)=R(s) ) R(zIsDP(f [2,5)+R(s2) > R(zIs)P(F]2,8)
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Separating the sources

Goal: Estimate number of draws from each source

o The probability distribution for the mixed signal is a linear
combination of the distribution of the individual sources

o The individual distributions are mixture multinomials
o And the urns are known
o Estimate remaining terms using EM

R (f)=R(s)R(f[s)+PR(s2)R(f]s2)

N\ 7~ N\ N\
H(f)ﬁ@z@mm)@zpt(zm (f12.5,)

2 Nov 2010 11755/18797

44



Algorithm

For each frame:
o Initialize P(s)
The fraction of balls obtained from source s
Alternately, the fraction of energy in that frame from source s

o Initialize P(z|s)
The mixture weights of the urns in frame t for source s

o Reestimate the above two iteratively

Note: P(f|z,s) Is not frame dependent
a Itis also not re-estimated

o Since it is assumed to have been learned from separately
obtained unmixed training data for the source
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Iterative algorithm
lterative process:

o Compute a posteriori probability of the combination of
speaker s and the z™" urn for each speaker for each f

o Compute the a priori weight of speaker s

o Compute mixture weight of zt" urn for speaker s

2 Nov 2010

R(s.z| )=

R(S)R(z[s)P(f |z,5)

D R R(IS)P(F]2,5)

ZZP(S z| £)S,(f)

R(s)=

ZZZP(S 2'| £)S,(f)

R(z|s)=

ZH(S,ZIf)St(f)

ZZP(S z'| 1)S,(f)
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What 1s P (s,z | f)

Compute how each ball (frequency) is split between the urns of
the various sources

The ball is first split between the sources

RS 1) =i

D R(s)

The fraction of the ball attributed to any source s is split between
its urns:

R(z]s)P(f [z,5)

P ,F)=
R YERTTI

The portion attributed to any urn of any source is a product of the
two

R(SREISP(F]2,5)
Y R(s)Y_R@EIs)P(F|2,5)
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Reestimation

The reestimate of source weights is simply
the proportion of all balls that was attributed
to the sources

ZZP(S z| )S,(f)
ZZZP(S 2'| £)S.(f)

R(s)=

The reestimate of mixture weights Is the
proportion of all balls attributed to each urn

ZP(S,Z| f)S,(f)
ZZP(S z'| 1)S,(f)

2 Nov 2010 11755/18797 48

R(z|s)=




Separating the Sources

For each frame:

Given

a0 S(f) — The spectrum at frequency f of the mixed
signal

Estimate

0 S;i(f) — The spectrum of the separated signal for
the I-th source at frequency f

A simple maximum a posteriori estimator
Si(F)=S(f)) R(zs| f)
Z
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If we have only have bases for one sourcer

Only the bases for one of the two sources Is
given
o Or, more generally, for N-1 of N sources

R (f)=R(s)R(f[s)+PR(s2)R(f]s2)

R(F)=Ri(s) ) R(zIsDP(f [2,5)+R(s2) > R(zIsDP(F|2,5)
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If we have only have bases for one sourcer

Only the bases for one of the two sources is given
o Or, more generally, for N-1 of N sources

o The unknown bases for the remaining source must also be
estimated!

R (f)=R(s)R(f[s)+PR(s2)R(f]s2)

H(f)ﬁ@z@mzm@zpt(zm (f12.5,)
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Partial information: bases for one source
unknown

P(f|z,s) must be Initialized for the additional
source

Estimation procedure now estimates bases
along with mixture weights and source
probabillities

o From the mixed signal itself

The final separation is done as before
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Iterative algorithm

lterative process:

o Compute a posteriori probability of the combination of
speaker s and the z™" urn for the speaker for each f

R(s.z| )=

R(S)R(z]s)P(f |z,5s)

D RE)Y R(ZISHP(F]2,5)

o Compute the a priori weight of speaker s and mixture

R(s) =

ZZP(S z| £)S,(f)

ZZZP(S z'| 1)S,(f)

R(zls)=

ZPt(S,ZIf)St(f)
ZZP(S 7' £)S,(f)

o Compute unknown bases

2 Nov 2010

11755/18797
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Partial information: bases for one source
unknown

