
11-755 Machine Learning for Signal Processing

Modifying Audio Signals

Topics

 Denoising

 Rate/Pitch modification

 Psola: Pitch-Synchronous Overlap and Add

 Phase vocoder

11755/18797 2

De-noising

 Multifaceted problem

 Removal of unwanted artifacts

 Clicks, hiss, warps, interfering sounds, …

 For now

 Constant noise removal

 Wiener filters, spectral/power subtraction

 Click detection and restoration

 AR models for abnormality detection

 AR models for making up missing data

311755/18797

The problem with audio recordings

 Recordings are inherently messy!!

 Recordings capture room resonances, air conditioners, street

ambience, etc …

 Resulting in low frequency rumbling sounds (the signature quality of

a low-budget recording!)

 Media get damaged

 Magnetic recording media get demagnetized

 Results in high frequency hissing sounds (old tapes)

 Mechanical recording media are littered with debris

 Results in clicking and crackling sounds (ancient vinyl disks, optical film

soundtracks)

 Digital media feature sample drop-outs

 Results in gaps in audio which when short are perceived as clicks, otherwise it is

an audible gap (damaged CDs, poor internet streaming, bad bluetooth headsets)

411755/18797

Restoration of audio

 People don’t like noisy recordings!!

 There is a need for audio restoration work

 Early restoration work was an art form

 Experienced engineers would design filters to best cover defects, cut

and splice tapes to remove unwanted parts, etc.

 Results were marginally acceptable

 Recent restoration work is a science

 Extensive use of signal processing and machine learning

 Results are quite impressive!

511755/18797

Audio Restoration I: Noise removal

 Noise is often inherent in a recording or

slowly creeps in the recording media

 Hiss, rumbling, ambience, …

 Approach

 Figure out noise characteristics

 Spectral processing to make up for noise

611755/18797

Describing additive noise

 Assume additive noise
x(t) = s(t) + n(t)

 In the frequency domain

 Find the spots where we have
only isolated noise
 Average them and get noise

spectrum

Sections of isolated noise

(or at least no useful signal)

),(),(),(ftNftSftX 

frames noise ofnumber

),(
1

)(
0),(,



 


M

ftX
M

f
ftSt



711755/18797

Spectral subtraction methods

 We can now (perhaps)

estimate the clean sound
 We know the characteristics of

the noise (as described from the

spectrum (f))

 But, we will assume:

 The noise source is constant

 If the noise spectrum

changes (f) is not a valid

noise description anymore

 The noise is additive
Sections of isolated noise

(or at least no useful signal)

811755/18797

Spectral subtraction

 Magnitude subtraction

 Subtract the noise

magnitude spectrum from

the recording’s

 We can then modulate the

magnitude of the original

input to reconstruct

 Sounds pretty good …

)(),(),(ˆ

),(),(),(

fftXftS

ftNftSftX





Original input

After spectral subtraction

 ),()(),(),(ˆ ftXfftXftS  

9

10

Estimating the noise spectrum

 Noise is usually not stationary

 Although the rate of change with time may be slow

 A running estimate of noise is required

 Update noise estimates at every frame of the audio

 The exact location of “noise-only” segments is never

known

 For speech signals we use an important characteristic of speech to

discover speech segments (and, consequently noise-only

segments) in the audio

 The onset of speech is always indicated by a sudden increase in

the energy level in the signal

11755/18797

A running estimate of noise

 The initial T frames in any recording are assumed to be

free of the speech signal

 Typically T = 10

 The noise estimate N(T,f) is estimated as

N(T,f) = (1/T) St |X(t,f)|

 Subsequent estimates are obtained as follows

 Assumption: The magnitude spectrum increases suddenly in

value at the onset of speech










otherwise |),1(|

|),1(||),(| if |),(||),1(|)1(
|),(|

p

pp

p

ftN

ftNftXftXftN
ftN



1111755/18797

12

A running estimate of noise

• p is an exponent term that is typically set to either 2 or 1

o p = 2 : power spectrum; p = 1 : magnitude spectrum

 is a noise update factor

o Typically set in the range 0.1 – 0.5

o Accounts for time-varying noise

 is a thresholding term

o A typical value of  is 5.0

o If the signal energy jumps by a factor of , speech onset has

occurred

o Other more complex rules may be applied to detect speech offset










otherwise |),1(|

|),1(||),(| if |),(||),1(|)1(
|),(|

p

pp

p

ftN

ftNftXftXftN
ftN



11755/18797

Cancelling the Noise

 Simple Magnitude Subtraction

 |S(t,f)| = |X(t,f)| - |N(t,f)|

 Power subtraction

 |S(t,f)| 2 = |X(t,f)| 2 - |N(t,f)|2

 Filtering methods: S(t,f) = H(t,f)X(t,f)

 Weiner Filtering: build an optimal filter to remove the

estimated noise

 Maximum-likelihood estimation..

11755/18797 13

The Filter Functions

 We have a source plus noise spectrum

 The desired output is some function of the input

and the noise spectrum

 Let’s make it a “gain function”

 For spectral subtraction the gain function is:

 

),(),(),(ˆ

),(),,(),(

ftXftHftS

ftNftXfftH





),(),(),(ftNftSftX 

 ),(),,(),(ˆ ftNftXgftS 

),(

),(
1),(

ftX

ftN
ftH 

1411755/18797

Filters for denoising

 Magnitude subtraction:

 Power subtraction:

 Wiener filter:

 Maximum likelihood:

2

2

)(

)(
1)(

fX

fN
fH 
















2

2

)(

)(
11

2

1
)(

fX

fN
fH

)(

)(
1)(

fX

fN
fH 

2

2

)(

)(
1)(

fX

fN
fH 

1511755/18797

Filter function comparison

1611755/18797

Examples of various filter functions

Original

Magnitude

subtraction

Power

subtraction

Wiener

filter

Maximum

likelihood

1711755/18797

“Musical noise”

 What was that weirdness with

the Wiener filter???

 An artifact called musical noise

 The other approaches had it too

 Takes place when the signal to

noise ratio is small

 Ends up on the steep part of the

gain curve

 Small fluctuations are then

magnified

 Results in complex or negative

gain

 An awkward situation!

