
11-755 Machine Learning for Signal Processing

Modifying Audio Signals



Topics

 Denoising

 Rate/Pitch modification

 Psola: Pitch-Synchronous Overlap and Add

 Phase vocoder
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De-noising

 Multifaceted problem

 Removal of unwanted artifacts

 Clicks, hiss, warps, interfering sounds, …

 For now

 Constant noise removal

 Wiener filters, spectral/power subtraction

 Click detection and restoration

 AR models for abnormality detection

 AR models for making up missing data
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The problem with audio recordings

 Recordings are inherently messy!!

 Recordings capture room resonances, air conditioners, street 

ambience, etc …

 Resulting in low frequency rumbling sounds (the signature quality of 

a low-budget recording!)

 Media get damaged

 Magnetic recording media get demagnetized

 Results in high frequency hissing sounds (old tapes)

 Mechanical recording media are littered with debris

 Results in clicking and crackling sounds (ancient vinyl disks, optical film 

soundtracks)

 Digital media feature sample drop-outs

 Results in gaps in audio which when short are perceived as clicks, otherwise it is 

an audible gap (damaged CDs, poor internet streaming, bad bluetooth headsets)
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Restoration of audio

 People don’t like noisy recordings!!

 There is a need for audio restoration work

 Early restoration work was an art form

 Experienced engineers would design filters to best cover defects, cut 

and splice tapes to remove unwanted parts, etc.

 Results were marginally acceptable

 Recent restoration work is a science

 Extensive use of signal processing and machine learning

 Results are quite impressive!
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Audio Restoration I: Noise removal

 Noise is often inherent in a recording or 

slowly creeps in the recording media

 Hiss, rumbling, ambience, …

 Approach

 Figure out noise characteristics

 Spectral processing to make up for noise
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Describing additive noise

 Assume additive noise
x(t) = s(t) + n(t)

 In the frequency domain

 Find the spots where we have 
only isolated noise
 Average them and get noise 

spectrum
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Spectral subtraction methods

 We can now (perhaps) 

estimate the clean sound
 We know the characteristics of 

the noise (as described from the 

spectrum (f))

 But, we will assume:

 The noise source is constant

 If the noise spectrum 

changes (f) is not a valid 

noise description anymore

 The noise is additive
Sections of isolated noise

(or at least no useful signal)
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Spectral subtraction

 Magnitude subtraction

 Subtract the noise 

magnitude spectrum from 

the recording’s

 We can then modulate the 

magnitude of the original 

input to reconstruct

 Sounds pretty good …
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Estimating the noise spectrum

 Noise is usually not stationary

 Although the rate of change with time may be slow

 A running estimate of noise is required

 Update noise estimates at every frame of the audio

 The exact location of “noise-only” segments is never 

known

 For speech signals we use an important characteristic of speech to 

discover speech segments (and, consequently noise-only 

segments) in the audio

 The onset of speech is always indicated by a sudden increase in 

the energy level in the signal
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A running estimate of noise

 The initial T frames in any recording are assumed to be 

free of the speech signal

 Typically T = 10

 The noise estimate N(T,f) is estimated as

N(T,f) = (1/T) St |X(t,f)|

 Subsequent estimates are obtained as follows

 Assumption: The magnitude spectrum increases suddenly in 

value at the onset of speech
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A running estimate of noise

• p is an exponent term that is typically set to either 2 or 1

o p = 2 : power spectrum; p = 1 : magnitude spectrum

 is a noise update factor

o Typically set in the range 0.1 – 0.5

o Accounts for time-varying noise

 is a thresholding term

o A typical value of  is 5.0

o If the signal energy jumps by a factor of , speech onset has 

occurred

o Other more complex rules may be applied to detect speech offset
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Cancelling the Noise

 Simple Magnitude Subtraction

 |S(t,f)| = |X(t,f)| - |N(t,f)|

 Power subtraction

 |S(t,f)| 2 = |X(t,f)| 2 - |N(t,f)|2

 Filtering methods: S(t,f) = H(t,f)X(t,f)

 Weiner Filtering: build an optimal filter to remove the 

estimated noise

 Maximum-likelihood estimation..
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The Filter Functions

 We have a source plus noise spectrum

 The desired output is some function of the input 

and the noise spectrum

 Let’s make it a “gain function”

 For spectral subtraction the gain function is:
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Filters for denoising

 Magnitude subtraction:

 Power subtraction:

 Wiener filter:

 Maximum likelihood:
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Filter function comparison
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Examples of various filter functions

Original

Magnitude

subtraction

Power

subtraction

Wiener

filter

Maximum

likelihood
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“Musical noise”

 What was that weirdness with 

the Wiener filter???

 An artifact called musical noise

 The other approaches had it too

 Takes place when the signal to 

noise ratio is small

 Ends up on the steep part of the 

gain curve

 Small fluctuations are then 

magnified

 Results in complex or negative 

gain

 An awkward situation!

 The result is sinusoids popping 

in and out

 Hence the tonal overload Noise reduced noise!

