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An automotive example

D t i t ti ll b l li t i t i Determine automatically, by only listening to a running 
automobile, if it is:
 Idling; or
 Travelling at constant velocity; or
 Accelerating; or
 Decelerating Decelerating

 Assume (for illustration) that we only record energy level 
(SPL) in the sound

S The SPL is measured once per second
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What we know
 An automobile that is at rest can accelerate, 

or continue to stay at restor continue to stay at rest
 An accelerating automobile can hit a steady-

state velocity continue to accelerate orstate velocity, continue to accelerate, or 
decelerate
A d l ti t bil ti t A decelerating automobile can continue to 
decelerate, come to rest, cruise, or 

laccelerate
 A automobile at a steady-state velocity can 

stay in steady state, accelerate or decelerate
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What else we know
P(x|idle) P(x|decel)P(x|cruise)P(x|accel)

 The probability distribution of the SPL of the
45 706560

 The probability distribution of the SPL of the 
sound is different in the various conditions
 As shown in figure As shown in figure

 In reality, depends on the car

 The distributions for the different conditions The distributions for the different conditions 
overlap
 Simply knowing the current sound level is not Simply knowing the current sound level is not 

enough to know the state of the car 
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The Model! P(x|accel)
0.33

( | )
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Accelerating state

P(x|idle)

Idling state
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Cruising state
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0.330.330.25
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Idling state
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Cruising state

0.25
0.25

0.25
I A C D

60
Decelerating state

0.33 I 0.5 0.5 0 0
A 0 1/3 1/3 1/3
C 0 1/3 1/3 1/3

 The state-space model

60 C 0 1/3 1/3 1/3
D 0.25 0.25 0.25 0.25

 Assuming all transitions from a state are equally probable
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Estimating the state at T = 0-
0.25 0.25 0.25 0.25

Idling Accelerating Cruising Decelerating

 A T=0, before the first observation, we know 
nothing of the stateg
 Assume all states are equally likely 
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The first observation
P(x|idle) P(x|decel)P(x|cruise)P(x|accel)

 At T=0 we observe the sound level x = 67dB SPL
45 706560

 At T=0 we observe the sound level x0 = 67dB SPL
 The observation modifies our belief in the state of the system

P( |idl ) 0 P(x0|idle) = 0

 P(x0|deceleration) = 0.0001

 P(x |acceleration) = 0 7 P(x0|acceleration) = 0.7

 P(x0|cruising) = 0.5
 Note, these don’t have to sum to 1
 In fact, since these are densities, any of them can be > 1
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Estimating state after at observing x0

 P(state | x0) = C P(state)P(x0|state)

( | ) P(idle | x0) = 0

 P(deceleration | x0) = C 0.000025

P( i i | ) C 0 125 P(cruising | x0) = C 0.125

 P(acceleration | x0) = C 0.175

N li i Normalizing
 P(idle | x0) = 0

P(d l i | ) 0 000083 P(deceleration | x0) = 0.000083

 P(cruising | x0) = 0.42

P( l ti | ) 0 57 P(acceleration | x0) = 0.57
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Estimating the state at T = 0+
0.57

0.42

0.0 8.3 x 10-5

Idling Accelerating Cruising Decelerating

0.0

 At T=0, after the first observation, we must 
update our belief about the statesp
 The first observation provided some evidence 

about the state of the system
 It modifies our belief in the state of the system
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Predicting the state of the system at T=1
I A C D

I 0.5 0.5 0 0
I

A

C

0.57

0.42

A 0 1/3 1/3 1/3
C 0 1/3 1/3 1/3
D 0.25 0.25 0.25 0.25

I C

DIdling Accelerating Cruising Decelerating

0.0 8.3 x 10-5

 Predicting the probability of idling at T=1
( ) P(idling|idling) = 0.5; 

 P(idling | deceleration) = 0.25

 P(idling at T=1| x0) = P(idling at T 1| x0)  
P(IT=0|x0) P(I|I) + P(DT=0|x0) P(I|D) = 2.1 x 10-5

 In general, for any state S
 P(ST=1 | x0)  = ST=0

P(ST=0 | x0) P(ST=1|ST=0)
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Predicting the state at T = 1
0 570.57

0.42

0.0 8.3 x 10-5

Idling Accelerating Cruising Decelerating

0 33 0 33 0 33
P(ST=1 | x0)  = ST=0

P(ST=0 | x0) P(ST=1|ST=0)

2 1x10

0.33 0.33 0.33
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Updating after the observation at T=1
P(x|idle) P(x|decel)P(x|cruise)P(x|accel)

45 706560

 At T=1 we observe  x1 = 63dB SPL
P(x |idle) = 0 P(x1|idle) = 0

 P(x1|deceleration) = 0.2

( | ) P(x1|acceleration) = 0.001

 P(x1|cruising) = 0.5

16 Nov 2010 11-755/18797 12



Update after observing x1

 P(state | x0:1) = C P(state| x0)P(x1|state)