 The result is sinusoids popping

in and out

 Hence the tonal overload Noise reduced noise!

(lots of musical noise)

1811755/18797

Reducing musical noise

 Thresholding

 The gain curve is steeper on the negative side

 This removes effects in that area

 Scale the noise spectrum

N f  Nf

 (Linearly) increases gain in the new location

 Smoothing

e.g. H(t,f) = .5H(t,f) + .5H (t-1,f)

 Or some other time averaging

 Reduces sudden tone on/offs

 But adds a slight echo



 


otherwise 0

)()(if)(
)('

fNfXfH
fH

Wiener filter

With thresholding

With thresholding & smoothing

1911755/18797

20

Reducing musical noise

 Thresholding : Moves the operating point to a less sloped region
of the curve

 Oversubtraction: Increases the slope in these regions for better
differential gain

 Smoothing: H(t,f) = 0.5H(t,f) + 0.5H(t-1,f)

 Adds an echo

Wiener filter

With thresholding and oversub

With thresholding, oversub,

and smoothing

11755/18797

Non-stationary noises

 Same approach as stationary/slowly-varying

noise, with tuning

 Source separation approaches (latent-

variable decomposition, NMF)

 Switching Wiener filter

 Have multiple Wiener filters (one per noise type)

 Pre-trained for each noise type

 On-line selection of Wiener filter / interpolation of Wiener

filters

11755/18797 21

Audio restoration II:

Click/glitch/gap removal

 Two step process

 Detection of abnormality

 Replacement of corrupted data

 Detection:

 Autoregressive modeling for

abnormality detection

 Data replacement:

 Interpolation of missing data using

autoregressive interpolation

2211755/18797

Starting signal

 Can you spot the glitches?
2311755/18797

Autoregressive (AR) models

 Predicting the next sample of a series using a
weighted sum of the past samples

 The weights a can be estimated upon
presentation of a training input x

 Least squares solution of above equation

x(t)  a(i)x(t  i)  e
i1

N

 (t)

2411755/18797

Matrix formulation

 Scalar version

 Matrix version



x(t)  a(i)x(t  i)  e
i1

N

 (t)





















































MN

N

x

x

x

a

a

a

aa













2

1

1

0

0

01

0000

000

00

00

00

x

2511755/18797

Measuring prediction error

 As Convolution

e = x - a  x

 As matrix operation e = Ax

 Overall error variance: eTe



































































MN

N

N

N

N

x

x

x

aa

aa

aa

aa

aa



















2

1

1

1

1

1

1

10000

01000

00100

00010

00001

e

2611755/18797

Measuring prediction error

 The predictor:

e = x - a  x; e = Ax

 Solution for a must minimize error variance:

E = eTe
 While maintaining the Toeplitz structure of a!

 A variety of solution techniques are available

 Differentiate E w.r.t “a” and solve for “a” with

Toeplitz constraint

 Other algorithms

 The most popular one is the “Levinson Durbin” algorithm
27

Discovering abnormalities

 The AR models smooth and predictable

things, e.g. music, speech, etc

 Clicks, gaps, glitches, noise are not very

predictable (at least in the sense of a

meaningful signal)

 Methodology

 Learn an AR model on your signal type

 Measure prediction error on the noisy data

 Abnormalities appear as spikes in error

2811755/18797

Glitch detection example

 Glitches are clearly detected as spikes in
the prediction error

 Why? Glitches are unpredictable!

2911755/18797

Now what?

 Detecting the glitches is
only one step!

 How to we remove them?

 Information is lost!

 We need to make up data!

 This is an interpolation
problem

 Filling in missing data

 Hints provided from
neighboring samples

3011755/18797

Interpolation formulation

xk

xu

 Detection of spikes defines

areas of missing samples

 ± N samples from glitch point

 Group samples to known and

unknown sets according to

spike detection positions

 xk = K·x, xu = U·x

 x = (U·x + K·x)

 Transforms U and K maintain only

specific data (= unit matrices with

appropriate missing rows)

3111755/18797

Picking sets of samples



x  Ux Kx 

x1

x2

x3

x4





















0 0 0 0

0 1 0 0

0 0 1 0

0 0 0 0





















x1

x2

x3

x4





















1 0 0 0

0 0 0 0

0 0 0 0

0 0 0 1





















x1

x2

x3

x4





















x1

x2

x3

x4





















0

x2

x3

0





















x1

0

0

x4



















3211755/18797

Making up the data

 AR model error is

 e = A·x = A·(U·xu +
K·xk)

 We can solve for xu

 Ideally e is 0

 Hence zero error
estimate for missing
data is:

 A·U·xu = -A·K·xk

 xu = -(A·U)+ ·A·K·xk

 (A·U)+ is pseudo-
inverse

xk

xu

3311755/18797

Reconstruction zoom in

Next

glitch

Interpolation

result

Reconstruction area

Actual

data

Distorted

signal

Recovered

signal

3411755/18797

Restoration recap

 Constant noise removal

 Spectral subtraction/Wiener filters

 Musical noise and tricks to avoid it

 Click/glitch/gap detection

 Music/speech is very predictable

 AR models to detect abnormalities

 Missing sample interpolation

 AR model for creating missing data

3511755/18797

Topics

 Voice rate modification

 Psola: Pitch-Synchronous Overlap and Add

 Phase vocoder

 Pitch Modification

3611755/18797

Changing the rate of audio

 Rate Modification:

 Speed up: A given segment of audio must play

back in half the time without sounding odd

 Slow down: A given segment of audio must play

back in twice the time without sounding odd

 How?