(lots of musical noise)
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Reducing musical noise

 Thresholding

 The gain curve is steeper on the negative side 

 This removes effects in that area

 Scale the noise spectrum

N f  Nf

 (Linearly) increases gain in the new location

 Smoothing

e.g. H(t,f) = .5H(t,f) + .5H (t-1,f)

 Or some other time averaging

 Reduces sudden tone on/offs

 But adds a slight echo
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Wiener filter

With thresholding

With thresholding & smoothing
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Reducing musical noise

 Thresholding : Moves the operating point to a less sloped region 
of the curve

 Oversubtraction: Increases the slope in these regions for better 
differential gain

 Smoothing: H(t,f) = 0.5H(t,f) + 0.5H(t-1,f)

 Adds an echo

Wiener filter

With thresholding and oversub

With thresholding, oversub,

and smoothing
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Non-stationary noises

 Same approach as stationary/slowly-varying 

noise, with tuning

 Source separation approaches (latent-

variable decomposition, NMF)

 Switching Wiener filter

 Have multiple Wiener filters (one per noise type)

 Pre-trained for each noise type

 On-line selection of Wiener filter / interpolation of Wiener 

filters
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Audio restoration II: 

Click/glitch/gap removal

 Two step process

 Detection of abnormality

 Replacement of corrupted data

 Detection:

 Autoregressive modeling for 

abnormality detection

 Data replacement:

 Interpolation of missing data using 

autoregressive interpolation

2211755/18797



Starting signal

 Can you spot the glitches?
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Autoregressive (AR) models

 Predicting the next sample of a series using a 
weighted sum of the past samples

 The weights a can be estimated upon 
presentation of a training input x

 Least squares solution of above equation

x(t)  a(i)x(t  i)  e
i1

N

 (t)
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Matrix formulation

 Scalar version

 Matrix version



x(t)  a(i)x(t  i)  e
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Measuring prediction error

 As Convolution

e = x - a  x

 As matrix operation e = Ax

 Overall error variance: eTe
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Measuring prediction error

 The predictor:

e = x - a  x;  e = Ax

 Solution for a must minimize error variance: 

E = eTe
 While maintaining the Toeplitz structure of a!

 A variety of solution techniques are available

 Differentiate E w.r.t “a” and solve for “a” with 

Toeplitz constraint

 Other algorithms

 The most popular one is the “Levinson Durbin” algorithm
27



Discovering abnormalities

 The AR models smooth and predictable 

things, e.g. music, speech, etc

 Clicks, gaps, glitches, noise are not very 

predictable (at least in the sense of a 

meaningful signal)

 Methodology

 Learn an AR model on your signal type

 Measure prediction error on the noisy data

 Abnormalities appear as spikes in error
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Glitch detection example

 Glitches are clearly detected as spikes in 
the prediction error

 Why?  Glitches are unpredictable!
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Now what?

 Detecting the glitches is 
only one step!

 How to we remove them?

 Information is lost!

 We need to make up data!

 This is an interpolation 
problem

 Filling in missing data

 Hints provided from 
neighboring samples
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Interpolation formulation

xk

xu

 Detection of spikes defines 

areas of missing samples

 ± N samples from glitch point

 Group samples to known and 

unknown sets according to 

spike detection positions

 xk = K·x, xu = U·x

 x = (U·x + K·x)

 Transforms U and K maintain only 

specific data ( = unit matrices with 

appropriate missing rows)
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Picking sets of samples
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Making up the data

 AR model error is

 e = A·x = A·(U·xu + 
K·xk)

 We can solve for xu

 Ideally e is 0

 Hence zero error 
estimate for missing 
data is:

 A·U·xu = -A·K·xk

 xu = -(A·U)+ ·A·K·xk

 (A·U)+  is pseudo-
inverse

xk

xu
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Reconstruction zoom in

Next 

glitch

Interpolation

result

Reconstruction area

Actual

data

Distorted

signal

Recovered

signal
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Restoration recap

 Constant noise removal

 Spectral subtraction/Wiener filters

 Musical noise and tricks to avoid it

 Click/glitch/gap detection

 Music/speech is very predictable

 AR models to detect abnormalities

 Missing sample interpolation

 AR model for creating missing data

3511755/18797



Topics

 Voice rate modification

 Psola: Pitch-Synchronous Overlap and Add

 Phase vocoder 

 Pitch Modification
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Changing the rate of audio

 Rate Modification: 

 Speed up: A given segment of audio must  play 

back in half the time without sounding odd

 Slow down: A given segment of audio must play 

back in twice the time without sounding odd

 How?

 Two ways:

 Time domain – somehow slice and dice the signal 

to get what you want

 Do it all cleverly with filter banks or equivalent 

processing
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Speeding up a sinusoid
 A 500Hz sinusoid that is 1 second long

 Sampled at 16000 samples per second

 1/16000  seconds between adjacent samples

Time in seconds
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Speeding up a sinusoid
 A 500Hz sinusoid that is 1 second long

 Sampled at 16000 samples per second

 1/16000  seconds between adjacent samples

• ZOOMING IN
Time in seconds
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Speeding up a sinusoid
 Lets drop every second sample

 Now left with 8000 samples, with 1/16000 seconds between 
adjacent samples

 Only half a second of signal

• ZOOMING IN
Time in seconds
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Speeding up a sinusoid
 Lets drop every second sample

 Now left with 8000 samples, with 1/16000 samples between 
adjacent samples

 Only half a second of signal

• ZOOMING IN

• Twice as many cycles as before in the same amount of time: i.e double 
the frequency, but only half as long in time

Time in seconds

41



Downsampling is a bad thing
 We now have half the number of samples in 

the signal

 We also have half the number of samples per 
cycle of the signal

 But the spacing (in time) between samples has not 
changed

 The total length (in time) of one cycle of the 
sinusoid has halved

 The frequency of the sinusoid had doubled

 This is a natural outcome of downsampling
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Downsampling a speech signal

 Tom Sullivan speaks his name (yet again)

