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Sounds – an example
 A sequence of notes

 Chords from the same notes

 A piece of music from the same (and a few additional) notes

22 Nov 2010 11755/18797



Sounds – an example
 A sequence of sounds

 A proper speech utterance from the same p p p
sounds
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Template Sounds Combine to Form a Signal
 The individual component sounds “combine” to form the 

final complex sounds that we perceive
N t f i Notes form music

 Phoneme-like structures combine in utterances
 Component sounds – notes, phonemes – too are complexp , p p

 Sound in general is composed of such “building blocks” 
or themesor themes
 Our definition of a building block: the entire structure occurs 

repeatedly in the process of forming the signal 

 Goal: To learn these building blocks automatically, from 
analysis of data
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Urns and balls
6 4 1 5 3 2 2 2 …

5
2

1 6 6
2

4
33

5 5 1

 An urn has many balls
 Each ball has a number marked on it

 Multiple balls may have the same number
 A “picker” draws balls at random..
 This is a multinomial
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Signal Separation with the Urn model

 What does the probability of drawing balls 
f U h t d ith d ?from Urns have to do with sounds?
 Or Images?

 We shall see..
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The representation

TIME
AMPL FREQ

TIME

 We represent signals spectrographically
 Sequence of magnitude spectral vectors estimated from (overlapping)

TIME TIME

 Sequence of magnitude spectral vectors estimated from (overlapping) 
segments of signal

 Computed using the short-time Fourier transform

 Note: Only retaining the magnitude of the STFT for our operations
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 We will, however need the phase later for conversion to a signal
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A Multinomial Model for Spectra
 A magnitude spectral vector obtained from a DFT 

represents spectral magnitude against discrete

p

represents spectral magnitude against discrete 
frequencies
 This may be viewed as a histogram of draws from a multinomial

f

FRAME 
HISTOGRAM

Pt (f )

Th  b ll  

FRAME 

t f

Power spectrum of frame t

The balls are
marked with
discrete frequency
indices from the DFT
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Probability distribution underlying the t-th spectral vector

indices from the DFT
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A more complex model
 A “picker” has multiple urns

I h d h fi t l t d th b ll

p

 In each draw he first selects an urn, and then a ball 
from the urn
 Overall probability of drawing f is a mixture multinomial Overall probability of drawing f is a mixture multinomial

 Since several multinomials (urns) are combined
 Two aspects – the probability with which he selects any 

urn and the probability of frequencies with the urnsurn, and the probability of frequencies with the urns

HISTOGRAM

multiple draws
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The Picker Generates a Spectrogram

 The picker has a fixed set of Urns
 Each urn has a different probability distribution over f

 He draws the spectrum for the first frame
 In which he selects urns according to some probability P0(z)

 Then draws the spectrum for the second frame
 In which he selects urns according to some probability P1(z)
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 And so on, until he has constructed the entire spectrogram
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The Picker Generates a Spectrogram

 The picker has a fixed set of Urns
 Each urn has a different probability distribution over f

 He draws the spectrum for the first frame
 In which he selects urns according to some probability P0(z)

 Then draws the spectrum for the second frame
 In which he selects urns according to some probability P1(z)
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The Picker Generates a Spectrogram
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The Picker Generates a Spectrogram

 The picker has a fixed set of Urns
 Each urn has a different probability distribution over f

 He draws the spectrum for the first frame He draws the spectrum for the first frame
 In which he selects urns according to some probability P0(z)

 Then draws the spectrum for the second frame
 In which he selects urns according to some probability P1(z)

 And so on, until he has constructed the entire spectrogram
 The number of draws in each frame represents the rms energy in 

11755/18797

p gy
that frame
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The Picker Generates a Spectrogram

 The URNS are the same for every frame
 These are the component multinomials or bases for the source 

that generated the signalthat generated the signal

 The only difference between frames is the probability with which 
he selects the urns

( ) ( ) ( | )t tz
P f P z P f z SOURCE specific

basesFrame-specific
spectral distribution
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Frame(time) specific mixture weight

2 Nov 2010 16



Spectral View of Component Multinomials

5
1583996

81444811645 598 1
14722436947224991327274453 1

147201737111371387520453 91
127246947720351510127411501502

 Each component multinomial (urn) is actually a normalized 
histogram over frequencies P(f |z)

I t I.e. a spectrum

 Component multinomials represent latent spectral structures 
(b ) f th i d(bases) for the given sound source

 The spectrum for every analysis frame is explained as an 
dditi bi ti f th l t t t l t t
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additive combination of these latent spectral structures

2 Nov 2010 17



Spectral View of Component Multinomials

5
1583996

81444811645 598 1
14722436947224991327274453 1

147201737111371387520453 91
127246947720351510127411501502

 By “learning” the mixture multinomial model for any 
sound source we “discover” these latent spectral p
structures for the source

Th d l b l t f t f The model can be learnt from spectrograms of a 
small amount of audio from the source using the EM 
algorithm
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algorithm
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EM learning of bases

 Initialize bases
(f| ) f f f 5 5 598 1 274453 1 7520453 91411501502

 P(f|z) for all z, for all f
 Must decide on the number of urns 

5
1583996

81444811645 598 1
14722436947224991327274453 1

147201737111371387520453 91
127246947720351510127411501502

 For each frame
 Initialize P (z) Initialize Pt(z)
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EM Update Equations
 Iterative process:
 Compute a posteriori probability of the zth urn for 

th f h fthe source for each f
( ) ( | )( | )
( ') ( | ')

t
t

t

P z P f zP z f
P z P f z




 Compute mixture weight of zth urn
'

( ) ( | )t
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f

( | ) ( )P f S f
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 Compute the probabilities of the frequencies for 
the zth urn

f

( | ) ( )t tP z f S f

'

( | )
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t

t t
f t

P f z
P z f S f
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Learning Structures
Speech Signal bases Basis-specific spectrogramsSpeech Signal Basis-specific spectrograms

5158399681444811645598 114722436947224991327274453 1147201737111371387520453 91127246947720351510127411501502

P(f|z) From Bach’s Fugue in Gm

Fr
eq
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y
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Time 

Pt(z)
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How meaningful are these structures

 If bases capture data structure they must
f Allow prediction of data

 Hearing only the low-frequency components of a 
note, we can still know the notenote, we can still know the note

 Which means we can predict its higher frequencies

 Be resolvable in complex sounds
 Must be able to pull them out of complex mixtures

 Denoising Denoising
 Signal Separation from Monaural Recordings

11755/187972 Nov 2010 22



The musician vs. the signal processor
 Some badly damaged music is given to a signal processing whiz 

and a musician
 They must “repair” it.  What do they do?