 Two ways:

 Time domain – somehow slice and dice the signal

to get what you want

 Do it all cleverly with filter banks or equivalent

processing
3711755/18797

Speeding up a sinusoid
 A 500Hz sinusoid that is 1 second long

 Sampled at 16000 samples per second

 1/16000 seconds between adjacent samples

Time in seconds

3811755/18797

Speeding up a sinusoid
 A 500Hz sinusoid that is 1 second long

 Sampled at 16000 samples per second

 1/16000 seconds between adjacent samples

• ZOOMING IN
Time in seconds

3911755/18797

Speeding up a sinusoid
 Lets drop every second sample

 Now left with 8000 samples, with 1/16000 seconds between
adjacent samples

 Only half a second of signal

• ZOOMING IN
Time in seconds

4011755/18797

Speeding up a sinusoid
 Lets drop every second sample

 Now left with 8000 samples, with 1/16000 samples between
adjacent samples

 Only half a second of signal

• ZOOMING IN

• Twice as many cycles as before in the same amount of time: i.e double
the frequency, but only half as long in time

Time in seconds

41

Downsampling is a bad thing
 We now have half the number of samples in

the signal

 We also have half the number of samples per
cycle of the signal

 But the spacing (in time) between samples has not
changed

 The total length (in time) of one cycle of the
sinusoid has halved

 The frequency of the sinusoid had doubled

 This is a natural outcome of downsampling
4211755/18797

Downsampling a speech signal

 Tom Sullivan speaks his name (yet again)

 Downsampling by a factor of 2

4311755/18797

Doing it differently
 Instead of dropping alternate samples, lets drop alternate cycles

of the sinusoid

4411755/18797

Doing it differently
 Instead of dropping alternate samples, lets drop alternate cycles

of the sinusoid

4511755/18797

Doing it differently
 Instead of dropping alternate samples, lets drop alternate cycles

of the sinusoid

• This gives us the correct result

• Very important to match the phase properly though, otherwise
discontinuities will happen that sound awful

4611755/18797

How to do this for an audio signal

 PSOLA: The pitch-synchronous overlap

addition method

 Identify repeating periods of the audio signal

 Most speech signals occur in repeating patterns

 Vowels, voiced sounds

 They repeat at the “pitch” frequency

 Slice out periods of the signal to get the

desired number of periods

 To double the speed, we want half the periods

 Smooth transitions to eliminate discontinuities

4711755/18797

PSOLA
 Tom’s Spectrogram

4811755/18797

PSOLA
 Tom’s Spectrogram

• A segment of voiced signal (observe periodicity)

4911755/18797

PSOLA for shortening a signal
 The original signal

• For halving the length Identify alternate pitch periods

– Generally, for 1/X the length, identify every X-th period

5011755/18797

PSOLA for shortening a signal
 We could just patch them together directly, but that would

generate some noise at the points where they’re stuck

together

 Instead we “window” each period we want to retain

 Taper a longer segment that includes the desired period and the

previous periods to 0 at the boundaries by applying a tapering

window (e.g. a hamming window).

 The Windowed segments are brought closer to gether

 Since we’ve extended the segments for tapering, there will be up to

two samples at any time

 Overlapping samples from adjacent segments are added

 Hence the name: “Pitch Synchronous Overlap Add” (PSOLA)

5111755/18797

PSOLA in figures
 We wish to “delete” the red periods

5211755/18797

PSOLA in figures
 We wish to “delete” the red periods

• For each blue period, append the previous period (regardless of
whether it is red or blue) and taper the whole segment

5311755/18797

PSOLA in figures
 We wish to “delete” the red periods

• For each blue period, append the previous period (regardless of
whether it is red or blue) and taper the whole segment

5411755/18797

PSOLA in figures
 We wish to “delete” the red periods

• For each blue period, append the previous period (regardless of
whether it is red or blue) and taper the whole segment

IMPORTANT: EACH TAPERING WINDOW MUST PEAK CLOSE TO

THE INITIAL PEAK IN THE SELECTED PITCH PERIOD
5511755/18797

PSOLA in figures
 We wish to “delete” the red periods

• The Regions in Red must be removed from the final signal

5611755/18797

PSOLA in figures
• The Regions in Red must be removed from the final signal

• Shift each segment such that the red line at the beginning of the
segment lines us with the red line at the end of the previous
segment

– The k-th segment must be shifted before the (k+1)th segment

5711755/18797

PSOLA in figures
• The Regions in Red must be removed from the final signal

• Shift each segment such that the red line at the beginning of the
segment lines us with the red line at the end of the previous
segment

– The k-th segment must be shifted before the (k+1)th segment

• The length is shorter and the boundary points also match up well 5811755/18797

PSOLA in figures
• The Regions in Red must be removed from the final signal

• Shift each segment such that the red line at the beginning of the
segment lines us with the red line at the end of the previous
segment

– The k-th segment must be shifted before the (k+1)th segment

5911755/18797

PSOLA in figures

• We have a perfectly decent time-shortened but perceptually good
signal

• Now Simply Add up the adjusted segments sample by sample

+

6011755/18797

PSOLA in figures

• We have a perfectly decent time-shortened but perceptually good
signal

• Now Simply Add up the adjusted segments sample by sample

+

This pitch period

is a nearly perfect

copy of the pitch

periods in the orignal

signal

This pitch period

will become a nearly

perfect copy when

the NEXT pitch period

is shifted in and added

to it

6111755/18797

PSOLA : Stretching

 We have considered SHORTENING a signal, but what

about stretching?

 We use a very similar procedure for stretching:

 Instead of deleting intermediate periods, we move adjacent periods

(after windowing) away from each other to generate space for new

pitch periods between them.

 We then copy the closest pitch

 One then performs overlap and add as before.

6211755/18797

PSOLA Stretching
• Every Pitch Period must be replicated

6311755/18797

PSOLA Stretching
• Every Pitch Period must be replicated

• Window each pitch period (along with preceding pitch period)

6411755/18797

PSOLA Stretching
• Every Pitch Period must be replicated

• Window each pitch period (along with preceding pitch period)

6511755/18797

PSOLA Stretching
• Every Pitch Period must be replicated

• Window each pitch period (along with preceding pitch period)

6611755/18797

PSOLA Stretching
• Slide windowed pitch periods out (by integral pitch periods). This

creates holes where there is no pitch period

“Hole”

“Hole”

6711755/18797

PSOLA Stretching
• Replicate each segment shifted by its own pitch period

“Hole”

“Hole”

6811755/18797

PSOLA Stretching
• Replicate each segment shifted by its own pitch period

“Hole”