 Downsampling by a factor of 2 

4311755/18797



Doing it differently
 Instead of dropping alternate samples, lets drop alternate cycles

of the sinusoid
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Doing it differently
 Instead of dropping alternate samples, lets drop alternate cycles

of the sinusoid
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Doing it differently
 Instead of dropping alternate samples, lets drop alternate cycles

of the sinusoid

• This gives us the correct result

• Very important to match the phase properly though, otherwise 
discontinuities will happen that sound awful
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How to do this for an audio signal

 PSOLA:  The pitch-synchronous overlap 

addition method

 Identify repeating periods of the audio signal

 Most speech signals occur in repeating patterns

 Vowels, voiced sounds

 They repeat at the “pitch” frequency

 Slice out periods of the signal to get the 

desired number of periods

 To double the speed, we want half the periods

 Smooth transitions to eliminate discontinuities

4711755/18797



PSOLA
 Tom’s Spectrogram
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PSOLA
 Tom’s Spectrogram

• A segment of voiced signal (observe periodicity)
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PSOLA for shortening a signal
 The original signal

• For halving the length Identify alternate pitch periods

– Generally, for 1/X the length, identify every X-th period
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PSOLA for shortening a signal
 We could just patch them together directly, but that would 

generate some noise at the points where they’re stuck 

together

 Instead we “window” each period we want to retain

 Taper a longer segment that includes the desired period and the 

previous periods to 0 at the boundaries by applying a tapering 

window (e.g. a hamming window).

 The Windowed segments are brought closer to gether

 Since we’ve extended the segments for tapering, there will be up to 

two samples at any time

 Overlapping samples from adjacent segments are added

 Hence the name: “Pitch Synchronous Overlap Add” (PSOLA)
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PSOLA in figures
 We wish to “delete” the red periods
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PSOLA in figures
 We wish to “delete” the red periods

• For each blue period, append the previous period (regardless of 
whether it is red or blue) and taper the whole segment
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PSOLA in figures
 We wish to “delete” the red periods

• For each blue period, append the previous period (regardless of 
whether it is red or blue) and taper the whole segment
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PSOLA in figures
 We wish to “delete” the red periods

• For each blue period, append the previous period (regardless of 
whether it is red or blue) and taper the whole segment

IMPORTANT: EACH TAPERING WINDOW MUST PEAK CLOSE TO 

THE INITIAL PEAK IN THE SELECTED PITCH PERIOD
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PSOLA in figures
 We wish to “delete” the red periods

• The Regions in Red must be removed from the final signal
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PSOLA in figures
• The Regions in Red must be removed from the final signal

• Shift each segment such that the red line at the beginning of the 
segment lines us with the red line at the end of the previous 
segment

– The k-th segment must be shifted before the (k+1)th segment
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PSOLA in figures
• The Regions in Red must be removed from the final signal

• Shift each segment such that the red line at the beginning of the 
segment lines us with the red line at the end of the previous 
segment

– The k-th segment must be shifted before the (k+1)th segment

• The length is shorter and the boundary points also match up well 5811755/18797



PSOLA in figures
• The Regions in Red must be removed from the final signal

• Shift each segment such that the red line at the beginning of the 
segment lines us with the red line at the end of the previous 
segment

– The k-th segment must be shifted before the (k+1)th segment
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PSOLA in figures

• We have a perfectly decent time-shortened but perceptually good 
signal

• Now Simply Add up the adjusted segments sample by sample

+
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PSOLA in figures

• We have a perfectly decent time-shortened but perceptually good 
signal

• Now Simply Add up the adjusted segments sample by sample

+

This pitch period

is a nearly perfect

copy of the pitch

periods in the orignal

signal

This pitch period

will become a nearly

perfect copy when

the NEXT pitch period

is shifted in and added

to it
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PSOLA : Stretching

 We have considered SHORTENING a signal, but what 

about stretching?

 We use a very similar procedure for stretching:

 Instead of deleting intermediate periods, we move adjacent periods 

(after windowing) away from each other to generate space for new 

pitch periods between them.

 We then copy the closest pitch

 One then performs overlap and add as before.
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PSOLA Stretching
• Every Pitch Period must be replicated
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PSOLA Stretching
• Every Pitch Period must be replicated

• Window each pitch period (along with preceding pitch period)
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PSOLA Stretching
• Every Pitch Period must be replicated

• Window each pitch period (along with preceding pitch period)
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PSOLA Stretching
• Every Pitch Period must be replicated

• Window each pitch period (along with preceding pitch period)
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PSOLA Stretching
• Slide windowed pitch periods out (by integral pitch periods). This 

creates holes where there is no pitch period

“Hole”

“Hole”
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PSOLA Stretching
• Replicate each segment shifted by its own pitch period

“Hole”

“Hole”
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PSOLA Stretching
• Replicate each segment shifted by its own pitch period

“Hole”
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PSOLA Stretching
• Replicate each segment shifted by its own pitch period
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PSOLA Stretching
• Sum all segments up

+

+

+

+
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PSOLA Stretching
• Sum all segments up