P(f|z,s) must be Initialized for the additional
source

Estimation procedure now estimates bases
along with mixture weights and source
probabillities

o From the mixed signal itself

The final separation is done as before

Si(F)=S(f)) R(zs| f)
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Separatmg M1xed Slgnals Examples
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“Raise my rent” by David

Gilmour Norah Jones singing “Sunrise”
Background music “bases” A more difficult problem:
learnt from 5-seconds of o Original audio clipped!
music-only segments within _

the song Background music bases

learnt from 5 seconds of

: music-only segments
Lead guitar “bases” bases usic-only Seg

learnt from the rest of the song
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Where 1t works

When the spectral structures of the two
sound sources are distinct

o Don’t look much like one another
o E.g. Vocals and music
o E.g. Lead guitar and music

Not as effective when the sources are similar
o Voice on voice
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Separate overlapping speech
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o Improvements are worse for same-gender mixtures
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How about non-speech data

19x19 images = 361 dimensional vectors bl

el ] SRS
A S SRR
B e s Sy o §

We can use the same model to represent other data
Images:
o Every face in a collection is a histogram

o Each histogram is composed from a mixture of a fixed number of
multinomials

All faces are composed from the same multinomials, but the manner in which the
multinomials are selected differs from face to face

o Each component multinomial is also an image
And can be learned from a collection of faces

Component multinomials are observed to be parts of faces
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How many bases can we learn

The number of bases that must be learned is a
fundamental question

o How do we know how many bases to learn
o How many bases can we actually learn computationally

A key computational problem in learning bases:

o The number of bases we can learn correctly is restricted by
the dimension of the data

o l.e., if the spectrum has F frequencies, we cannot estimate
more than F-1 component multinomials reliably

Why?
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‘ Indeterminacy in Learning Bases

Consider the four histograms
to the right

All of them are mixtures of the
same K component
multinomials

For K < 3, a single global
solution may exist

o l.e there may be a unique set
of component multinomials
that explain all the
multinomials

= With error — model will not be
perfect

For K = 3 a trivial solution
exists
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‘ Indeterminacy

= Multiple solutions for K = 3..

o We cannot learn a non-
trivial set of “optimal” bases
from the histograms

o The component
multinomials we do learn tell
us nothing about the data

= For K> 3, the problem only
gets worse

o An inifinite set of solutions
are possible

= E.g. the trivial solution plus
a random basis

2 Nov 2010 11755/18797
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Indeterminacy 1n signal representations

Spectra:

o If our spectra have D frequencies (no. of unique indices in
the DFT) then..

o We cannot learn D or more meaningful component

multinomials to represent them
The trivial solution will give us D components, each of which
has probability 1.0 for one frequency and O for all others

This does not capture the innate spectral structures for the
source
Images: Not possible to learn more than P-1
meaningful component multinomials from a

collection of P-pixel images
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How many bases to represent sounds/images?

In each case, the bases represent “typical unit structures”

o Notes

o Phonemes

o Facial features..

How many notes in music

o Several octaves

o Several instruments

The typical sounds in speech —

o Many phonemes, many variations, can number in the thousands
Images:

o Millions of units that can compose an image — trees, dogs, walls, sky, etc.
etc. etc...

To model the data well, all of these must be represented
o More bases than dimensions
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Overcomplete Representations

Representations where there are more bases than dimensions are
called Overcomplete
o E.g. more multinomial components than dimensions

o Overcomplete representations are required to represent the world

adequately
The complexity of the world is not restricted by the dimensionality of our representations!

Overcomplete representations are difficult to compute
o Straight-forward computation results in indeterminate solutions

Additional constraints must be imposed in the learning process to
learn more components than dimensions

We will require our solutions to be sparse
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‘ SPARSE Decompositions

= Allow any arbitrary number of bases (urns)
o Overcomplete

= Specify that for any specific frame only a small number of bases may be
used

o Although there are many spectral structures, any given frame only has a few of
these

= In other words, the mixture weights with which the bases are combined
must be sparse
o Have non-zero value for only a small number of bases

o Alternately, be of the form that only a small number of bases contribute
significantly
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The history ot sparsity

The search for “sparse” decompositions has a long history
o Even outside the scope of overcomplete representations