6911755/18797

PSOLA Stretching
• Replicate each segment shifted by its own pitch period

7011755/18797

PSOLA Stretching
• Sum all segments up

+

+

+

+

7111755/18797

PSOLA Stretching
• Sum all segments up

+

+

+

+

• The result is a longer (double length here) perceptually
reasonable signal

7211755/18797

PSOLA
 The most important component of PSOLA is proper identification of the

pitch periods

 Ideally these would identify the position of the first peak in the pitch period

 These form the basic reference points

 The segments of the signal that repeat

 Unfortunately this is a very hard problem in most audio signals

 Particularly polyphonic signals

 Several good algorithms exist for speech, solo voices and music with

single instruments

 PSOLA is good for these cases

 Advantage: PSOLA a very simple algorithm to implement

 < 100 lines of matlab code, once the pitch periods are identified

 If pitch estimation is good, the resulting signal is very good with few artifacts

7311755/18797

Finding the Pitch
 A simple algorithm for finding the pitch is based on

autocorrelations

 Based on a very simple principle: A signal adds up best

with a shifted version of itself when the shift is 0

 Or any integer of the period of the signal

 The autocorrelation of a signal is simply obtained by

multiplying the signal by a shifted version of itself (sample-

by-sample) and adding all the samples

 This has a maximum value at T=0 and T=pitch period

 
t

TtxtxTR)()()(

7411755/18797

Autocorrelations
 Consider the following segment:

Original segment:

The same segment

The product of the two

Original segment:

The segment, slightly shifted

The product of the two

The product is smaller in the second case, where the second signal is a
slightly shifted version of the first one. The sum of all values in the
product will be smaller also

Now lets shift the second segment a bit

7511755/18797

Autocorrelations
 Consider the following segment:

Original segment:

The same segment

The product of the two

Original segment:

The segment, more shifted

The product of the two

The product is smaller in the shifted case, than in the unshifted case. So
is the sum of all samples in the product

Lets shift the second segment more

7611755/18797

Autocorrelations
 Consider the following segment:

Original segment:

The same segment

The product of the two

Original segment:

The segment, by a pitch period

The product of the two

When the shift is exactly one pitch period the product becomes large
again! The sum of the samples in the product will also peak for this shift

Lets shift the second segment by an entire pitch period

7711755/18797

Autocorrelations
 The autocorrelation (sum of samples in the

product) as a function of shift

When the shift is exactly one pitch period the autocorrelation peaks

To estimate the pitch simply find the shift at which this peak occurs

Shift of the second segment with respect to the first (T)

The largest peak (after 0)

The pitch

7811755/18797

Finding Pitch Periods

 Start at the beginning of the recording and find the first

peak

 We assume this is the beginning of our first pitch segment

 Consider a 30-50ms segment of signal from the beginning

of the pitch segment.

 Window it to taper the edges with a tapering window [IMPORTANT]

 The segment has zero value outside the window

 Compute autocorrelation values at various shifts for the

(windowed) segment

 Find the position of the peak in the autocorrelation

 This gives us the position of the beginning of the next pitch

segment

 Repeat the above operation from this location

7911755/18797

Finding pitch periods
• The beginning of the signal

8011755/18797

Finding pitch periods
• The beginning of the signal

First peak:: First pitch tick

Beginning of first pitch period

8111755/18797

Finding pitch periods
• The beginning of the signal

Grab the next 32ms

of the signal

8211755/18797

Finding pitch periods
• The beginning of the signal

Grab the next 32ms

of the signal

Taper the signal

8311755/18797

Finding pitch periods
• The beginning of the signal

Grab the next 32ms

of the signal

Taper the signal

Compute the

autocorrelation and

find the location of the

peak

8411755/18797

Finding pitch periods
• The next pitch period

Grab the next 32ms

of the signal

Taper the signal

Compute the

autocorrelation and

find the time lag (shift)

of the peak

Advance the marker

by this lag to mark the

beginning of the next

pitch period

Second pitch tick

Beginning of second pitch period

8511755/18797

Finding pitch periods
• The next pitch period

Advance to the next

32 ms segment

beginning from the

current pitch marker

and repeat

8611755/18797

Pitch Marker Caveats
 Speech (in particular) comprises two kinds of sounds: voiced and unvoiced

 Voiced sounds exhibit repetitive patterns in the wave form, while unvoiced

segments do not

 Unvoiced segments can be identified by the simple rule: autocor[1] / autocor[0]

< threshold

 Typically 0.5

 Pitch estimates will be meaningless in unvoiced segments

 One usually simply identifies locations of zero crossings and uniformly spaced pitch

segments in unvoiced regions

 Unvoiced regions must be identified

 Pitch estimates will be poor in voiced, but consonantal regions

 E.g. “v”, “b”, “z”

 Better pitch tracking methods needed in these regions

 Usually done by “sub-band” based estimation and voting

 Pitch estimation is difficult for noisy signals

 Same reason as for voiced consonants
87

Voiced vs. Unvoiced Segments

 A typical unvoiced segment (r[1]/r[0] = 0.50)

• A typical unvoiced segment (r[1]/r[0] = 0.84)

– Observe voicing

8811755/18797

Psola Overall

 First find the location of the beginning of all

pitch period

 For stretching the signal, window every pair

of pitch periods, space them out, insert new

pitch periods (by replication) to get a signal of

the desired length

 For shortening, identify the pitch period to

retain, window them (along with the

preceding pitch period) and glue them

together by overlap-add

8911755/18797

Psola Examples

 Tom again

• Tom speaking slowly

• Tom in a hurry

9011755/18797

Psola Examples

 Over the rainbow

• Faster

• Slower

9111755/18797

Psola Examples

 A music segment

• Slower

• Faster

9211755/18797

Pitch Shifting

 Time Scaling is the procedure by which we make a

segment of audio longer or shorter

 Without modifying the pitch (the sound doesn’t sound squeaky or

bass)

 Pitch shifting is the inverse process: Scaling the pitch of

the signal without modifying the length

 Remember that simply dropping samples (or interpolating new

samples) increases (decreases) the pitch, but also modifies the

length of the recording

 We want the same length.