+

+

+

+

• The result is a longer (double length here) perceptually 
reasonable signal
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PSOLA
 The most important component of PSOLA is proper identification of the 

pitch periods

 Ideally these would identify the position of the first peak in the pitch period

 These form the basic reference points

 The segments of the signal that repeat

 Unfortunately this is a very hard problem in most audio signals

 Particularly polyphonic signals

 Several good algorithms exist for speech, solo voices and music with 

single instruments

 PSOLA is good for these cases

 Advantage: PSOLA a very simple algorithm to implement

 < 100 lines of matlab code, once the pitch periods are identified

 If pitch estimation is good, the resulting signal is very good with few artifacts
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Finding the Pitch
 A simple algorithm for finding the pitch is based on 

autocorrelations

 Based on a very simple principle: A signal adds up best 

with a shifted version of itself when the shift is 0

 Or any integer of the period of the signal

 The autocorrelation of a signal is simply obtained by 

multiplying the signal by a shifted version of itself (sample-

by-sample) and adding all the samples

 This has a maximum value at T=0 and T=pitch period

 
t

TtxtxTR )()()(
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Autocorrelations
 Consider the following segment:

Original segment:

The same segment

The product of the two

Original segment:

The segment, slightly shifted

The product of the two

The product is smaller in the second case, where the second signal is a
slightly shifted version of the first one. The sum of all values in the 
product will be smaller also

Now lets shift the second segment a bit
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Autocorrelations
 Consider the following segment:

Original segment:

The same segment

The product of the two

Original segment:

The segment, more shifted

The product of the two

The product is smaller in the shifted case, than in the unshifted case. So 
is the sum of all samples in the product

Lets shift the second segment more
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Autocorrelations
 Consider the following segment:

Original segment:

The same segment

The product of the two

Original segment:

The segment, by a pitch period

The product of the two

When the shift is exactly one pitch period the product becomes large 
again! The sum of the samples in the product will also peak for this shift

Lets shift the second segment by an entire pitch period

7711755/18797



Autocorrelations
 The autocorrelation (sum of samples in the 

product) as a function of shift

When the shift is exactly one pitch period the autocorrelation peaks

To estimate the pitch simply find the shift at which this peak occurs

Shift of the second segment with respect to the first (T)

The largest peak (after 0)

The pitch
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Finding Pitch Periods

 Start at the beginning of the recording and find the first 

peak

 We assume this is the beginning of our first pitch segment

 Consider a 30-50ms segment of signal from the beginning 

of the pitch segment.

 Window it to taper the edges with a tapering window [IMPORTANT]

 The segment has zero value outside the window

 Compute autocorrelation values at various shifts for the 

(windowed) segment

 Find the position of the peak in the autocorrelation

 This gives us the position of the beginning of the next pitch 

segment

 Repeat the above operation from this location
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Finding pitch periods
• The beginning of the signal
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Finding pitch periods
• The beginning of the signal

First peak:: First pitch tick

Beginning of first pitch period
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Finding pitch periods
• The beginning of the signal

Grab the next 32ms

of the signal
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Finding pitch periods
• The beginning of the signal

Grab the next 32ms

of the signal

Taper the signal

8311755/18797



Finding pitch periods
• The beginning of the signal

Grab the next 32ms

of the signal

Taper the signal

Compute the

autocorrelation and

find the location of the

peak
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Finding pitch periods
• The next pitch period

Grab the next 32ms

of the signal

Taper the signal

Compute the

autocorrelation and

find the time lag (shift)

of the peak

Advance the marker

by this lag to mark the

beginning of the next 

pitch period

Second pitch tick

Beginning of second pitch period
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Finding pitch periods
• The next pitch period

Advance to the next

32 ms segment

beginning from the

current pitch marker

and repeat
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Pitch Marker Caveats
 Speech (in particular) comprises two kinds of sounds: voiced and unvoiced

 Voiced sounds exhibit repetitive patterns in the wave form, while unvoiced 

segments do not

 Unvoiced segments can be identified by the simple rule: autocor[1] / autocor[0]  

< threshold

 Typically 0.5

 Pitch estimates will be meaningless in unvoiced segments

 One usually simply identifies locations of zero crossings and uniformly spaced pitch 

segments in unvoiced regions

 Unvoiced regions must be identified

 Pitch estimates will be poor in voiced, but consonantal regions

 E.g. “v”, “b”, “z”

 Better pitch tracking methods needed in these regions

 Usually done by “sub-band” based estimation and voting

 Pitch estimation is difficult for noisy signals

 Same reason as for voiced consonants
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Voiced vs. Unvoiced Segments

 A typical unvoiced segment (r[1]/r[0] = 0.50)

• A typical unvoiced segment (r[1]/r[0] = 0.84)

– Observe voicing
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Psola Overall

 First find the location of the beginning of all 

pitch period

 For stretching the signal, window every pair 

of pitch periods, space them out, insert new 

pitch periods (by replication) to get a signal of 

the desired length

 For shortening, identify the pitch period to 

retain, window them (along with the 

preceding pitch period) and glue them 

together by overlap-add
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Psola Examples

 Tom again

• Tom speaking slowly

• Tom in a hurry
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Psola Examples

 Over the rainbow

• Faster

• Slower
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Psola Examples

 A music segment

• Slower

• Faster
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Pitch Shifting

 Time Scaling is the procedure by which we make a 

segment of audio longer or shorter

 Without modifying the pitch (the sound doesn’t sound squeaky or 

bass)

 Pitch shifting is the inverse process:  Scaling the pitch of 

the signal without modifying the length

 Remember that simply dropping samples (or interpolating new 

samples) increases (decreases) the pitch, but also modifies the 

length of the recording

 We want the same length.
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Pitch Shifting With Psola

 We have seen how to speed up or slow down a signal 

using Psola

 Psola’s most popular use, however, is for a different 

problem: Pitch Shifting

 How to make Tom sound like Mary

 How to have the same utterance, occurring in the same amount of 

time, with the same overall spectral characteristics, but with the 

pitch for the individual shifted up (more feminine) or down (more 

masculine)