 Signal processing :g p g
 Invents many complex algorithms
 Writes proposals for government grants
 Spends $1000,000 p ,
 Develops an algorithm that results in less scratchy sounding music

 Musician:
 Listens to the music and transcribes it
 Plays it out on his keyboard/piano
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Prediction
 Bandwidth Expansion

 Problem: A given speech signal only has frequencies in the 
300Hz-3.5Khz range
 Telephone quality speech

 Can we estimate the rest of the frequencies

 The full basis is known The full basis is known
 The presence of the basis is 

identified from the observationidentified from the observation
of a part of it

 The obscured remaining spectral

11755/18797

pattern can be guessed
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Bandwidth Expansion
 The picker has drawn the histograms for every frame in the 

signal
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Bandwidth Expansion
 The picker has drawn the histograms for every frame in the 

signal
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Bandwidth Expansion
 The picker has drawn the histograms for every frame in the 

signal
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Bandwidth Expansion
 The picker has drawn the histograms for every frame in the 

signal
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Bandwidth Expansion
 The picker has drawn the histograms for every 

frame in the signal

 However, we are only able to observe the number 
of draws of some frequencies and not the others

11755/18797

of draws of some frequencies and not the others
 We must estimate the number of draws of the 

unseen frequencies2 Nov 2010 29



Bandwidth Expansion: Step 1 – Learning

5 4445 5 98 1 992 74453 1 377520453 91 515411501502
15

83996
81
444

81164
5 98

147
22436947

224
99

1327
53

147
2017 37

111
37

138
53

127
2469477

203
515

10127
50

 From a collection of full-bandwidth training 
data that are similar to the bandwidth-
reduced data, learn spectral bases
 Using the procedure described earlier
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Bandwidth Expansion: Step 2 – Estimation

P ( ) P (z) P ( )P1(z)

5
15 81

444
81164

5 5 98 1
147 224

99
1327

2 74453 1
147 111

37
138

7520453 91
127 203

515
10127

411501502

P2(z) Pt(z)

 Using only the observed frequencies in the

15
83996

8181164 147
22436947

2241327 147
2017 37

111138 127
2469477

20310127

 Using only the observed frequencies in the 
bandwidth-reduced data, estimate mixture 
weights for the bases learned in step 1.
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weights for the bases learned in step 1.
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Step 2
 Iterative process:
 Compute a posteriori probability of the zth urn for 

th k f h fthe speaker for each f
( ) ( | )( | )
( ') ( | ')

t
t

t

P z P f zP z f
P z P f z




 Compute mixture weight of zth urn for each frame t
'

( ) ( | )t
z

f

 


 )sfrequencie observed(

)()|'(
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tt
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 P(f|z) was obtained from training data and will not 

 
' )sfrequencie observed(

)()|(
z f

tt fSfzP
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be reestimated
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Step 3 and Step 4
 Compose the complete probability distribution for each 

frame, using the mixture weights estimated in Step 2, g g p

 tt zfPzPfP )|()()(

N t th t i i t i ht ti t d f

z

 Note that we are using mixture weights estimated from 
the reduced set of observed frequencies
 This also gives us estimates of the probabilities of the 

unobserved frequencies

 Use the complete probability distribution Pt (f  ) to predict 
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p p y t ( ) p
the unobserved frequencies!
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Predicting from Pt(f ): Simplified Example

 A single Urn with only red and blue balls

 Given that out an unknown number of draws Given that out an unknown number of draws, 
exactly m were red, how many were blue?

O Si l l ti One Simple solution:
 Total number of draws N = m / P(red)
 The number of tails drawn = N*P(blue)
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( )
 Actual multinomial solution is only slightly more complex
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Estimating unobserved frequencies

 Expected value of the number of draws: 




 s)frequencie (observed  

)(
ˆ f

t

t

fS

N


 s)frequencie (observed  

)(
f

t
t

fP

 Estimated spectrum in unobserved 
frequencies

)(ˆ)(ˆ fPNfS ttt 
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Overall Solution
 Learn the “urns” for the signal source 

from broadband training data
5158399681444811645598 114722436947224991327274453 1147201737111371387520453 91127246947720351510127411501502

 For each frame of the reduced 
bandwidth test utterance, find mixture 
weights for the urnsweights for the urns 
 Ignore (marginalize) the unseen 

frequencies
Pt(z)

 Given the complete mixture multinomial 
di t ib ti f h f ti t

5158399681444811645598 114722436947224991327274453 1147201737111371387520453 91127246947720351510127411501502

distribution for each frame, estimate 
spectrum (histogram) at unseen 
frequencies Pt(z)
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5158399681444811645598 114722436947224991327274453 1147201737111371387520453 91127246947720351510127411501502
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Prediction of Audio

 Some frequency components are missing (left panel)
W k th b P(f| ) We know the bases P(f|z)
 But not the mixture weights for any particular spectral frame

 We must “fill in” the hole in the image
T bt i th t th i ht To obtain the one to the right

 Easy to do – as explained
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A more fun example
•Reduced BW data