A landmark paper: Sparse Coding of Natural Images Produces Localized,

Oriented, Bandpass Receptive Fields, by Olshausen and Fields

o “The images we typically view, or natural scenes, constitute a minuscule fraction of the
space of all possible images. It seems reasonable that the visual cortex, which has
evolved and developed to effectively cope with these images, has discovered efficient
coding strategies for representing their structure. Here, we explore the hypothesis that
the coding strategy employed at the earliest stage of the mammalian visual cortex
maximizes the sparseness of the representation. We show that a learning algorithm
that attempts to find linear sparse codes for natural scenes will develop receptive fields
that are localized, oriented, and bandpass, much like those in the visual system.”

o Images can be described in terms of a small number of descriptors from a large set

E.g. a scene is “a grapevine plus grapes plus a fox plus sky”

Other studies indicate that human perception may be based on sparse
compositions of a large number of “icons”

The number of sensors (rods/cones in the eye, hair cells in the ear) is much
smaller than the number of visual / auditory objects in the world around us

o The internal representation of images must be overcomplete
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Hstimating Mixture Weights given Multinomials

Basic estimation: Maximum likelihood
o Argmax,, logP(X;B,W) = Argmax,, X: X(f)log(X; w; B(f))

Modified estimation: Maximum a posteriori
o Denote W =[wl w2 ..] (in vector form)
o Argmax,, X X(f)log(Z; w; B,(f)) + Blog P(W)

Sparsity obtained by enforcing an a priori probability
distribution P(W) over the mixture weights that
favors sparse mixture weights

The algorithm for estimating weights must be
modified to account for the priors
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The a prior: distribution

A variety of a priori probabillity distributions all
provide a bias towards “sparse” solutions

The Dirichlet prior:
a0 P(W) = Z* IT, we!

The entropic prior:

o P(W) = Z*exp(-aH(W))
H(W) = entropy of W = -, w; log(w;)
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A simplex view of the world

0.0.1) (1,0,0)

1,0)
(10.0) (0,0,1) (0,1,0)

The mixture weights are a probability distribution

They can be viewed as a vector
o W=[wy,w; W, Wy W, ...]
o The vector components are positive and sum to 1.0

All probability vectors lie on a simplex

o A convex region of a linear subspace in which all vectors sum to
1.0

2 Nov 2010 11755/18797
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Probability Simplex

(1,0,0)

(0,0,1) (0,1,0)

The sparsest probability vectors lie on the vertices of the simplex
The edges of the simplex are progressively less sparse
o Two-dimensional edges have 2 non-zero elements

o Three-dimensional edges have 3 non-zero elements
o Etc.
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‘ Sparse Priors: Dirichlet

2d Dirichlet Distribution Visualization Tool

A

P(W) = Z* IT, w;"!

a=0.5

= For alpha < 1, sparse probability vectors are
more likely than dense ones

2 Nov 2010 11755/18797
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Sparse Priors: The entropic prior

Entropic Distribution

A

P(W) = Z*exp(-aH(W))

2 0=0.5

A A

Vectors (probability distributions) with low entropy
are more probable than those with high entropy
o Low-entropy distributions are sparse!
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Optimization with the entropic prior

The objective function
Argmax,, Xy X(f)log(Z; w: Bi(f)) - aH(W)

By estimating W such that the above
equation is maximized, we can derive
minimum entropy solutions

0 Jointly optimize W for predicting the data while
minimizing its entropy

2 Nov 2010 11755/18797
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The Expectation Maximization Algorithm

The parameters are actually learned using the Expectation
Maximization (EM) algorithm

The EM algorithm actually optimizes the following objective
function

0 Q =2y P(Z 1) X(Nlog(P(2) P(f|2)) - aH{P(2)})

P(Z) =w,, {P(£)} =W
The second term here is derived from the entropic prior
Optimization of the above needs a solution to the following

D st HRE )
f

P ) +a(+logR(z))+41=0

The solution requires a new function:
o The lambert W function

2 Nov 2010 11755/18797
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Lambert’s W Function

Lambert’s W function is the solution to: W,(X)

W + log(W) = X o

o Where W = F(X) is the Lambert function 1 — -
Alternately, the inverse function of os

o X=Wexp(W) 1/ i ;
In general, a multi-valued function -I,{_S

If X is real, W is real for X > -1/e -

o Still multi-valued

If we impose the restriction W > -1 and W == real we get the zeroth
branch of the W function

o Single valued
For W < -1 and W == real we get the -1th branch of the W function
o Single valued
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Estimating W (z)

An Iterative solution
o Newton’s Method

;e —z
Wiy = Uy — .
j+1 7 ewi 4 IL’jEw-'i'-
o Halley lterations
wie™i — z
W 4 = W — —
J+1 J . (w;42)(wie" T —z)
ei(w; 4+ 1) — ijii

o Code for Lambert’'s W function is available on
wikipedia
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Solutions with entropic prior

—yla
W(_}/el+/1/a /a) !