 This is achieved very simply by sliding pitch periods with 

respect to each other to reduce or increase the distance 

between pitch markers

 A pitch marker is the initial sample of a pitch period

 Usually selected at a peak
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PSOLA for pitch shifting
• The incoming speech has a number of pitch periods

• These pitch periods occur once every K samples, where K is the pitch 
period

– Corresponding to a pitch of f = (FS / K) where FS is the sampling 
frequency

• To modify the pitch to a new frequency f’, we find the corresponding 
pitch period K’ such that f’ = (FS / K’)

– K’ = FS / f’

• To get a signal with the modified pitch, we must get one pitch period 
every K’ samples

• This is achieved by reducing the spacing between adjacent pitch 
periods to (K’ / K) of their original value

– So that the pitch periods in the new signal now occur at a spacing of K’
samples

– We use the notation  = (K’ / K)
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PSOLA for pitch shifting
• The original signal overlaid with pitch markers

• Showing only the pitch markers

• The distance between adjacent pitch markers is noted

dP1 dP2 dP3

• To obtain a pitch scaling of  these inter-marker distances must 
be scaled by 
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Finding new pitch markers
• The original pitch markers

• The next delta pitch is dP1 . The scaled value is dP1. The 
next pitch mark will occur after dP1 samples.

• The delta pitch corresponding to the next pitch mark (in the 
original signal) is also dP1. So the next scaled pitch mark also 
occurs after dP1 samples.

dP1 dP2 dP3

dP1 dP1
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Finding new pitch markers
• The original pitch markers

• The next delta pitch is dP2 . The scaled value is dP2. The 
next pitch mark will occur after dP2 samples.

• The delta pitch corresponding to the next pitch mark (in the 
original signal) is dP3. So the next scaled pitch mark occurs 
after dP3 samples.

dP1 dP2 dP3

dP1 dP1 dP2 dP3

9811755/18797



Finding new pitch markers
• The original pitch markers

• The result is a series of pitch markers, each of which has a 
corresponding marker from the original signal

• A single marker in the original signal can correspond to multiple 
“scaled” markers

– But a “scaled” marker can ONLY correspond to one of the markers 
for the original signal 9911755/18797



Pitch Shifting
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Pitch Shifting

ADD ALL THE

OVERLAPPING SHIFTED

SEGMENTS TO GET

THE FINAL SIGNAL
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PSOLA pitch shifting Caveats

• Pitch shifting is preformed ONLY in voiced segments
– Pitch shifting is irrelevant in unvoiced segments and may even 

cause distortion

– No pitch shifting is performed in segments identified as unvoiced
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PSOLA Examples

 Tom

• Tom Growling

• Tom Squeaking
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PSOLA Examples

 Over the rainbow

• Low pitch

• Hi pitch
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PSOLA for pitch shifting

• The outcome of the overlap add is a pitch shifted signal

• The procedure can be used both for increasing and 
decreasing pitch

• It works best for signal where a unique pitch can be 
identified
– Speech, singing voices

– Not useful for polyphonic signals

• Not very effective for scaling factors outside the range 0.5-
2.0.
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PHASE VOCODER

• A different method for time scaling is the phase vocoder

• This procedure does not depend on explicit detection of 
pitch periods

• Rather, it achieves time scaling by clever scaling of the 
envelopes of each of the sinusoids in a  Fourier 
decomposition of the signal
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Time Scaling With Tuning Forks
 A set of tuned tuning forks will produce independent 

sinusoids when excited by sound

• If you summed the outputs of the tuning forks again, you’d get 
back the sound

+
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Time scaling with tuning forks
 If we scaled the output of each tuning fork independently and 

added the signals back, we’d get a time-scaled signal

 The output of each tuning fork is an amplitude modulated 
sinusoid

• This can be separated into an envelope and a uniform sinusoid

Multiplying these two gives us the original tuning fork output 10811755/18797



Time scaling with tuning forks
 Time scaling can be achieved by time scaling only 

the envelope and factoring it back into the sinusoid

Time Scale (can be done by simple downsampling)

x Multiply

Time scaled sinusoid

10911755/18797



Time scaling with tuning forks
 Time scaling can be achieved by time scaling only 

the envelope and factoring it back into the sinusoid

• By shrinking the envelope and applying it to the 
sinusoid we get the same perceptual time pattern at 
twice the rate without changing the basic frequency
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Time scaling with tuning forks

 Time scale every tuning fork output

• Add them back in: Voila, a properly time-scaled signal

• THIS IS THE PRINCIPLE WE WILL USE

+
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Phase Vocoder
 Originally proposed by James Flanagan in 

1966

 For compressing speech signals!

 Mimics the tuning fork idea with filters

 Pass the input audio signal through a large 
bank of filters

 Filters must be such that adding their outputs must 
return the original signal

 Time scale the output of each filter

 Add back to reconstruct time scaled signal
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Phase Vocoder
 Basic filter bank: the output of each filter is a narrow 

band of frequencies

• The frequency responses of the filters must add to 1

Filter 1

Filter 2

Filter 3
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Phase Vocoder
 Basic filter bank: the output of each filter is a narrow 

band of frequencies

• The frequency responses of the filters must add to 1

Filter 1

Filter 2

Filter 3
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Phase Vocoder
 Basic filter bank: the output of each filter is a narrow 

band of frequencies

• The frequency responses of the filters must add to 1

Filter 1

Filter 2

Filter 3
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Phase Vocoder
 Basic filter bank: the output of each filter is a narrow 

band of frequencies

• The frequency responses of the filters must add to 1

Filter 1

Filter 2

Filter 3
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Phase Vocoder
 Basic filter bank: the output of each filter is a narrow 

band of frequencies

• The frequency responses of the filters must add to 1

Filter 1

Filter 2

Filter 3
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Phase Vocoder
 Basic filter bank: the output of each filter is a narrow 

band of frequencies

• The frequency responses of the filters must add to 1

Filter 1

Filter 2

Filter 3

• The total number of filters must be large: No filter must 

cover more than one harmonic peak in the signal 11811755/18797



Phase Vocoder
 Filter-bank constraints:

 Filter center frequencies must be uniformly spaced.