•Bases learned from this

•Bandwidth expanded version
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Signal Separation from Monaural 
Recordings
 The problem:p
 Multiple sources are producing sound 

simultaneously
 The combined signals are recorded over a single 

microphone
 The goal is to selectively separate out the signal 

for a target source in the mixture
 Or at least to enhance the signals from a selected Or at least to enhance the signals from a selected 

source
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Problem Specification
 The mixed signal contains 

components from multiple 
sources

 Each source has its own “bases”
 In each frame

+ =a b

 Each source draws from its own 
collection of bases to compose a 
spectrum
 Bases are selected with a frame 5158399681444811645598 114722436947224991327274453 1147201737111371387520453 91127246947720351510127411501502 5158399681444811645598 114722436947224991327274453 1147201737111371387520453 91127246947720351510127411501502 Bases are selected with a frame 

specific mixture weight
 The overall spectrum is a mixture 

of the spectra of individual 
sources

399 369 7 69 83996 22436947 201737 2469477

sources
 I.e. a histogram combining draws 

from both sources

 Underlying model: Spectra are 

11755/18797

histograms over frequencies
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Ball-and-urn model for a mixed signal
Th ll !!The caller!!

5
15

83996
81
444

81164
5 5 98 1

147
22436947

224
99

1327
2 74453 1

147
2017 37

111
37

138
7 520453 91

127
2469477

203
515

10127
411501502 5
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444

81164
5 5 98 1

147
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224
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1327
2 74453 1

147
2017 37

111
37

138
7 520453 91

127
2469477

203
515

10127
411501502

 Each sound source is represented by its own picker and urns
 Urns represent the distinctive spectral structures for that source
 Assumed to be known beforehand (learned from some separate training data)

 The caller selects a picker at random
 The picker selects an urn randomly and draws a ball
 The caller calls out the frequency on the ball
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 A spectrum is a histogram of frequencies called out
 The total number of draws of any frequency includes contributions from both sources
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Separating the sources
 Goal: Estimate number of draws from each source

 The probability distribution for the mixed signal is a linear 
combination of the distribution of the individual sourcescombination of the distribution of the individual sources

 The individual distributions are mixture multinomials
 And the urns are known

  fPPPfPPPfP )|()|()()|()|()()(

)|()()|()()( 2211 sfPsPsfPsPfP ttttt 
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Separating the sources
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G l E ti t b f d f h
Separating the sources
 Goal: Estimate number of draws from each source

 The probability distribution for the mixed signal is a linear 
combination of the distribution of the individual sources
Th i di id l di t ib ti i t lti i l The individual distributions are mixture multinomials

 And the urns are known
 Estimate remaining terms using EM

  fPPPfPPPfP )|()|()()|()|()()(

)|()()|()()( 2211 sfPsPsfPsPfP ttttt 
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Algorithm
 For each frame:

 Initialize Pt(s)t( )
 The fraction of balls obtained from source s
 Alternately, the fraction of energy in that frame from source s
Initialize P (z|s) Initialize Pt(z|s)
 The mixture weights of the urns in frame t for source s

 Reestimate the above two iteratively

 Note: P(f|z s) is not frame dependent Note:  P(f|z,s) is not frame dependent
 It is also not re-estimated
 Since it is assumed to have been learned from separately 

11755/18797

obtained unmixed training data for the source
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Iterative algorithm
 Iterative process:

 Compute a posteriori probability of the combination of 
speaker s and the zth urn for each speaker for each fspeaker s and the zth urn for each speaker for each f
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tt
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 Compute the a priori weight of speaker s
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 Compute mixture weight of zth urn for speaker s 
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What is Pt(s,z|f)
 Compute how each ball (frequency) is split between the urns of 

the various sources
 The ball is first split between the sources The ball is first split between the sources
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t

t
t
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sPfsP

 The fraction of the ball attributed to any source s is split between 
its urns:


's
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 The portion attributed to any urn of any source is a product of the 
two
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Reestimation
 The reestimate of source weights is simply 

the proportion of all balls that was attributed 
to the sources

( , | ) ( )t tP s z f S f

' '

( , | ) ( )
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z f
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 The reestimate of mixture weights is the 
ti f ll b ll tt ib t d t hproportion of all balls attributed to each urn
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Separating the Sources

 For each frame:
 Given
 St(f) – The spectrum at frequency f of the mixed 

i lsignal
 Estimate
 St,i(f) – The spectrum of the separated signal for 

the i-th source at frequency f
A i l i t i i ti t A simple maximum a posteriori estimator

 ttit fszPfSfS )|,()()(ˆ
,
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If we have only have bases for one source?

 Only the bases for one of the two sources is 
igiven

 Or, more generally, for N-1 of N sources

  fPPPfPPPfP )|()|()()|()|()()(

)|()()|()()( 2211 sfPsPsfPsPfP ttttt 

11755/18797

 
z

tt
z

ttt szfPszPsPszfPszPsPfP ),|()|()(),|()|()()( 212111

2 Nov 2010 50



If we have only have bases for one source?

 Only the bases for one of the two sources is given
 Or more generally for N 1 of N sources Or, more generally, for N-1 of N sources
 The unknown bases for the remaining source must also be 

estimated!

  fPPPfPPPfP )|()|()()|()|()()(

)|()()|()()( 2211 sfPsPsfPsPfP ttttt 
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Partial information: bases for one source 
unknown
 P(f|z s) must be initialized for the additional P(f|z,s) must be initialized for the additional 

source
Estimation procedure now estimates bases Estimation procedure now estimates bases 
along with mixture weights and source 
probabilitiesprobabilities
 From the mixed signal itself

 The final separation is done as before The final separation is done as before
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Iterative algorithm
 Iterative process:

 Compute a posteriori probability of the combination of 
speaker s and the zth urn for the speaker for each fspeaker s and the zth urn for the speaker for each f
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Partial information: bases for one source 
unknown
 P(f|z s) must be initialized for the additional P(f|z,s) must be initialized for the additional 

source
Estimation procedure now estimates bases Estimation procedure now estimates bases 
along with mixture weights and source 
probabilitiesprobabilities
 From the mixed signal itself