R(z) = y=2 S(fR(z]| )

z:-( A +a(1+log(a(z)))j

R (2)

The update rules are the same as before, with one minor modification

To estimate the mixture weights, the above two equations must be
iterated

o To convergence
o Or just for a few iterations

Alpha is the sparsity factor
P.(z) must be initialized randomly
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Learning Rules for Overcomplete Basis Set

Exactly the same as earlier, with the
modification that P,(z) is now estimated to be

sparse
o Initialize P,(z) for all t and P(f|z)

o lterate
P(z] £)S.(f)
R(z| )= Pt(z).P(f'Z). P(f|2z)= Zt:
2 R(@)P(f2) S S R (z] £)S.()
-yla .
P(z)= : =>» S(f)P(z]| f
t( ) W(_7e1+/1/a/a) 7/ Zf: t( ) t( | )

p Z‘(p@) ra(l+ Iog(Pt(z)))J

t
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A Simplex Example for Overcompleteness

........................ 3Hasis Veclors 110)
{1001™ -
e )
ﬁ..
N —-Simplex Boundary
D Data Points
L M Easis Vectors
{oei) ™.~ —Comex Hull

Synthetic data: Four clusters of data within the probability simplex
Regular learning with 3 bases learns an enclosing triangle

Overcomplete solutions without sparsity restults in meaningless
solutions

Sparse overcomplete model captures the distribution of the data
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Sparsity can be employed without
overcompleteness

Overcompleteness requires sparsity

Sparsity does not require overcompleteness

o Sparsity only imposes the constraint that the data
are composed from a mixture of as few
multinomial components as possible

o This makes no assumption about
overcompleteness
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Examples without overcompleteness

s
255
S22
233
225 _//"
S
233
=33
S ,'
288

S S
L
=22
228

— J/’c.
o0
223
a2
222
2= — .Jx"

Left panel, Regular learning: most bases have signiflcant energy in all frames

Right panel, Sparse learning: Fewer bases active within any frame
o Sparse decompaosiions result in more localized activation of bases
2 Nov 8010 Bases, too, are better defined in their structure 31




Face Data: The etfect of sparsity

As solutions get more sparse, bases
become more informative

o In the limit, each basis is a complete ‘
face by itself.

o Mixture weights simply select face

High-entropy mixture weights

Solution also allows for mixture
weights to have maximum entropy

o Maximally dense, i.e. minimally sparse

o The bases become much more
localized components

repdr ey BTy
Sridirdyd-H
RSesRTn h Sles
. Ty wie Ty Ty Tyl
NO sparsity  EeRSSsRea-h-R«

Tl ooy e e e
The sparsity factor allows us to tune (e ]

the bases we learn Sparse mixture weights
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‘ Benetit of overcompleteness

A Dochudsd Faces E. Becorshuclons

C_ Ongiral Test images

3 patches

\
, t\\ N

= 19x19 pixel images (361 pixels)
= Up to1000 bases trained from 2000 faces *

= SNR of reconstruction from overcomplete basis set more than
10dB better than reconstruction from corresponding “compact”
(regular) basis set
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Signal Processing: How

Exactly as before
Learn an overcomplete set of bases

For each new data vector to be processed,
compute the optimal mixture weights

o Constrainting the mixture weights to be sparse
now

Use the estimated mixture weights and the
bases to perform additional processing
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Signal Separation with Overcomplete Bases

Learn overcomplete bases for each source

For each frame of the mixed signal

o Estimate prior probability of source and mixture weights for each source
Constraint: Use sparse learning for mixture weights

Estimate separated signals as SAt’i(f) = St(f)ZPt(z,s| f)

S :. A z
g
A
] ]

R (f)=R(s)R(f[s)+PR(s2)R(f]s2)

N\ 7~ N\ N\
H(f)ﬁ@z@mm)@zpt(zm (f12.5,)
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Sparse Overcomplete Bases: Separation

= 3000 bases for each of the speakers
o The speaker-to-speaker ratio typically doubles (in dB) w.r.t “compact” bases

Regular bases

Yalized Frequency (m‘ddsmm Frequency (xx Neiseipte) Frequency («xradk

Sparse bases

o _ _ _ - _ .
= == = == = - =
soao = = = — = = = =5 -
[ = = == ——3 = = — = === =__
. — — — - = g E == = == :,F;EQE
= == - =g = — = = =
———  — = == — = ==

=ococo
sococo
acoo |

zoo0o
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The Limits of Overcompleteness

How many bases can we learn?