 The frequency response of the filters (in the frequency domain) 

must sum to 1.0

 If the signal is sonorant (music, vowels), it contains one or more 

pitch frequencies and their harmonics

 No filter must allow more than one of these harmonics through

 i.e. there must be at least as many filters at there are harmonics in the 

spectrum

 If your sampling frequency is FS and the lowest pitch frequency you 

expect is P, there must be more than FS/P filters
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Phase Vocoder
 A Schematic: the output of each filter is time-scaled and added back

• The output is a time-scaled signal

Filter 1

Filter 2

Filter 3

+
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Phase Vocoder: Each Filter
 The output of a single filter is essentially an amplitude 

modulated sinusoid

 This is the reason we want our filters to be narrow: otherwise the 

output will not be even approximately sinusoidal

 The amplitude and the sinusoid can be separated by 

heterodyning

 The same principle used in your AM receiver

 Multiply the output of the filter by a sinewave of the center 

frequency of the filter

 This generates a mixture of two signals, one that represents the 

envelope of the sinewave, and the other that represents the amplitude

 Extract the amplitude by applying a low pass filter

12111755/18797



Phase Vocoder
 Basic equation:

2/)sin(2/)sin()cos()sin( bababa 

• By the above equation, this is 

the same as the sum of two 

sinusoids distributed around the 

center frequency of the filter

The spectrum of the above signal 12211755/18797



The Heterodyne Principle
 By multiplying the output of the filter by a sinusoid at the center 

frequency of the filter, the envelope can be separated into an 
additive low frequency component:

2/)sin(2/)2sin()cos()sin( bbaaba 

• The low-frequency sinusoid can be filtered out by a low pass filter 

• The product of the amplitude 

modulated sine (sin(a+b)) with 

a sine wave at the base 

frequency (cos(a)) is a high-

frequency sine wave whose 

bias is a low-frequency 

sinusoid

Low-freq. 

component 

(sin(b))

High-freq. 

component 

(sin(2a+b))
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The Heterodyne Principle
 The envelope of the output of any filter is a low-

frequency signal (< 50Hz). The low frequency 
envelope can be extracted by similar heterodyning 
(multiply by center frequency sine, low pass filter)

• The spectrum of the above 

signal, which is the output 

of a filter with a centre 

frequency of 500Hz (the 

high-freq component has a 

frequency of 500 Hz)

500 hz center freq

Variations around center

freq. from the envelope
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Heterodyning Caveat
 Mutiplying by a cos(a) wont always work

 Original:

sin(a)cos(b) = 0.5sin(a+b) + 0.5sin(a-b)

 Heterodyning: multiply by cos(a):

sin(a+b)*cos(a) = 0.5sin(2a-b) + 0.5sin(b)

sin(a-b)*cos(a) = 0.5sin(2a+b) + 0.5sin(-b)

 Simply multiplying the original signal (sin(a)cos(b)) by cos(a) may 

result in no low frequency components

sin(a)cos(b) * cos(a)

= sin(a+b)*cos(a) + sin(a1b)*cos(a) 

= 0.5sin(2a-b) + 0.5sin(b) + 0.5sin(2a+b) + 0.5sin(-b)

= 0.5sin(2a-b) + 0.5sin(2a+b) (both are high frequency terms)

 Because sin(-b) = -sin(b)

 The result has no low frequency components at all
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Heterodyning Caveat
 In the previous example, if we had multiplied the filter out 

by a sine (sin(a)) instead of a cosine (cos(a)), the output 

would have the correct low-frequency components

 Work it out yourself to confirm this

 To account for this the heterodyne receiver multiplies the 

signal both by a sine and a cosine wave

 The outputs of both multiplications are filtered

 For the envelope combine the two low-pass filtered 

signals sample by sample as follows
 Y = sqrt (X^2 + Y^2)  [the hypotenuse]
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Heterodyne Receiver

 The full Heterodyne receiver at the output 

of each filter in the phase vocoder

Low Pass

Filter

Low Pass

Filter

Sin(2*pi*f*t)

Cos(2*pi*f*t)

multiply hypotenuse

Envelope
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Heterodyning
The original signal (output of one filter)

Multiplied by cosine

Multiplied by sine

Both the output of the sine and the cosine are low pass filtered 12811755/18797



Heterodyning
Cosine output

Low pass filtered

sine output

Low pass filtered

The hypotenuse the output of sine and cosine paths (the actual envelope)
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Phase Vocoder: Time Scaling

 Time-scale the envelope of each sinusoid by 

decimation (dropping samples) or interpolation

 Multiply the time scaled envelope back into a 

sinusoid at the center frequency of the filter

 Do this for every filter output and add filter 

outputs back 
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Phase Vocoder: Time Scaling
Filter 1

Filter 2

Filter 3

Heterodyne

Time Scale

Multiply into sinusoid

Add
Time scaled signal
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How does one implement it