 The final separation is done as before The final separation is done as before

 ttit fszPfSfS )|,()()(ˆ
,
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Separating Mixed Signals: Examples

 “Raise my rent” by David 
Gilmour  Norah Jones singing “Sunrise”Gilmour

 Background music “bases” 
learnt from 5-seconds of 

 Norah Jones singing Sunrise

 A more difficult problem:
 Original audio clipped!

music-only segments within 
the song  Background music bases 

learnt from 5 seconds of 
music-only segments
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 Lead guitar “bases” bases 
learnt from the rest of the song

music only segments
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Where it works

 When the spectral structures of the two 
d di ti tsound sources are distinct

 Don’t look much like one another
E V l d i E.g. Vocals and music

 E.g. Lead guitar and music

 Not as effective when the sources are similar
 Voice on voice Voice on voice
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Separate overlapping speech

 Bases for both speakers learnt from 5 second 
recordings of individual speakers

 Shows improvement of about 5dB in Speaker-to-
Speaker ratio for both speakers

11755/18797

Speaker ratio for both speakers
 Improvements are worse for same-gender mixtures
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How about non-speech data
19x19 images = 361 dimensional vectors

 We can use the same model to represent other data
 Images: 

 Every face in a collection is a histogram
 Each histogram is composed from a mixture of a fixed number of 

multinomials
 All faces are composed from the same multinomials but the manner in which the All faces are composed from the same multinomials, but the manner in which the 

multinomials are selected differs from face to face
 Each component multinomial is also an image

 And can be learned from a collection of faces
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 Component multinomials are observed to be parts of faces
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How many bases can we learn
 The number of bases that must be learned is a 

fundamental questionfundamental question
 How do we know how many bases to learn
 How many bases can we actually learn computationally

 A key computational problem in learning bases:
Th b f b l tl i t i t d b The number of bases we can learn correctly is restricted by 
the dimension of the data

 I.e., if the spectrum has F frequencies, we cannot estimate 
more than F-1 component multinomials reliably
 Why?
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Indeterminacy in Learning Bases
 Consider the four histograms 

to the right

3

2

1

2

1

3

1

3

2

1

22

 All of them are mixtures of the 
same K component 
multinomials B1 B2

 For K < 3, a single global 
solution may exist
 I.e there may be a unique set

B1 B2

 I.e there may be a unique set 
of component multinomials 
that explain all the 
multinomials
 With error – model will not be 

perfect
 For K = 3 a trivial solution 
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exists
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Indeterminacy
 Multiple solutions for K = 3..

 We cannot learn a non-
trivial set of “optimal” bases 
from the histograms

 The component 
multinomials we do learn tell 
us nothing about the data

 For K > 3, the problem only 

3

2

1

2

1

3

1

3

2

1

22

gets worse
 An inifinite set of solutions 

are possible 1 1 1
B1 B2 B3

 E.g. the trivial solution plus 
a random basis

0 0 0 0 0 0
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Indeterminacy in signal representations

 Spectra:
 If our spectra have D frequencies (no of unique indices in If our spectra have D frequencies (no. of unique indices in 

the DFT) then..
 We cannot learn D or more meaningful component 

multinomials to represent themmultinomials to represent them
 The trivial solution will give us D components, each of which 

has probability 1.0 for one frequency and 0 for all others
 This does not capture the innate spectral structures for the 

source

 Images: Not possible to learn more than P-1 g p
meaningful component multinomials from a 
collection of P-pixel images
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How many bases to represent sounds/images?
 In each case, the bases represent “typical unit structures”

 Notes
 Phonemes Phonemes
 Facial features..

 How many notes in music
 Several octaves Several octaves
 Several instruments

 The typical sounds in speech –
 Many phonemes, many variations, can number in the thousands Many phonemes, many variations, can number in the thousands

 Images:
 Millions of units that can compose an image – trees, dogs, walls, sky, etc. 

etc. etc…

 To model the data well, all of these must be represented
 More bases than dimensions

11755/187972 Nov 2010 63



Overcomplete Representations
 Representations where there are more bases than dimensions are 

called Overcompletep
 E.g. more multinomial components than dimensions
 Overcomplete representations are required to represent the world 

adequatelyq y
 The complexity of the world is not restricted by the dimensionality of our representations!

 Overcomplete representations are difficult to compute
 Straight-forward computation results in indeterminate solutions

 Additional constraints must be imposed in the learning process to p g p
learn more components than dimensions

 We will require our solutions to be sparse
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q p
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SPARSE Decompositions

 Allow any arbitrary number of bases (urns)

5158399681444811645 598 114722436947224991327274453 1147201737111371387520453 911272469477203515101274115015025158399681444811645598 114722436947224991327274453 11472017371113713875204535158399681444811645 598 114722436947224991327274453 1147201737111371387520453

 Overcomplete

 Specify that for any specific frame only a small number of bases may be 
usedused
 Although there are many spectral structures, any given frame only has a few of 

these

 In other words, the mixture weights with which the bases are combined 
must be sparse
 Have non-zero value for only a small number of bases
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 Alternately, be of the form that only a small number of bases contribute 
significantly
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The history of sparsity
 The search for “sparse” decompositions has a long history

 Even outside the scope of overcomplete representations

S C f A landmark paper: Sparse Coding of Natural Images Produces Localized, 
Oriented, Bandpass Receptive Fields, by Olshausen and Fields
 “The images we typically view, or natural scenes, constitute a minuscule fraction of the 

space of all possible images. It seems reasonable that the visual cortex, which has 
evolved and developed to effectively cope with these images, has discovered efficient 
coding strategies for representing their structure. Here, we explore the hypothesis that 
the coding strategy employed at the earliest stage of the mammalian visual cortex 
maximizes the sparseness of the representation. We show that a learning algorithm 
th t tt t t fi d li d f t l ill d l ti fi ldthat attempts to find linear sparse codes for natural scenes will develop receptive fields 
that are localized, oriented, and bandpass, much like those in the visual system.” 