The limit is: as many bases as the number of
vectors In the training data

o Or rather, the number of distinct histograms in the
training data

Since we treat each vector as a histogram

It IS not possible to learn more than this
number regardless of sparsity

o The arithmetic supports it, but the results will be
meaningless
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Working at the limits of overcompleteness:
The “Example-Based” Model

Every training vector is a basis
o Normalized to be a distribution

Let S(t,f) be the tt" training vector
Let T be the total number of training vectors
The total number of bases is T

The k" basis is given by
o B(k,f) = S(k,f) / Z:S(k,f) = S(k,f) / |S(k,)|,
Learning bases requires no additional learning steps

besides simply collecting (and computing spectra
from) training data
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The example based model — an illustration

AAA AAA AAA
A A A A A A A
4 AAA AAA A A
A
- A A - A AA N A A
A A A A A A A A A
A A A A AA A A A, A A A A
A A A 4L . A
A A A A A% AL A A
A A A A & A A
A A A A A A
A A A A A A

In the above example all training data lie on the curve shown (Left
Panel)

o Each of them is a vector that sums to 1.0

The learning procedure for bases learns multinomial components that
are linear combinations of the data (Middle Panel)

o These can lie anywhere within the area enclosed by the data

o The layout of the components hides the actual structure of the layout of the
data

The example based representation captures the layout of the data
perfectly (right panel)
o Since the data are the bases

2 Nov 2010 11755/18797
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Signal Processing with the Example Based
Model

All previously defined operations can be

performed using the example based model
exactly as before

o For each data vector, estimate the optimal mixture
weights to combine the bases

Mixture weights MUST be estimated to be sparse

The example based representation Is simply
a special case of an overcomplete basis set
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‘ Speaker Separation Example

Signal to Imarfararca Ratio

= Speaker-to-interference ratio of separated
speakers

o State-of-the-art separation results

2 Nov 2010 11755/18797
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Example-based model: A/ the training
datar

In principle, no need to use all training data
as the model
o A well-selected subset will do

o E.g. —ignhore spectral vectors from all pauses and
non-speech regions of speech samples

o E.g. — eliminate spectral vectors that are nearly
identical

The problem of selecting the optimal set of
training examples remains open, however
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Summary So Far

PLCA:

o The basic mixture-multinomial model for audio (and other
data)

Sparse Decomposition:

o The notion of sparsity and how it can be imposed on
learning

Sparse Overcomplete Decomposition:
o The notion of overcomplete basis set

Example-based representations
o Using the training data itself as our representation
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‘ Next up: Shift/ Transform Invariance

e = == —— —=_ = e = = e ]
= —== e BE - — =1 = -

Tooo EE = = == —=8 =

= 2 =8 == — - — = —=FK = - =

s000 = El S = = — F— = =

= = = = -_— 3 =8 — —

S000

000000

3000 —
2000

I

= Sometimes the “typical” structures that

compose a sound are wider than one spectral
frame

o E.g. In the above example we note multiple
examples of a pattern that spans several frames
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= Sometimes the “typical”’ structures that compose a
sound are wider than one spectral frame

o E.g. In the above example we note multiple examples of a
pattern that spans several frames

= Multiframe patterns may also be local in frequency

o E.g. the two green patches are similar only in the region
enclosed by the blue box
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Patches are more representative than tframes

= Four bars from a music example

= The spectral patterns are actually patches
o Not all frequencies fall off in time at the same rate

= The basic unit is a spectral patch, not a spectrum
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Images: Patches often form the image

BN SHRDSD
RV SARDD

A typical image component may be viewed as a
patch

a The alien invaders
o Face like patches

o A car like patch
overlaid on itself many times..