 Sometimes implementation lags behind 

intention 13211755/18797



Phase Vocoder: Implementation
 But actual implementation with time-domain filters, 

while practicable, is not cost effective

 Can be performed much more efficiently in the 

frequency domain::

 The low pass filtered envelope of the output of any 

filter typically has a bandwidth less than 50 Hz

 It is sufficient to sample it at 100 samples per second

 16000 samples per second are not necessary

The highest frequency is less than

100 Hz
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What is an STFT

 The real and imaginary parts of an STFT are 

snapshots of envelops of the output of the filters 

in a filterbank

 The real and imaginary parts of the STFT represent the 

cosine and sine outputs of a heterodyne at the output of 

each filter

 An STFT that computes N spectral vectors per 

second of the signal takes these snapshots N 

times a second

 If N > 2*(the largest frequency in the envelope), this is 

sufficient to reconstruct the entire envelope, and 

thereby the entire signal
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What is an STFT

 The STFT captures snapshots of the outputs of the filterbank-
heterodyne combination

Filter 1

Filter 2

Filter 3

Heterodyne

Heterodyne

Heterodyne
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Phase Vocoder: Implementation
 A short-time Fourier transform of a signal effectively 

samples the output of NFFT/2 filters, once per spectral 

vector computed

 An STFT that computes 100 spectral vectors per second 

effectively samples the envelope of the output of the filters 

at 100 Hz

 Each spectral value is one sample of the output of one filter

 Inversion of the STFT effectively multiplies these envelope values 

by sinusoids at the center frequencies of the filters and add them all 

back in

 Time-scale modification can be obtained by resampling 

the sequence of spectral vectors in the STFT of the signal
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Recall: Computing a Spectrogram

Compute Fourier Spectra of segments of speech and stack them side-by-side
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Recall: Computing a Spectrogram

Compute Fourier Spectra of segments of speech and stack them side-by-side

frequency

frequency

frequency

frequency

frequency

frequency

frequency
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Recall: Computing a Spectrogram

Compute Fourier Spectra of segments of speech and stack them side-by-side
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frequency
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Recall: Computing a Spectrogram

Compute Fourier Spectra of segments of speech and stack them side-by-side
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frequency
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frequency
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Recall: Computing a Spectrogram
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Recall: Computing a Spectrogram
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Recall: Computing a Spectrogram

Compute Fourier Spectra of segments of speech and stack them side-by-side
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Zooming in

 The two parameters of an STFT are the length of the 

analysis window and the hop between adjacent 

analysis windows

frequency

frequency

frequency

frequency

frequency

frequency

frequency

frequency

frequency

frequency

frequency

frequency

frequency

frequency

Analysis window size

Hop size
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Phase Vocoder: Implementation
 Reconstruction of signal from time-scaled STFT: 

 Inversion of an STFT works best when the hop between adjacent 
frames (analysis windows) is no more than 25%

 For time-scaling, the time-scaled STFT must have at least 100 
frames per second (to ensure that the envelope is not under 
sampled)

 Therefore, we select analysis window size and hopsize such that 
the hop size is 25% or less, and we get more than 100frames per 
second

 A good selection is an analysis window of 32ms, with a hop size of 
8ms

 Time-scaling has two stages:
 Analysis: Compute an STFT from the signal with a hop size other 

than 25% (8ms)

 Synthesis: Recompute the signal from the STFT assuming a hop 
size of 25%

 The difference between the two rates will result in rate change
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Phase vocoder, doubling the speed

 To double the speech rate, during analysis we 
compute STFTs with a hop size of 50%

 During synthesis, use the SAME STFTs, but assume 
a hopsize of 25%

frequency

frequency

frequency

frequency

frequency

frequency

frequency

frequency

frequency

frequency

frequency

frequency

frequency

frequency

ANALYSIS

Hop size = 50%
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frequency

frequency

frequency

frequency

frequency

frequency

frequency

frequency

frequency

frequency

frequency

frequency

frequency

frequency

SYNTHESIS

Hop size = 25%

 To double the speech rate, during analysis we 
compute STFTs with a hop size of 50%

 During synthesis, use the SAME STFTs, but assume 
a hopsize of 25%

Phase vocoder, doubling the speed
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Doubling the speed

 STFT analysis with an analysis window of 40ms(say) 

with 50% hop computes 50 frames per second

 20 seconds of speech would generate 1000 frames

 STFT synthesis using all the spectral vectors, but with a 

25% hop between frames inverts 100 frames per second

 1000 frames would be played back in 10 seconds

 The playback speed will be double that of the original signal
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 To double the speech rate, during analysis we 
compute STFTs with a hop size of 12.5%

 During synthesis, use the SAME STFTs, but assume 
a hopsize of 25%

frequency
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frequency

ANALYSIS

Hop size = 12.5%

Phase vocoder, halving the speed
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Phase vocoder, halving the speed

frequency

frequency

frequency

frequency

frequency

frequency

frequency

frequency

frequency

frequency

frequency

frequency

frequency

frequency

SYNTHESIS

Hop size = 25%

 To double the speech rate, during analysis we 
compute STFTs with a hop size of 12.5%

 During synthesis, use the SAME STFTs, but assume 
a hopsize of 25%
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Halving the speed

 STFT analysis with an analysis window of 40ms(say) 

with 12.5% hop computes 200 frames per second

 20 seconds of speech would generate 4000 frames

 STFT synthesis using all the spectral vectors, but with a 

25% hop between frames inverts 100 frames per second

 4000 frames would be played back in 40 seconds

 The playback speed will be half that of the original signal
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What about the phase?