 Images can be described in terms of a small number of descriptors from a large set
 E.g. a scene is “a grapevine plus grapes plus a fox plus sky”

 Other studies indicate that human perception may be based on sparse 
compositions of a large number of “icons”

 The number of sensors (rods/cones in the eye, hair cells in the ear) is much 
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( y , )
smaller than the number of visual / auditory objects in the world around us
 The internal representation of images must be overcomplete

2 Nov 2010 66



Estimating Mixture Weights given Multinomials

 Basic estimation: Maximum likelihood
 ArgmaxW log P(X ; B,W)  = ArgmaxW f X(f)log(i wi Bi(f))

 Modified estimation: Maximum a posteriori
 Denote W = [w1 w2 .. ]  (in vector form)
 ArgmaxW f X(f)log(i wi Bi(f)) + log P(W)

 Sparsity obtained by enforcing an a priori probability 
distribution P(W) over the mixture weights that ( ) g
favors sparse mixture weights

The algorithm for estimating weights must be

11755/18797

 The algorithm for estimating weights must be 
modified to account for the priors
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The a priori distribution
 A variety of a priori probability distributions all 

provide a bias towards “sparse” solutionsprovide a bias towards sparse  solutions

 The Dirichlet prior:p
 P(W) = Z* i wi



 The entropic prior:
 P(W) = Z*exp(-H(W))

 H(W) = entropy of W = -i wi log(wi)
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A simplex view of the world
(1,0,0)

(0,0,1)

(0,1,0)(0,0,1)(1,0,0)

(0,1,0)

 The mixture weights are a probability distribution
 i wi = 1.0

 They can be viewed as a vector
 W = [w0 w1 w2 w3 w4 …]
 The vector components are positive and sum to 1.0

 All probability vectors lie on a simplex
 A convex region of a linear subspace in which all vectors sum to 

1 0
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1.0
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Probability Simplex
(1,0,0)

(0 1 0)(0 0 1)

 The sparsest probability vectors lie on the vertices of the simplex

(0,1,0)(0,0,1)

p p y p
 The edges of the simplex are progressively less sparse

 Two-dimensional edges have 2 non-zero elements
 Three-dimensional edges have 3 non-zero elements Three dimensional edges have 3 non zero elements
 Etc.
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Sparse Priors: Dirichlet

P(W) = Z* i wi


=0.5

 For alpha < 1, sparse probability vectors are 
more likely than dense ones
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Sparse Priors: The entropic prior

P(W) = Z*exp(-H(W))

=0.5

 Vectors (probability distributions) with low entropy 
are more probable than those with high entropy
 Low entropy distributions are sparse!
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 Low-entropy distributions are sparse!
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Optimization with the entropic prior
 The objective function

Argmax  X(f)log( w B (f)) H(W)ArgmaxW X X(f)log(i wi Bi(f)) - H(W)

 By estimating W such that the above By estimating W such that the above 
equation is maximized, we can derive 
minimum entropy solutionsminimum entropy solutions
 Jointly optimize W for predicting the data while 

minimizing its entropyg y
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The Expectation Maximization Algorithm
 The parameters are actually learned using the Expectation 

Maximization (EM) algorithm
 The EM algorithm actually optimizes the following objective 

function

Q  P(Z | f) X(f)l (P(Z) P(f|Z)) H({P(Z)}) Q = X P(Z | f) X(f)log(P(Z) P(f|Z)) - H({P(Z)})
 P(Z) = wz, {P(Z)} = W

 The second term here is derived from the entropic prior
O i i i f h b d l i h f ll i Optimization of the above needs a solution to the following

0))(log1(
)(

)|(),(




 zP

fzPftS

t
f

t

 The solution requires a new function: 
 The lambert W function

))(g(
)(zP t

t
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Lambert’s W Function
 Lambert’s W function is the solution to:

W + log(W) = X
W0(x)

 Where W = F(X) is the Lambert function
 Alternately, the inverse function of

 X = W exp(W)
 In general, a multi-valued function
 If X is real, W is real for X > -1/e

 Still multi-valued
 If we impose the restriction W > -1 and W == real we get the zeroth 

branch of the W function
 Single valued

 For W < -1 and W == real we get the -1th branch of the W function
 Single valued
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Estimating W0(z)
 An iterative solution

Newton’s Method Newton s Method

 Halley Iterationsy

 Code for Lambert’s W function is available on 
wikipedia
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wikipedia
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Solutions with entropic prior
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 The update rules are the same as before, with one minor modification
 To estimate the mixture weights, the above two equations must be 

iterated 
 To convergence
 Or just for a few iterations

 Alpha is the sparsity factor
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 Pt(z) must be initialized randomly
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Learning Rules for Overcomplete Basis Set

 Exactly the same as earlier, with the 
modification that P (z) is now estimated to bemodification that Pt(z) is now estimated to be 
sparse

Initialize P (z) for all t and P(f|z) Initialize Pt(z) for all t and P(f|z)
 Iterate
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A Simplex Example for Overcompleteness

 Synthetic data: Four clusters of data within the probability simplex
R l l i ith 3 b l l i t i l Regular learning with 3 bases learns an enclosing triangle

 Overcomplete solutions without sparsity restults in meaningless 
solutions
S l d l h di ib i f h d
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 Sparse overcomplete model captures the distribution of the data
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Sparsity can be employed without 
overcompleteness
 Overcompleteness requires sparsity Overcompleteness requires sparsity

 Sparsity does not require overcompletenessSparsity does not require overcompleteness
 Sparsity only imposes the constraint that the data 

are composed from a mixture of as few 
multinomial components as possible

 This makes no assumption about 
l tovercompleteness
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Examples without overcompleteness

 Left panel, Regular learning: most bases have significant energy in all frames

11755/18797

Left panel, Regular learning: most bases have significant energy in all frames
 Right panel, Sparse learning: Fewer bases active within any frame