2 Nov 2010 11755/18797
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Shift-invariant modelling

A shift-invariant model permits individual
bases to be patches

Each patch composes the entire image.

The data is a sum of the compositions from
iIndividual patches

2 Nov 2010 11755/18797
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‘ Shift Invariance in one Dimension

i 5
£ RRVT RS

w‘mumr i

( o)

¢0CC:

@""’ M i —

= Our bases are now “patches”
o Typical spectro-temporal structures

= The urns now represent patches
o Each draw results in a (t,f) pair, rather than only f
o Also associated with each urn: A shift probability distribution P(T|z)

= The overall drawing process is slightly more complex

= Repeat the following process:
o Select an urn Z with a probability P(Z)
o Draw avalue T from P(t|2)
o Draw (t,f) pair from the urn
o Add to the histogram at (t+T, f)

2 Nov 2010 11755/18797
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Shift Invariance in one Dimension

v [ I T

e

The process is shift-invariant because the
probabllity of drawing a shift P(T|Z) does not
affect the probability of selecting urn Z

Every location in the spectrogram has
contributions from every urn patch
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Shift Invariance in one Dimension

v [N I ]
1RO

The process is shift-invariant because the

probabillity of drawing a shift P(T|Z) does not
affect the probability of selecting urn Z

Every location in the spectrogram has
contributions from every urn patch
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Shift Invariance in one Dimension

@)
0 M
093

The process is shift-invariant because the
probabllity of drawing a shift P(T|Z) does not
affect the probability of selecting urn Z

Every location in the spectrogram has
contributions from every urn patch
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Probability of drawing a particular (t,f) combination

P(t, f) =) P(2)) P(z|2)P(t-7, f |2)

The parameters of the model:

o P(t,f|z) — the urns

o P(T|z) — the urn-specific shift distribution
o P(z) — probability of selecting an urn

The ways in which (t,f) can be drawn:

o Select any urn z

o Draw T from the urn-specific shift distribution
o Draw (t-T,f) from the urn

The actual probability sums this over all shifts and urns
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Learning the Model

The parameters of the model are learned analogously to the manner in
which mixture multinomials are learned

Given observation of (t,f), it we knew which urn it came from and the shift,
we could compute all probabilities by counting!

o Ifshiftis Tand urnis Z
Count(Z) = Count(2Z) + 1
For shift probability: Count(T|Z) = Count(T|Z)+1
For urn: Count(t-T,f | Z) = Count(t-T,f|Z) + 1
o Since the value drawn from the urn was t-T,f

o After all observations are counted:
Normalize Count(Z) to get P(2)
Normalize Count(T|Z) to get P(T|Z)
Normalize Count(t,f|Z2) to get P(t,f|2)

Problem: When learning the urns and shift distributions from a histogram,
the urn (Z) and shift (T) for any draw of (t,f) is not known

o These are unseen variables
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Learning the Model

Urn Z and shift T are unknown
o So (t,f) contributes partial counts to every value of T and Z
o Contributions are proportional to the a posteriori probability of Z and T,Z

P(t, f,2) = P(Z)ZP(T 1Z)P(t—T,f|2) P(T.t,f|Z)=P(T|Z)P(t-T,f|2)
T
P(t, f,2) P(T,t-T,f]2)
P(Z |t f)= P(T|Zt f)=
(2It1) ZP(t,f,Z') et ) ZP(T',t—T',HZ)
Z' T'

Each observation of (t,f)

o P(z|t,f) to the count of the total number of draws from the urn
Count(Z) = Count(Z) + P(z | t,f)

o P(z|t,))P(T | z,t,f) to the count of the shift T for the shift distribution
Count(T | Z) = Count(T | 2) + P(z|t.)P(T | Z, t, f)

o P(z|t,HP(T | z,t,f) to the count of (t-T, f) for the urn

2 Nov 2010 Count(t-T,f | 2) = Count(t-T,f | 2) +77|13(72|t,f)P(T | z,t,f)

105



Shift invartant model: Update Rules

Given data (spectrogram) S(t,f)
Initialize P(Z2), P(T|2), P(t,f| 2)

lterate
P(t, f,Z) = P(Z)ZP(T |Z)P(t=T, f|Z) P(T,t,f|Z)=P(T |Z)P(t-T,f|2)
T
P(t, f,2) P(T,t-T,f|2)
P(Z |t f)= P(T|Z.t, f)=
(It h) ZP(t,fZ) Tzt ZP(T',t—T',HZ)
= .