9311755/18797

Pitch Shifting With Psola

 We have seen how to speed up or slow down a signal

using Psola

 Psola’s most popular use, however, is for a different

problem: Pitch Shifting

 How to make Tom sound like Mary

 How to have the same utterance, occurring in the same amount of

time, with the same overall spectral characteristics, but with the

pitch for the individual shifted up (more feminine) or down (more

masculine)

 This is achieved very simply by sliding pitch periods with

respect to each other to reduce or increase the distance

between pitch markers

 A pitch marker is the initial sample of a pitch period

 Usually selected at a peak

9411755/18797

PSOLA for pitch shifting
• The incoming speech has a number of pitch periods

• These pitch periods occur once every K samples, where K is the pitch
period

– Corresponding to a pitch of f = (FS / K) where FS is the sampling
frequency

• To modify the pitch to a new frequency f’, we find the corresponding
pitch period K’ such that f’ = (FS / K’)

– K’ = FS / f’

• To get a signal with the modified pitch, we must get one pitch period
every K’ samples

• This is achieved by reducing the spacing between adjacent pitch
periods to (K’ / K) of their original value

– So that the pitch periods in the new signal now occur at a spacing of K’
samples

– We use the notation  = (K’ / K)

9511755/18797

PSOLA for pitch shifting
• The original signal overlaid with pitch markers

• Showing only the pitch markers

• The distance between adjacent pitch markers is noted

dP1 dP2 dP3

• To obtain a pitch scaling of  these inter-marker distances must
be scaled by 

9611755/18797

Finding new pitch markers
• The original pitch markers

• The next delta pitch is dP1 . The scaled value is dP1. The
next pitch mark will occur after dP1 samples.

• The delta pitch corresponding to the next pitch mark (in the
original signal) is also dP1. So the next scaled pitch mark also
occurs after dP1 samples.

dP1 dP2 dP3

dP1 dP1

9711755/18797

Finding new pitch markers
• The original pitch markers

• The next delta pitch is dP2 . The scaled value is dP2. The
next pitch mark will occur after dP2 samples.

• The delta pitch corresponding to the next pitch mark (in the
original signal) is dP3. So the next scaled pitch mark occurs
after dP3 samples.

dP1 dP2 dP3

dP1 dP1 dP2 dP3

9811755/18797

Finding new pitch markers
• The original pitch markers

• The result is a series of pitch markers, each of which has a
corresponding marker from the original signal

• A single marker in the original signal can correspond to multiple
“scaled” markers

– But a “scaled” marker can ONLY correspond to one of the markers
for the original signal 9911755/18797

Pitch Shifting

10011755/18797

Pitch Shifting

ADD ALL THE

OVERLAPPING SHIFTED

SEGMENTS TO GET

THE FINAL SIGNAL

10111755/18797

PSOLA pitch shifting Caveats

• Pitch shifting is preformed ONLY in voiced segments
– Pitch shifting is irrelevant in unvoiced segments and may even

cause distortion

– No pitch shifting is performed in segments identified as unvoiced

10211755/18797

PSOLA Examples

 Tom

• Tom Growling

• Tom Squeaking

10311755/18797

PSOLA Examples

 Over the rainbow

• Low pitch

• Hi pitch

10411755/18797

PSOLA for pitch shifting

• The outcome of the overlap add is a pitch shifted signal

• The procedure can be used both for increasing and
decreasing pitch

• It works best for signal where a unique pitch can be
identified
– Speech, singing voices

– Not useful for polyphonic signals

• Not very effective for scaling factors outside the range 0.5-
2.0.

10511755/18797

PHASE VOCODER

• A different method for time scaling is the phase vocoder

• This procedure does not depend on explicit detection of
pitch periods

• Rather, it achieves time scaling by clever scaling of the
envelopes of each of the sinusoids in a Fourier
decomposition of the signal

10611755/18797

Time Scaling With Tuning Forks
 A set of tuned tuning forks will produce independent

sinusoids when excited by sound

• If you summed the outputs of the tuning forks again, you’d get
back the sound

+

10711755/18797

Time scaling with tuning forks
 If we scaled the output of each tuning fork independently and

added the signals back, we’d get a time-scaled signal

 The output of each tuning fork is an amplitude modulated
sinusoid

• This can be separated into an envelope and a uniform sinusoid

Multiplying these two gives us the original tuning fork output 10811755/18797

Time scaling with tuning forks
 Time scaling can be achieved by time scaling only

the envelope and factoring it back into the sinusoid

Time Scale (can be done by simple downsampling)

x Multiply

Time scaled sinusoid

10911755/18797

Time scaling with tuning forks
 Time scaling can be achieved by time scaling only

the envelope and factoring it back into the sinusoid

• By shrinking the envelope and applying it to the
sinusoid we get the same perceptual time pattern at
twice the rate without changing the basic frequency

11011755/18797

Time scaling with tuning forks

 Time scale every tuning fork output

• Add them back in: Voila, a properly time-scaled signal

• THIS IS THE PRINCIPLE WE WILL USE

+

111

Phase Vocoder
 Originally proposed by James Flanagan in

1966

 For compressing speech signals!

 Mimics the tuning fork idea with filters

 Pass the input audio signal through a large
bank of filters

 Filters must be such that adding their outputs must
return the original signal

 Time scale the output of each filter

 Add back to reconstruct time scaled signal

11211755/18797

Phase Vocoder
 Basic filter bank: the output of each filter is a narrow

band of frequencies

• The frequency responses of the filters must add to 1

Filter 1

Filter 2

Filter 3

11311755/18797

Phase Vocoder
 Basic filter bank: the output of each filter is a narrow

band of frequencies

• The frequency responses of the filters must add to 1

Filter 1

Filter 2

Filter 3

11411755/18797

Phase Vocoder
 Basic filter bank: the output of each filter is a narrow

band of frequencies

• The frequency responses of the filters must add to 1

Filter 1

Filter 2

Filter 3

11511755/18797

Phase Vocoder
 Basic filter bank: the output of each filter is a narrow

band of frequencies

• The frequency responses of the filters must add to 1

Filter 1

Filter 2

Filter 3

11611755/18797

Phase Vocoder
 Basic filter bank: the output of each filter is a narrow

band of frequencies

• The frequency responses of the filters must add to 1

Filter 1

Filter 2

Filter 3

11711755/18797

Phase Vocoder
 Basic filter bank: the output of each filter is a narrow

band of frequencies

• The frequency responses of the filters must add to 1

Filter 1

Filter 2

Filter 3

• The total number of filters must be large: No filter must

cover more than one harmonic peak in the signal 11811755/18797

Phase Vocoder
 Filter-bank constraints:

 Filter center frequencies must be uniformly spaced.