 Sparse decomposiions result in more localized activation of bases
 Bases, too, are better defined in their structure2 Nov 2010 81



Face Data: The effect of sparsity
 As solutions get more sparse, bases 

become more informative High-entropy mixture weights
 In the limit, each basis is a complete 

face by itself.
 Mixture weights simply select face

 Solution also allows for mixture 
weights to have maximum entropy

Maximally dense i e minimally sparse Maximally dense, i.e. minimally sparse
 The bases become much more 

localized components No sparsity
 The sparsity factor allows us to tune 

the bases we learn Sparse mixture weights

11755/187972 Nov 2010 82



Benefit of overcompleteness

 19x19 pixel images (361 pixels)p g ( p )
 Up to1000 bases trained from 2000 faces
 SNR of reconstruction from overcomplete basis set more than 

10dB better than reconstruction from corresponding “compact”

11755/18797

10dB better than reconstruction from corresponding compact  
(regular) basis set
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Signal Processing: How

 Exactly as before
 Learn an overcomplete set of bases
 For each new data vector to be processed, 

compute the optimal mixture weights
 Constrainting the mixture weights to be sparse 

now
 Use the estimated mixture weights and the 

b t f dditi l ibases to perform additional processing
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Signal Separation with Overcomplete Bases
 Learn overcomplete bases for each source
 For each frame of the mixed signal 

 Estimate prior probability of source and mixture weights for each source
 Constraint: Use sparse learning for mixture weights

 Estimate separated signals as   ttit fszPfSfS )|,()()(ˆ
, 

z
,

  fPPPfPPPfP )|()|()()|()|()()(

)|()()|()()( 2211 sfPsPsfPsPfP ttttt 
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Sparse Overcomplete Bases: Separation
 3000 bases for each of the speakers

 The speaker-to-speaker ratio typically doubles (in dB) w.r.t “compact” bases

Regular bases

Panels 2 and 3: Regular learning

Panels 4 and 5 Sparse learning

Sparse bases

Panels 4 and 5: Sparse learning
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The Limits of Overcompleteness

 How many bases can we learn?
 The limit is: as many bases as the number of 

vectors in the training data
 Or rather, the number of distinct histograms in the 

training data
 Since we treat each vector as a histogram Since we treat each vector as a histogram

 It is not possible to learn more than this 
number regardless of sparsitynumber regardless of sparsity
 The arithmetic supports it, but the results will be 

meaningless
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meaningless
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Working at the limits of overcompleteness: 
The “Example-Based” Model

Every training vector is a basis Every training vector is a basis
 Normalized to be a distribution

 Let S(t f) be the tth training vector Let S(t,f) be the t training vector
 Let T be the total number of training vectors
 The total number of bases is T The total number of bases is T
 The kth basis is given by

 B(k,f) = S(k,f) / fS(k,f) = S(k,f) / |S(k,f)|1( ) ( ) f ( ) ( ) | ( )|1
 Learning bases requires no additional learning steps 

besides simply collecting (and computing spectra 
f ) t i i d t
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from) training data
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The example based model – an illustration

 In the above example all training data lie on the curve shown (Left 
Panel)
 Each of them is a vector that sums to 1.0

 The learning procedure for bases learns multinomial components that 
are linear combinations of the data (Middle Panel)
 These can lie anywhere within the area enclosed by the data
 The layout of the components hides the actual structure of the layout of the 

data
 The example based representation captures the layout of the data 

perfectly (right panel)
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perfectly (right panel)
 Since the data are the bases
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Signal Processing with the Example Based 
Model
 All previously defined operations can be All previously defined operations can be 

performed using the example based model 
exactly as beforeexactly as before
 For each data vector, estimate the optimal mixture 

weights to combine the basesg
 Mixture weights MUST be estimated to be sparse

 The example based representation is simply 
a special case of an overcomplete basis set
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Speaker Separation Example

 Speaker-to-interference ratio of separated 
speakers

State of the art separation res lts
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 State-of-the-art separation results
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Example-based model: All the training 
data?

I i i l d t ll t i i d t In principle, no need to use all training data 
as the model

A well selected subset will do A well-selected subset will do
 E.g. – ignore spectral vectors from all pauses and 

non-speech regions of speech samplesnon speech regions of speech samples
 E.g. – eliminate spectral vectors that are nearly 

identical
 The problem of selecting the optimal set of 

training examples remains open, however

11755/18797
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Summary So Far
 PLCA:

 The basic mixture-multinomial model for audio (and other The basic mixture multinomial model for audio (and other 
data)

 Sparse Decomposition: Sparse Decomposition:
 The notion of sparsity and how it can be imposed on 

learning

 Sparse Overcomplete Decomposition:
 The notion of overcomplete basis set

 Example-based representations
 Using the training data itself as our representation
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 Using the training data itself as our representation
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Next up: Shift/Transform Invariance

 Sometimes the “typical” structures that 
compose a sound are wider than one spectral 
frame
 E.g. in the above example we note multiple 

examples of a pattern that spans several frames
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Next up: Shift/Transform Invariance

 Sometimes the “typical” structures that compose a 
sound are wider than one spectral framesound are wider than one spectral frame
 E.g. in the above example we note multiple examples of a 

pattern that spans several frames
 Multiframe patterns may also be local in frequency

 E.g. the two green patches are similar only in the region 
l d b th bl b
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enclosed by the blue box
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Patches are more representative than frames

 Four bars from a music example
Th t l tt t ll t h The spectral patterns are actually patches
 Not all frequencies fall off in time at the same rate

 The basic unit is a spectral patch not a spectrum
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 The basic unit is a spectral patch, not a spectrum
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Images: Patches often form the image

A typical image component may be viewed as a A typical image component may be viewed as a 
patch
 The alien invaders
 Face like patches
 A car like patch 

l id i lf i
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 overlaid on itself many times..
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Shift-invariant modelling
 A shift-invariant model permits individual 

bases to be patchesbases to be patches
 Each patch composes the entire image.