A
>N Pt st f) ZZP(ZIt f)P(T|Z.t, F)S(t, )

P(Z) = e P(T |Z
&l 3NN P, f)s(t, 1) == 777P(Z|t F)P(T'| Z,t, £)S(t, f)
VAR | f
ZP(Z|T,f)P(T—t|Z,T,f)S(T,f)
P(t, f |Z) =

ZZP(ZH f)P(T —t|Z,T,)S(T, f)
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‘ Shift-invariance in one time: example

= An Example: Two distinct sounds occuring with different repetition rates
within a signal

o Modelled as being composed from two time-frequency bases
o NOTE: Width of patches must be specified

INPUT SPECTROGRAM

el

melzed Frequency (caradiample)  Nomnalized Frequency (xeradisample

‘I‘Disccza\ﬁeorezg)l%ime-frequency Contribution of individual bases to the recording 107
patéh™bases (urns)



Sbift Invariance in Time: Dereverberation

- o (X3 N w (%] = B o
oo Bl B B a8l B S

.......

= Reverberation — a simple model

o The Spectrogram of the reverberated signal is a
sum of the spectrogram of the clean signal and
several shifted and scaled versions of itself

2 A convolution of the spectrogram and a room
response
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‘ Dereverberation

400f

350

300} : i
250 : X ’ ' o e
1A v oty 8 Pt ol
e g
I
e y
-

= Given the spectrogram of the reverberated
signal:

o Learn a shift-invariant model with a single patch basis
= Sparsity must be enforced on the basis

o The “basis” represents the clean speech!
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‘ Shift Invariance in Two Dimensions

= We now have urn-specific shifts along both T and F
= The Drawing Process

o Select an urn Z with a probability P(Z)

o Draw SHIFT values (T,F) from P(T,F|Z)

o Draw (t,f) pair from the urn

o Add to the histogram at (t+T, f+F)

= This is a two-dimensional shift-invariant model

o We have shifts in both time and frequency
= Or, more generically, along both axes
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Learning the Model

Learning is analogous to the 1-D case

Given observation of (t,f), it we knew which urn it came from and
the shift, we could compute all probabilities by counting!
o IfshiftisT,Fandurnis Z

Count(Z) = Count(Z) + 1

For shift probability: ShiftCount(T,F|Z) = ShiftCount(T,F|Z2)+1

For urn: Count(t-T,f-F | Z2) = Count(t-T,f-F|Z) + 1

0 Since the value drawn from the urn was t-T,f-F

o After all observations are counted:
Normalize Count(Z) to get P(2)
Normalize ShiftCount(T,F|Z) to get P,(T,F|Z)
Normalize Count(t,f|Z) to get P(t,f|Z)

Problem: Shift and Urn are unknown
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Learning the Model

Urn Z and shift T,F are unknown
o So (t,f) contributes partial counts to every value of T,F and Z
o Contributions are proportional to the a posteriori probability of Z and T,F|Z

P(t,f,Z):P(Z)ZP(T,F|Z)P(t—T,f—F|Z) P(T,F.t,f|Z)=P(T,F|Z)P(t-T,f —F|2)
T,F
P(t, f,2) P(T,F,t-T,f —F|2)
P(Z |t f)= P(T.F|Z.t )=
(It ) ZP(t,fZ) (T.F ) ZP(I",F',t—T',f—F'|Z)
Z' T'"F'

Each observation of (t,f)

o P(z|t,f) to the count of the total number of draws from the urn
Count(Z) = Count(Z) + P(z | t,f)

o P(z|t,H)P(T,F | z,t,f) to the count of the shift T,F for the shift distribution
ShiftCount(T,F | Z) = ShiftCount(T,F | Z) + P(z|t,)P(T | Z, t, f)

o P(T | zt,(f) to the count of (t-T, f-F) for the urn

Count(t-T,f-F | Z) = Count(t-T,f-F | Z) + P(Z|t.)P(t-T i-F | z,t,f)
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Shift invariant model:

Given data (spectrogram) S(t,f)
Initialize P(2), P4(T,F|Z2), P(t,f | Z2)