 The frequency response of the filters (in the frequency domain)

must sum to 1.0

 If the signal is sonorant (music, vowels), it contains one or more

pitch frequencies and their harmonics

 No filter must allow more than one of these harmonics through

 i.e. there must be at least as many filters at there are harmonics in the

spectrum

 If your sampling frequency is FS and the lowest pitch frequency you

expect is P, there must be more than FS/P filters

11911755/18797

Phase Vocoder
 A Schematic: the output of each filter is time-scaled and added back

• The output is a time-scaled signal

Filter 1

Filter 2

Filter 3

+

12011755/18797

Phase Vocoder: Each Filter
 The output of a single filter is essentially an amplitude

modulated sinusoid

 This is the reason we want our filters to be narrow: otherwise the

output will not be even approximately sinusoidal

 The amplitude and the sinusoid can be separated by

heterodyning

 The same principle used in your AM receiver

 Multiply the output of the filter by a sinewave of the center

frequency of the filter

 This generates a mixture of two signals, one that represents the

envelope of the sinewave, and the other that represents the amplitude

 Extract the amplitude by applying a low pass filter

12111755/18797

Phase Vocoder
 Basic equation:

2/)sin(2/)sin()cos()sin(bababa 

• By the above equation, this is

the same as the sum of two

sinusoids distributed around the

center frequency of the filter

The spectrum of the above signal 12211755/18797

The Heterodyne Principle
 By multiplying the output of the filter by a sinusoid at the center

frequency of the filter, the envelope can be separated into an
additive low frequency component:

2/)sin(2/)2sin()cos()sin(bbaaba 

• The low-frequency sinusoid can be filtered out by a low pass filter

• The product of the amplitude

modulated sine (sin(a+b)) with

a sine wave at the base

frequency (cos(a)) is a high-

frequency sine wave whose

bias is a low-frequency

sinusoid

Low-freq.

component

(sin(b))

High-freq.

component

(sin(2a+b))

12311755/18797

The Heterodyne Principle
 The envelope of the output of any filter is a low-

frequency signal (< 50Hz). The low frequency
envelope can be extracted by similar heterodyning
(multiply by center frequency sine, low pass filter)

• The spectrum of the above

signal, which is the output

of a filter with a centre

frequency of 500Hz (the

high-freq component has a

frequency of 500 Hz)

500 hz center freq

Variations around center

freq. from the envelope

12411755/18797

Heterodyning Caveat
 Mutiplying by a cos(a) wont always work

 Original:

sin(a)cos(b) = 0.5sin(a+b) + 0.5sin(a-b)

 Heterodyning: multiply by cos(a):

sin(a+b)*cos(a) = 0.5sin(2a-b) + 0.5sin(b)

sin(a-b)*cos(a) = 0.5sin(2a+b) + 0.5sin(-b)

 Simply multiplying the original signal (sin(a)cos(b)) by cos(a) may

result in no low frequency components

sin(a)cos(b) * cos(a)

= sin(a+b)*cos(a) + sin(a1b)*cos(a)

= 0.5sin(2a-b) + 0.5sin(b) + 0.5sin(2a+b) + 0.5sin(-b)

= 0.5sin(2a-b) + 0.5sin(2a+b) (both are high frequency terms)

 Because sin(-b) = -sin(b)

 The result has no low frequency components at all

12511755/18797

Heterodyning Caveat
 In the previous example, if we had multiplied the filter out

by a sine (sin(a)) instead of a cosine (cos(a)), the output

would have the correct low-frequency components

 Work it out yourself to confirm this

 To account for this the heterodyne receiver multiplies the

signal both by a sine and a cosine wave

 The outputs of both multiplications are filtered

 For the envelope combine the two low-pass filtered

signals sample by sample as follows
 Y = sqrt (X^2 + Y^2) [the hypotenuse]

12611755/18797

Heterodyne Receiver

 The full Heterodyne receiver at the output

of each filter in the phase vocoder

Low Pass

Filter

Low Pass

Filter

Sin(2*pi*f*t)

Cos(2*pi*f*t)

multiply hypotenuse

Envelope

12711755/18797

Heterodyning
The original signal (output of one filter)

Multiplied by cosine

Multiplied by sine

Both the output of the sine and the cosine are low pass filtered 12811755/18797

Heterodyning
Cosine output

Low pass filtered

sine output

Low pass filtered

The hypotenuse the output of sine and cosine paths (the actual envelope)

12911755/18797

Phase Vocoder: Time Scaling

 Time-scale the envelope of each sinusoid by

decimation (dropping samples) or interpolation

 Multiply the time scaled envelope back into a

sinusoid at the center frequency of the filter

 Do this for every filter output and add filter

outputs back

13011755/18797

Phase Vocoder: Time Scaling
Filter 1

Filter 2

Filter 3

Heterodyne

Time Scale

Multiply into sinusoid

Add
Time scaled signal

13111755/18797

How does one implement it

 Sometimes implementation lags behind

intention 13211755/18797

Phase Vocoder: Implementation
 But actual implementation with time-domain filters,

while practicable, is not cost effective

 Can be performed much more efficiently in the

frequency domain::

 The low pass filtered envelope of the output of any

filter typically has a bandwidth less than 50 Hz

 It is sufficient to sample it at 100 samples per second

 16000 samples per second are not necessary

The highest frequency is less than

100 Hz

13311755/18797

What is an STFT

 The real and imaginary parts of an STFT are

snapshots of envelops of the output of the filters

in a filterbank

 The real and imaginary parts of the STFT represent the

cosine and sine outputs of a heterodyne at the output of

each filter

 An STFT that computes N spectral vectors per

second of the signal takes these snapshots N

times a second

 If N > 2*(the largest frequency in the envelope), this is

sufficient to reconstruct the entire envelope, and

thereby the entire signal
13411755/18797

What is an STFT

 The STFT captures snapshots of the outputs of the filterbank-
heterodyne combination