The data is a sum of the compositions from The data is a sum of the compositions from 
individual patches
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Shift Invariance in one Dimension

5
1583996

81444811645 598 1
14722436947224991327274453 1

147201737111371387520453 91
127246947720351510127411501502

 Our bases are now “patches”
 Typical spectro-temporal structures

Th t t h The urns now represent patches
 Each draw results in a (t,f) pair, rather than only f
 Also associated with each urn:  A shift probability distribution P(T|z)

 The overall drawing process is slightly more complex The overall drawing process is slightly more complex
 Repeat the following process:

 Select an urn Z with a probability P(Z)
 Draw a value T from P(t|Z)

Draw (t f) pair from the urn
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 Draw (t,f) pair from the urn
 Add to the histogram at (t+T, f)
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Shift Invariance in one Dimension

5
1583996

81444811645 598 1
14722436947224991327274453 1

147201737111371387520453 91
127246947720351510127411501502

 The process is shift-invariant because the 
probability of drawing a shift P(T|Z) does notprobability of drawing a shift P(T|Z) does not 
affect the probability of selecting urn Z

 Every location in the spectrogram has 
contributions from every urn patch
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Shift Invariance in one Dimension

5
1583996

81444811645 598 1
14722436947224991327274453 1

147201737111371387520453 91
127246947720351510127411501502

 The process is shift-invariant because the 
probability of drawing a shift P(T|Z) does notprobability of drawing a shift P(T|Z) does not 
affect the probability of selecting urn Z

 Every location in the spectrogram has 
contributions from every urn patch
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Shift Invariance in one Dimension

5
1583996

81444811645 598 1
14722436947224991327274453 1

147201737111371387520453 91
127246947720351510127411501502

 The process is shift-invariant because the 
probability of drawing a shift P(T|Z) does notprobability of drawing a shift P(T|Z) does not 
affect the probability of selecting urn Z

 Every location in the spectrogram has 
contributions from every urn patch
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Probability of drawing a particular (t,f) combination

  
z

zftPzPzPftP


 )|,()|()(),(

 The parameters of the model:
 P(t f|z) – the urns P(t,f|z) the urns
 P(T|z) – the urn-specific shift distribution
 P(z) – probability of selecting an urn

 The ways in which (t,f) can be drawn:
 Select any urn z
 Draw T from the urn-specific shift distribution
 Draw (t-T,f) from the urn

 The actual probability sums this over all shifts and urns
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Learning the Model
 The parameters of the model are learned analogously to the manner in 

which mixture multinomials are learned

Gi b ti f (t f) it k hi h it f d th hift Given observation of (t,f), it we knew which urn it came from and the shift, 
we could compute all probabilities by counting!
 If shift is T and urn is Z

 Count(Z) = Count(Z) + 1 Count(Z) = Count(Z) + 1
 For shift probability: Count(T|Z) = Count(T|Z)+1
 For urn: Count(t-T,f | Z) = Count(t-T,f|Z) + 1

 Since the value drawn from the urn was t-T,f

 After all observations are counted:
 Normalize Count(Z) to get P(Z)
 Normalize Count(T|Z) to get P(T|Z) Normalize Count(T|Z) to get P(T|Z)
 Normalize Count(t,f|Z) to get P(t,f|Z)

 Problem: When learning the urns and shift distributions from a histogram, 
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the urn (Z) and shift (T) for any draw of (t,f) is not known
 These are unseen variables
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Learning the Model
 Urn Z and shift T are unknown

 So (t,f) contributes partial counts to every value of T and Z
 Contributions are proportional to the a posteriori probability of Z and T,Z
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 Each observation of (t,f) 
 P(z|t,f) to the count of the total number of draws from the urn

 Count(Z) = Count(Z) + P(z | t,f)

 P(z|t,f)P(T | z,t,f) to the count of the shift T for the shift distribution
 Count(T | Z) = Count(T | Z) + P(z|t,f)P(T | Z, t, f)
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 P(z|t,f)P(T | z,t,f) to the count of (t-T, f) for the urn
 Count(t-T,f | Z) = Count(t-T,f | Z) + P(z|t,f)P(T | z,t,f)
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Shift invariant model: Update Rules
 Given data (spectrogram) S(t,f)
 Initialize P(Z), P(T|Z), P(t,f | Z) Initialize P(Z), P(T|Z), P(t,f | Z)
 Iterate
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Shift-invariance in one time: example
 An Example: Two distinct sounds occuring with different repetition rates 

within a signal
 Modelled as being composed from two time-frequency bases
 NOTE: Width of patches must be specified

INPUT SPECTROGRAM
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Discovered time-frequency 
“patch” bases (urns)

Contribution of individual bases to the recording2 Nov 2010 107



Shift Invariance in Time: Dereverberation

=+  +

 Reverberation – a simple modelReverberation a simple model
 The Spectrogram of the reverberated signal is a 

sum of the spectrogram of the clean signal and 
several shifted and scaled versions of itself

 A convolution of the spectrogram and a room 
response
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Dereverberation

 Given the spectrogram of the reverberated Given the spectrogram of the reverberated 
signal:
 Learn a shift-invariant model with a single patch basis Learn a shift invariant model with a single patch basis

 Sparsity must be enforced on the basis

 The “basis” represents the clean speech!
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Shift Invariance in Two Dimensions

5 5 598 1 274453 1 7520453 914115015025
1583996

81444811645 598 1
14722436947224991327274453 1

147201737111371387520453 91
127246947720351510127411501502

 We now have urn-specific shifts along both T and Fp g
 The Drawing Process

 Select an urn Z with a probability P(Z)
 Draw SHIFT values (T,F) from Ps(T,F|Z)( , ) s( , | )
 Draw (t,f) pair from the urn
 Add to the histogram at (t+T, f+F)

 This is a two-dimensional shift-invariant model
 We have shifts in both time and frequency