( | ) P(idle | x0:1) = 0

 P(deceleration | x0,1) = C 0.066

P( i i | ) C 0 165 P(cruising | x0:1) = C 0.165

 P(acceleration | x0:1) = C 0.00033

N li i Normalizing
 P(idle | x0:1) = 0

P(d l i | ) 0 285 P(deceleration | x0:1) = 0.285

 P(cruising | x0:1) = 0.713

P( l ti | ) 0 0014 P(acceleration | x0:1) = 0. 0014
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Estimating the state at T = 1+
0.713

0.0 0 0014
0.285

Idling Accelerating Cruising Decelerating

0.0 0.0014

 The updated probability at T=1 incorporates 
information from both x0 and x1

It i NOT l l d i i b d l It is NOT a local decision based on x1 alone
 Because of the Markov nature of the process, the 

state at T=0 affects the state at T=1state at T 0 affects the state at T 1
 x0 provides evidence for the state at T=1
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Estimating a Unique state

 What we have estimated is a distribution over 
th t tthe states

 If we had to guess a state, we would pick the 
t lik l t t f th di t ib timost likely state from the distributions

0.57

0.42

 State(T=0) = Accelerating

0 713

Idling Accelerating Cruising Decelerating

0.0 8.3 x 10-5

 State(T=1) = Cruising
0.0

0.713

0.0014

0.285
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Overall procedure
T=T+1

P(ST | x0:T-1)  = ST 1
P(ST-1 | x0:T-1) P(ST|ST-1) P(ST | x0:T)  = C. P(ST | x0:T-1) P(xT|ST)

Predict the 
distribution of the 

state at T

Update the 
distribution of the 

state at T

T 0:T 1 ST-1 T 1 0:T 1 T T 1 ( T 0:T) ( T 0:T 1) ( T T)

 At T=0 the predicted state distribution is the initial state

state at T after observing xT
PREDICT UPDATE

 At T 0 the predicted state distribution is the initial state 
probability

 At each time T, the current estimate of the distribution over 
t t id ll b tistates considers all observations x0 ... xT

 A natural outcome of the Markov nature of the model
 The prediction+update is identical to the forward computationThe prediction update is identical to the forward computation 

for HMMs to within a normalizing constant
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Comparison to Forward Algorithm
T=T+1

P(ST | x0:T-1)  = ST 1
P(ST-1 | x0:T-1) P(ST|ST-1) P(ST | x0:T)  = C. P(ST | x0:T-1) P(xT|ST)

Predict the 
distribution of the 

state at T

Update the 
distribution of the 

state at T

T 0:T 1 ST-1 T 1 0:T 1 T T 1 ( T 0:T) ( T 0:T 1) ( T T)

Forward Algorithm:

state at T after observing xT
PREDICT UPDATE

 Forward Algorithm:
 P(x0:T,ST)  = P(xT|ST) ST-1

P(x0:T-1, ST-1) P(ST|ST-1)

PREDICT

 Normalized:

PREDICT
UPDATE

 P(ST|x0:T)  = [S’T
P(x0:T,S’T)]-1 P(x0:T,ST) = C P(x0:T,ST)
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Decomposing the forward algorithm
 P(x0:T,ST)  = P(xT|ST) ST-1

P(x0:T-1, ST-1) P(ST|ST-1)

 Predict:
( ) ( ) ( | ) P(x0:T-1,ST)  = ST-1

P(x0:T-1, ST-1) P(ST|ST-1)

 Update:
 P(x0:T,ST)  = P(xT|ST) P(x0:T-1,ST)
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Estimating the state
T=T+1

P(ST | x0:T-1)  = ST 1
P(ST-1 | x0:T-1) P(ST|ST-1) P(ST | x0:T)  = C. P(ST | x0:T-1) P(xT|ST)

Predict the 
distribution of the 

state at T

Update the 
distribution of the 

state at T

T 0:T 1 ST-1 T 1 0:T 1 T T 1 ( T 0:T) ( T 0:T 1) ( T T)

state at T after observing xT

 The state is estimated from the updated 

Estimate(ST)Estimate(ST) = argmax ST
P(ST | x0:T)

distribution
 The updated distribution is propagated into time, not 

the state
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Predicting the next observation
T=T+1

P(ST | x0:T-1)  = ST 1
P(ST-1 | x0:T-1) P(ST|ST-1) P(ST | x0:T)  = C. P(ST | x0:T-1) P(xT|ST)

Predict the 
distribution of the 

state at T

Update the 
distribution of the 

state at T

T 0:T 1 ST-1 T 1 0:T 1 T T 1 ( T 0:T) ( T 0:T 1) ( T T)

state at T after observing xT

 The probability distribution for the observations at the 

Predict P(xT|x0:T-1) Predict xT

next time is a mixture:
 P(xT|x0:T-1) = ST

P(xT|ST) P(ST|x0:T-1)