Filter 1

Filter 2

Filter 3

Heterodyne

Heterodyne

Heterodyne

13511755/18797

Phase Vocoder: Implementation
 A short-time Fourier transform of a signal effectively

samples the output of NFFT/2 filters, once per spectral

vector computed

 An STFT that computes 100 spectral vectors per second

effectively samples the envelope of the output of the filters

at 100 Hz

 Each spectral value is one sample of the output of one filter

 Inversion of the STFT effectively multiplies these envelope values

by sinusoids at the center frequencies of the filters and add them all

back in

 Time-scale modification can be obtained by resampling

the sequence of spectral vectors in the STFT of the signal

13611755/18797

Recall: Computing a Spectrogram

Compute Fourier Spectra of segments of speech and stack them side-by-side

13711755/18797

Recall: Computing a Spectrogram

Compute Fourier Spectra of segments of speech and stack them side-by-side

frequency

frequency

frequency

frequency

frequency

frequency

frequency

13811755/18797

Recall: Computing a Spectrogram

Compute Fourier Spectra of segments of speech and stack them side-by-side

frequency

frequency

frequency

frequency

frequency

frequency

frequency

frequency

frequency

frequency

frequency

frequency

frequency

frequency

13911755/18797

Recall: Computing a Spectrogram

Compute Fourier Spectra of segments of speech and stack them side-by-side

frequency

frequency

frequency

frequency

frequency

frequency

frequency

frequency

frequency

frequency

frequency

frequency

frequency

frequency

frequency

frequency

frequency

frequency

frequency

frequency

frequency

14011755/18797

Recall: Computing a Spectrogram

Compute Fourier Spectra of segments of speech and stack them side-by-side

frequency

frequency

frequency

frequency

frequency

frequency

frequency

frequency

frequency

frequency

frequency

frequency

frequency

frequency

frequency

frequency

frequency

frequency

frequency

frequency

frequency

14111755/18797

Recall: Computing a Spectrogram

Compute Fourier Spectra of segments of speech and stack them side-by-side

frequency

frequency

frequency

frequency

frequency

frequency

frequency

frequency

frequency

frequency

frequency

frequency

frequency

frequency

frequency

frequency

frequency

frequency

frequency

frequency

frequency

14211755/18797

Recall: Computing a Spectrogram

Compute Fourier Spectra of segments of speech and stack them side-by-side

frequency

frequency

frequency

frequency

frequency

frequency

frequency

frequency

frequency

frequency

frequency

frequency

frequency

frequency

frequency

frequency

frequency

frequency

frequency

frequency

frequency

14311755/18797

Recall: Computing a Spectrogram

Compute Fourier Spectra of segments of speech and stack them side-by-side

frequency

frequency

frequency

frequency

frequency

frequency

frequency

frequency

frequency

frequency

frequency

frequency

frequency

frequency

frequency

frequency

frequency

frequency

frequency

frequency

frequency

14411755/18797

Recall: Computing a Spectrogram

Compute Fourier Spectra of segments of speech and stack them side-by-side

frequency

frequency

frequency

frequency

frequency

frequency

frequency

frequency

frequency

frequency

frequency

frequency

frequency

frequency

frequency

frequency

frequency

frequency

frequency

frequency

frequency

14511755/18797

Zooming in

 The two parameters of an STFT are the length of the

analysis window and the hop between adjacent

analysis windows

frequency

frequency

frequency

frequency

frequency

frequency

frequency

frequency

frequency

frequency

frequency

frequency

frequency

frequency

Analysis window size

Hop size

14611755/18797

Phase Vocoder: Implementation
 Reconstruction of signal from time-scaled STFT:

 Inversion of an STFT works best when the hop between adjacent
frames (analysis windows) is no more than 25%

 For time-scaling, the time-scaled STFT must have at least 100
frames per second (to ensure that the envelope is not under
sampled)

 Therefore, we select analysis window size and hopsize such that
the hop size is 25% or less, and we get more than 100frames per
second

 A good selection is an analysis window of 32ms, with a hop size of
8ms

 Time-scaling has two stages:
 Analysis: Compute an STFT from the signal with a hop size other

than 25% (8ms)

 Synthesis: Recompute the signal from the STFT assuming a hop
size of 25%

 The difference between the two rates will result in rate change
14711755/18797

Phase vocoder, doubling the speed

 To double the speech rate, during analysis we
compute STFTs with a hop size of 50%

 During synthesis, use the SAME STFTs, but assume
a hopsize of 25%

frequency

frequency

frequency

frequency

frequency

frequency

frequency

frequency

frequency

frequency

frequency

frequency

frequency

frequency

ANALYSIS

Hop size = 50%

14811755/18797

frequency

frequency

frequency

frequency

frequency

frequency

frequency

frequency

frequency

frequency

frequency

frequency

frequency

frequency

SYNTHESIS

Hop size = 25%

 To double the speech rate, during analysis we
compute STFTs with a hop size of 50%

 During synthesis, use the SAME STFTs, but assume
a hopsize of 25%

Phase vocoder, doubling the speed

14911755/18797

Doubling the speed

 STFT analysis with an analysis window of 40ms(say)

with 50% hop computes 50 frames per second

 20 seconds of speech would generate 1000 frames

 STFT synthesis using all the spectral vectors, but with a

25% hop between frames inverts 100 frames per second

 1000 frames would be played back in 10 seconds

 The playback speed will be double that of the original signal

15011755/18797

 To double the speech rate, during analysis we
compute STFTs with a hop size of 12.5%

 During synthesis, use the SAME STFTs, but assume
a hopsize of 25%

frequency

frequency

frequency

frequency

frequency

frequency

frequency

frequency

frequency

frequency

frequency

frequency

frequency

frequency

ANALYSIS

Hop size = 12.5%

Phase vocoder, halving the speed

15111755/18797

Phase vocoder, halving the speed

frequency

frequency

frequency

frequency

frequency

frequency

frequency

frequency

frequency

frequency

frequency

frequency

frequency

frequency

SYNTHESIS

Hop size = 25%

 To double the speech rate, during analysis we
compute STFTs with a hop size of 12.5%

 During synthesis, use the SAME STFTs, but assume
a hopsize of 25%

15211755/18797

Halving the speed

 STFT analysis with an analysis window of 40ms(say)

with 12.5% hop computes 200 frames per second

 20 seconds of speech would generate 4000 frames

 STFT synthesis using all the spectral vectors, but with a

25% hop between frames inverts 100 frames per second

 4000 frames would be played back in 40 seconds

 The playback speed will be half that of the original signal

15311755/18797

What about the phase?