 Or, more generically, along both axes
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Learning the Model
 Learning is analogous to the 1-D case

 Given observation of (t,f), it we knew which urn it came from and ( , ),
the shift, we could compute all probabilities by counting!
 If shift is T,F and urn is Z

 Count(Z) = Count(Z) + 1 Count(Z)  Count(Z)  1
 For shift probability: ShiftCount(T,F|Z) = ShiftCount(T,F|Z)+1
 For urn: Count(t-T,f-F | Z) = Count(t-T,f-F|Z) + 1

 Since the value drawn from the urn was t-T,f-F,

 After all observations are counted:
 Normalize Count(Z) to get P(Z)( ) g ( )
 Normalize ShiftCount(T,F|Z) to get Ps(T,F|Z)
 Normalize Count(t,f|Z) to get P(t,f|Z)
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 Problem: Shift and Urn are unknown
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Learning the Model
 Urn Z and shift T,F are unknown

 So (t,f) contributes partial counts to every value of T,F and Z
 Contributions are proportional to the a posteriori probability of Z and T,F|Z
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 Each observation of (t,f) 
 P(z|t,f) to the count of the total number of draws from the urn

 Count(Z) = Count(Z) + P(z | t,f)

 P(z|t,f)P(T,F | z,t,f) to the count of the shift T,F for the shift distribution
 ShiftCount(T,F | Z) = ShiftCount(T,F | Z) + P(z|t,f)P(T | Z, t, f)
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 P(T | z,t,f) to the count of (t-T, f-F) for the urn
 Count(t-T,f-F | Z) = Count(t-T,f-F | Z) + P(z|t,f)P(t-T,f-F | z,t,f)
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Shift invariant model: Update Rules
 Given data (spectrogram) S(t,f)
 Initialize P(Z), Ps(T,F|Z), P(t,f | Z) Initialize P(Z), Ps(T,F|Z), P(t,f | Z)
 Iterate
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2D Shift Invariance: The problem of 
indeterminacy
 P(t,f|Z) and Ps(T,F|Z) are analogouss

 Difficult to specify which will be the “urn” and which the 
“shift”

 Additional constraints required to ensure that one of 
them is clearly the shift and the other the urn

 Typical solution: Enforce sparsity on Ps(T,F|Z) 
 The patch represented by the urn occurs only in a few 

locations in the datalocations in the data
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Example: 2-D shift invariance

11755/18797

 Only one “patch” used to model the image (i.e. a single urn)
 The learnt urn is an “average” face, the learned shifts show the locations 

of faces2 Nov 2010 115



Example: 2-D shift invarince

 The original figure has multiple handwritten 
d i f th h trenderings of three characters

 In different colours
Th l ith l th th h t d The algorithm learns the three characters and 
identifies their locations in the figure

Input data

D
is

co
ve

re
d

P
at

ch
es

P
at

ch
Lo

ca
tio

ns
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Beyond shift-invariance: transform 
invariance

5
1583996

81444811645 598 1
14722436947224991327274453 1

147201737111371387520453 91
127246947720351510127411501502

 The draws from the urns may not only be shifted, 
but also transformed
Th ith ti i i il t th hift The arithmetic remains very similar to the shift-
invariant model
 We must now impose one of an enumerated set of We must now impose one of an enumerated set of 

transforms to (t,f), after shifting them by (T,F)
 In the estimation, the precise transform applied is an 

unseen variable

11755/18797

unseen variable
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Transform invariance: Generation
 The set of transforms is enumerable

 E.g. scaling by 0.9, scaling by 1.1, rotation right by 90degrees, rotation g g y , g y , g y g ,
left by 90 degrees, rotation by 180 degrees, reflection

 Transformations can be chosen by draws from a distribution over 
transforms
 E.g. P(rotation by 90 degrees) = 0.2..
 Distributions are URN SPECIFIC

 The drawing process: The drawing process:
 Select an urn Z (patch)
 Select a shift (T,F) from Ps(T, F| Z)
 Select a transform from P(txfm | Z) Select a transform from P(txfm | Z)
 Select a (t,f) pair from P(t,f | Z)
 Transform (t,f) to txfm(t,f)

Increment the histogram at txfm(t f) + (T F) Increment the histogram at txfm(t,f) + (T,F)
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Transform invariance
 The learning algorithm must now estimate

 P(Z) – probability of selecting urn/patch in any draw
 P(t,f|Z) – the urns / patches
 P(txfm | Z) – the urn specific distribution over transforms
 Ps(T,F|Z) – the urn-specific shift distribution

 Essentially determines what the basic shapes are, where they occur in 
the data and how they are transformed
The mathematics for learning are similar to the maths for shift The mathematics for learning are similar to the maths for shift 
invariance
 With the addition that each instance of a draw must be fractured into urns, shifts 

AND transforms

 Details of learning are left as an exercise
 Alternately, refer to Madhusudana Shashanka’s PhD thesis at BU
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Example: Transform Invariance

 Top left: Original figure
 Bottom left – the two bases discovered
 Bottom right –

 Left panel, positions of “a”
 Right panel positions of “l”

11755/18797

 Right panel, positions of l
 Top right: estimated distribution underlying original figure
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Transform invariance: model limitations 
and extensions
 The current model only allows one transform to be 

applied at any draw
 E.g. a basis may be rotated or scaled, but not scaled and 

rotated
 An obvious extension is to permit combinations of 

transformations
M d l t b t d d t d th bi ti f Model must be extended to draw the combination from 
some distribution

 Data dimensionality: All examples so far assume 
only two dimensions (e.g. in spectrogram or image)

 The models are trivially extended to higher-
dimensional datadimensional data
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Transform Invariance: Uses and 
Limitations

Not very useful to analyze audio Not very useful to analyze audio
 May be used to analyze images and video

 Main restriction: Computational complexity
 Requires unreasonable amounts of memory and 

CPU
 Efficient implementation an open issue
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Example: Higher dimensional data
 Video example
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