 Simply shifting the reconstructed signal for each 

analysis window to the appropriate hop size can 

cause some strange perceptual artifacts.

 This is because the Fourier spectrum is complex

 The phase of the Fourier spectra of frames that are X 

samples apart will differ by an amount that is different from 

the phase of Fourier spectra of frames that are Y samples 

apart

 We must account for this difference

 If not, we might as well just window the signal, shift the 

frames to the correct overlap, and add without the FFT and 

inverse FFT inbetween
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The phase problem in pictures
 The inverse fourier transform multiplies Fourier coefficients into 

sinusoids and adds them up

 When the synthesis hop size is identical to the analysis hop 
size, sinusoids in ajacent frames will line up perfectly for 
addition

• At the analysis hop size, the sinusoid in the second frame lines 
up perfectly with the sinusoid in the earlier frame

• If the second frame is shifted back (or forward) with respect to 
the first, for synthesis, the sinusoids no longer line up 15511755/18797



The solution
 Modify the phase (the starting point) of the sinusoid 

of the second frame to line up properly with the first

• First compute how much the phase has advanced between the 
two frames (in radians)

• Compute how much is would have advanced at the desired new 
starting point of the frame

• Change the initial phase of the second frame to this new value

• The sinusoids will now line up 15611755/18797



In Symbolic Terms..

 Do not reconstruct the signal directly from the FFT.

 Compute the magnitude and phase of every frame.

 Let these be Mag(t) and Phase(t) for the t-th frame

 Compute the  Phase difference (at any frequency) 

between the phase of the current frame and the phase of 

the previous frame

 DeltaPhase(t) = Phase(t) – Phase(t-1)

 If the original hop size was X samples, and it was adjusted 

to Y samples, scale DeltaPhase by Y/X

 DeltaPhaseNew(t) = Y * DeltaPhase(t) / X

 This adjusts the phase difference between adjacent frames to what 

it must be for the modified hop size
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In symbolic terms

 Reconstruct the phase for the t-th frame by 

adding the modified delta phase to the 

modified phase of the previous frame

 PhaseNew(t) = PhaseNew(t-1) + DeltaPhaseNew(t)

 Reconstruct the entire Fourier spectrum from 

the magnitude and the new phase

 FFTNew = Mag * exp(sqrt(-1) * PhaseNew)

 Invert and reconstruct the signal
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Phase vocoder time scaling:
1. Determine a good analysis window size

1. 32-64ms is good

2. If analysis windows are of size Z, the ideal hopsize for reconstruction 
is X = Z/4

3. To get a desired time scaling, select an integer Y such that (X/Y) is the 
desired scaling factor

4. During analysis, compute STFTs spectra for windows with a hopsize Y

5. Compute the magnitude and phase of the spectra for each frame

6. Compute the delta phase for each frame with respect to the previous 
frame

7. Adjust delta phase by scaling factor (X/Y)

8. Recompute phase by adding new delta phase to the (modified) phase 
of the previous window

9. Combine phase and magnitude to get new STFT coeffecients

10. Reconstruct a signal from the modified STFT with a hop size of X
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Phase vocoder time scaling:
 Alternate mechanism (more correct):

 Resample the magnitude spectrum:

 Consider each frequency band as the output of a filter

 Resample the sequence to get the desired number of 

frames

 Matlab’s resample routine

 Predict phase at the appropriate positions using the 

mechanism described earlier

 Reconstruct stft

 Reconstruct signal
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Time Scaling: Some examples

 A speech signal

• At half the rate

• At double rate
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Psola Examples

 Over the rainbow

• Faster

• Slower
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Psola Examples

 A music segment

• Slower

• Faster
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Phase Vocoder Time Scaling

 Basic procedure much simpler to implement 

than PSOLA when done 

 Sophisticated versions that attempt to simulate 

actual filterbanks and heterodynes are much more 

complex

 Effective for any kind of sound

 Including speech, monophonic music, polyphonic 

music
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Pitch Shifting

 Time Scaling is the procedure by which we make a 

segment of audio longer or shorter

 Without modifying the pitch (the sound doesn’t sound squeaky or 

bass)

 Pitch shifting is the inverse process:  Scaling the pitch of 

the signal without modifying the length

 Remember that simply dropping samples (or interpolating new 

samples) increases (decreases) the pitch, but also modifies the 

length of the recording

 We want the same length.
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Pitch Shifting

 Simple interpolation or decimation of the signal effects 

pitch shift, but changes the length of the signal

 Resampling by factor X changes pitch by 1/X

 Changes length by X

 Solution:  To get a pitch scaling of factor X, first change 

the length of the signal by 1/X using a Phase vocoder

 Then resample

 The length change due to resampling and the length change from 

the phase vocoder cancel out


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Pitch Shifting
 Simple decimation (dropping of samples) increases the pitch, but reduces the length

• A phase vocoder initially increases the length by the right amount

• Subsequent decimation gives a signal of the right pitch and length
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PSOLA Examples

 Tom

• Tom Growling

• Tom Squeaking
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PSOLA Examples

 Over the rainbow

• Low pitch

• Hi pitch
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Phase Vocoder Pitch Shift

 Simple pitch shifting with phase vocoder not 

as effective as Psola

 All details of the pitch get frequency shifted

 We only want the basic pitch to change, not the 

details within the pitch

 More sophisticated techniques based on the 

phase vocoder modify the spectrum explicitly

 Better than Psola

 Can be applied to music
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Some more examples

 What are we doing here?

 Common sounds you hear everyday

 Now you know how..
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