 Simply shifting the reconstructed signal for each

analysis window to the appropriate hop size can

cause some strange perceptual artifacts.

 This is because the Fourier spectrum is complex

 The phase of the Fourier spectra of frames that are X

samples apart will differ by an amount that is different from

the phase of Fourier spectra of frames that are Y samples

apart

 We must account for this difference

 If not, we might as well just window the signal, shift the

frames to the correct overlap, and add without the FFT and

inverse FFT inbetween

15411755/18797

The phase problem in pictures
 The inverse fourier transform multiplies Fourier coefficients into

sinusoids and adds them up

 When the synthesis hop size is identical to the analysis hop
size, sinusoids in ajacent frames will line up perfectly for
addition

• At the analysis hop size, the sinusoid in the second frame lines
up perfectly with the sinusoid in the earlier frame

• If the second frame is shifted back (or forward) with respect to
the first, for synthesis, the sinusoids no longer line up 15511755/18797

The solution
 Modify the phase (the starting point) of the sinusoid

of the second frame to line up properly with the first

• First compute how much the phase has advanced between the
two frames (in radians)

• Compute how much is would have advanced at the desired new
starting point of the frame

• Change the initial phase of the second frame to this new value

• The sinusoids will now line up 15611755/18797

In Symbolic Terms..

 Do not reconstruct the signal directly from the FFT.

 Compute the magnitude and phase of every frame.

 Let these be Mag(t) and Phase(t) for the t-th frame

 Compute the Phase difference (at any frequency)

between the phase of the current frame and the phase of

the previous frame

 DeltaPhase(t) = Phase(t) – Phase(t-1)

 If the original hop size was X samples, and it was adjusted

to Y samples, scale DeltaPhase by Y/X

 DeltaPhaseNew(t) = Y * DeltaPhase(t) / X

 This adjusts the phase difference between adjacent frames to what

it must be for the modified hop size

15711755/18797

In symbolic terms

 Reconstruct the phase for the t-th frame by

adding the modified delta phase to the

modified phase of the previous frame

 PhaseNew(t) = PhaseNew(t-1) + DeltaPhaseNew(t)

 Reconstruct the entire Fourier spectrum from

the magnitude and the new phase

 FFTNew = Mag * exp(sqrt(-1) * PhaseNew)

 Invert and reconstruct the signal

15811755/18797

Phase vocoder time scaling:
1. Determine a good analysis window size

1. 32-64ms is good

2. If analysis windows are of size Z, the ideal hopsize for reconstruction
is X = Z/4

3. To get a desired time scaling, select an integer Y such that (X/Y) is the
desired scaling factor

4. During analysis, compute STFTs spectra for windows with a hopsize Y

5. Compute the magnitude and phase of the spectra for each frame

6. Compute the delta phase for each frame with respect to the previous
frame

7. Adjust delta phase by scaling factor (X/Y)

8. Recompute phase by adding new delta phase to the (modified) phase
of the previous window

9. Combine phase and magnitude to get new STFT coeffecients

10. Reconstruct a signal from the modified STFT with a hop size of X

15911755/18797

Phase vocoder time scaling:
 Alternate mechanism (more correct):

 Resample the magnitude spectrum:

 Consider each frequency band as the output of a filter

 Resample the sequence to get the desired number of

frames

 Matlab’s resample routine

 Predict phase at the appropriate positions using the

mechanism described earlier

 Reconstruct stft

 Reconstruct signal

16011755/18797

Time Scaling: Some examples

 A speech signal

• At half the rate

• At double rate

16111755/18797

Psola Examples

 Over the rainbow

• Faster

• Slower

16211755/18797

Psola Examples

 A music segment

• Slower

• Faster

16311755/18797

Phase Vocoder Time Scaling

 Basic procedure much simpler to implement

than PSOLA when done

 Sophisticated versions that attempt to simulate

actual filterbanks and heterodynes are much more

complex

 Effective for any kind of sound

 Including speech, monophonic music, polyphonic

music

16411755/18797

Pitch Shifting

 Time Scaling is the procedure by which we make a

segment of audio longer or shorter

 Without modifying the pitch (the sound doesn’t sound squeaky or

bass)

 Pitch shifting is the inverse process: Scaling the pitch of

the signal without modifying the length

 Remember that simply dropping samples (or interpolating new

samples) increases (decreases) the pitch, but also modifies the

length of the recording

 We want the same length.

16511755/18797

Pitch Shifting

 Simple interpolation or decimation of the signal effects

pitch shift, but changes the length of the signal

 Resampling by factor X changes pitch by 1/X

 Changes length by X

 Solution: To get a pitch scaling of factor X, first change

the length of the signal by 1/X using a Phase vocoder

 Then resample

 The length change due to resampling and the length change from

the phase vocoder cancel out



16611755/18797

Pitch Shifting
 Simple decimation (dropping of samples) increases the pitch, but reduces the length

• A phase vocoder initially increases the length by the right amount

• Subsequent decimation gives a signal of the right pitch and length

16711755/18797

PSOLA Examples

 Tom

• Tom Growling

• Tom Squeaking

16811755/18797

PSOLA Examples

 Over the rainbow

• Low pitch

• Hi pitch

16911755/18797

Phase Vocoder Pitch Shift

 Simple pitch shifting with phase vocoder not

as effective as Psola

 All details of the pitch get frequency shifted

 We only want the basic pitch to change, not the

details within the pitch

 More sophisticated techniques based on the

phase vocoder modify the spectrum explicitly

 Better than Psola

 Can be applied to music

17011755/18797

Some more examples

 What are we doing here?

 Common sounds you hear everyday

 Now you know how..

17111755/18797