Update Rules

lterate
P(t,f,Z)=P(Z)ZP(T,F|Z)P(t—T,f—F|Z) P(T,F.t,f|Z)=P(T,F|Z)P(t-T,f —F|2)
T,F
P(t, f,2) P(T,F,t-T,f —F|2)
P(Z |t f)= P(T.F|Zt f)=
(2]t 1) ZP(t,fZ) (LEIZLE) ZP(T',F',t—T',f—F'|Z)
Z' T F'

ZZP(Z It, )S(t, f)
t f
ZZZ P(Z'|t, F)S(t, f)
Z' t f

P(Z) = P(T,F|Z)=

ZZP(Z It, f)P(T,F|Z,t, f)S(t, f)

t f
7777 P(Z|t, f)P(T F|Z,t, f)S(t, f)
T F t f

ZP(Z IT,F)P(T —t,F — f|Z,T,F)S(T,F)

P(t, f|Z) = —<

ZZP(Z IT,F)P(T —t',F— f'|Z,T,F)S(T,F)

t,f'T,F
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2D Shift Invariance: The problem of

indeterminacy

P(t,f|Z) and P.(T,F|Z) are analogous

o Difficult to specify which will be the “urn” and which the
“shift”

Additional constraints required to ensure that one of
them is clearly the shift and the other the urn

Typical solution: Enforce sparsity on P(T,F|Z)

o The patch represented by the urn occurs only in a few
locations in the data
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Only one “patch” used to model the image (i.e. a single urn)

o The learnt urn is an “average” face, the learned shifts show the locations
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Example: 2-D shift invarince

The original figure has multiple handwritten
renderings of three characters

o In different colours

The algorithm learns the three characters and
identifies their locations in the figure

(A ; X

'

Input data

o F
gy A
/ : i
2 v
F ! .
-

Discovered
Patches

—

g

g
Patch
Locations
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Beyond shift-invariance: transtorm
invariance  gZ e

The draws from the urns may not only be shifted,
but also transformed

The arithmetic remains very similar to the shift-
iInvariant model

o We must now impose one of an enumerated set of
transforms to (t,f), after shifting them by (T,F)

o In the estimation, the precise transform applied is an
unseen variable
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Transform invariance: Generation

The set of transforms Is enumerable

o E.g. scaling by 0.9, scaling by 1.1, rotation right by 90degrees, rotation
left by 90 degrees, rotation by 180 degrees, reflection

o Transformations can be chosen by draws from a distribution over
transforms
E.g. P(rotation by 90 degrees) = 0.2..
Distributions are URN SPECIFIC

The drawing process:

Select an urn Z (patch)

Select a shift (T,F) from P(T, F| Z)

Select a transform from P(txfm | Z2)

Select a (t,f) pair from P(t,f | 2)

Transform (t,f) to txfm(t,f)

Increment the histogram at txfm(t,f) + (T,F)

o 0 0 0O 0 O
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Transform invariance

The learning algorithm must now estimate

o P(Z) — probability of selecting urn/patch in any draw

o P(t,f|Z2) — the urns / patches

o P(txfm | Z) — the urn specific distribution over transforms
o P((T,F|Z) — the urn-specific shift distribution

Essentially determines what the basic shapes are, where they occur in
the data and how they are transformed

The mathematics for learning are similar to the maths for shift
Invariance

o With the addition that each instance of a draw must be fractured into urns, shifts
AND transforms

Details of learning are left as an exercise
o Alternately, refer to Madhusudana Shashanka’s PhD thesis at BU
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Example: Transtorm Invariance

Top left: Original figure

Bottom left — the two bases discovered

Bottom right —

o Left panel, positions of “a”

o Right panel, positions of “|”

Top right: estimated distribution underlying original figure
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Transform invariance: model limitations

and extensions

The current model only allows one transform to be
applied at any draw

o E.g. a basis may be rotated or scaled, but not scaled and
rotated

An obvious extension is to permit combinations of
transformations

o Model must be extended to draw the combination from
some distribution

Data dimensionality: All examples so far assume
only two dimensions (e.g. in spectrogram or image)

The models are trivially extended to higher-
dimensional data
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Transform Invariance: Uses and
Limitations

Not very useful to analyze audio
May be used to analyze images and video

Main restriction: Computational complexity

o Requires unreasonable amounts of memory and
CPU

o Efficient implementation an open issue
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Example: Higher dimensional data
Video example

DCescription of Input Kemel 1

Kemel 2 Kemel 3
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