Th t l b ti b di t d f The actual observation can be predicted from 
P(xT|x0:T-1) 2011-755/18797



Predicting the next observation

 MAP estimate:
( | ) argmaxxT

P(xT|x0:T-1)

 MMSE estimate:
 Expectation(xT|x0:T-1)
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Difference from Viterbi decoding

 Estimating only the current state at any time
 Not the state sequence
 Although we are considering all past observations

 The most likely state at T and T+1 may be 
such that there is no valid transition betweensuch that there is no valid transition between 
ST and ST+1
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A known state model
 HMM assumes a very coarsely quantized state 

spacespace
 Idling / accelerating / cruising / decelerating

 Actual state can be finer
 Idling, accelerating at various rates, decelerating at 

various rates cruising at various speedsvarious rates, cruising at various speeds

 Solution:  Many more states (one for each 
l ti /d l ti t i d)?acceleration /deceleration rate, crusing speed)?

 Solution: A continuous valued state Solution: A continuous valued state
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The real-valued state model
 A state equation describing the dynamics of the system

),( 1 ttt sfs 

 st is the state of the system at time t
 t is a driving function, which is assumed to be random

 The state of the system at any time depends only on the The state of the system at any time depends only on the 
state at the previous time instant and the driving term at the 
current time

 An observation equation relating state to observation

),( ttt sgo 
 ot is the observation at time t
 t is the noise affecting the observation (also random)

 The observation at any time depends only on the current

),( ttt g 

 The observation at any time depends only on the current 
state of the system and the noise
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Continuous state system

),( 1 ttt sfs 

),( ttt sgo 

 The state is a continuous valued parameter that is not 
di tldirectly seen
 The state is the position of navlab or the star

 The observations are dependent on the state and are the 
only way of knowing about the state
 Sensor readings (for navlab) or recorded image (for the 

telescope)



Statistical Prediction and Estimation
 Given an a priori probability distribution for 

the statethe state
 P0(s):  Our belief in the state of the system before 

we observe any datawe observe any data
 Probability of state of navlab
 Probability of state of stars

 Given a sequence of observations o0..ot

 Estimate state at time t Estimate state at time t
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Prediction and update at t = 0

 Prediction
f Initial probability distribution for state

 P(s0) = P0(s0)
 Update:
 Then we observe o0

 We must update our belief in the state
)|()()|()()|( 000000

00
soPsPsoPsPosP 

 P(s0|o0) = C.P0(s0)P(o0|s0)

)()(
)|(

00
00 oPoP

( 0| 0) 0( 0) ( 0| 0)
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The observation probability: P(o|s)

 ),( ttt sgo 

 This is a (possibly many-to-one) stochastic function 
of state st and noise tof state st and noise t

 Noise t is random. Assume it is the same 
dimensionality as ot

 Let P(t) be the probability distribution of t

 Let {:g(st, )=ot} be the set of  that result in ot Let  {:g(st, ) ot} be the set of  that result in ot

tt J
P

soP
|)(|

)(
)|(  
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 tt tosg tsg

tt oJ),(: ),( |)(|
)|(

 



The observation probability

 P(o|s) = ? ),( ttt sgo 


osg t

tt oJ
P

soP
)(: )( |)(|

)(
)|(



 

 The J is a jacobian
 tt tosg tsg oJ),(: ),( |)(| 

)1()1( oo tt 

)(
)(

)1(
)(

)(
)(...

)1(
)(

|)(| ),(
nono

n
oJ

tt

tt

tsg t

















 For scalar functions of scalar variables, it is 

)()1( n 

simply a derivative:  
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Predicting the next state
 Given P(s0|o0), what is the probability of the 

state at t=1state at t 1

 
}{

00001
}{

000101 )|()|()|,()|( dsosPssPdsossPosP

 State progression function:
}{}{ 00 ss

)(f
 t is a driving term with probability distribution P(t)

),( 1 ttt sfs 

 P(st|st-1) can be computed similarly to P(o|s)
P(s |s ) is an instance of this P(s1|s0) is an instance of this
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And moving on

 P(s1|o0) is the predicted state distribution for 
t 1t=1

 Then we observe o1
 We must update the probability distribution for s1
 P(s1|o0:1) = CP(s1|o0)P(o1|s1)

 We can continue on
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Discrete vs. Continuous state systems

P
(s

)


0.2 0.3

0.4

0.1
1 2 ),( 1 ttt sfs 

Prediction at time 0:

s0 1 2 3

0 3 ),( ttt sgo 

P(s0) P(s)

P(s | O ) C (s )P(O | s )
Update after O0: 

P(s0) (s0)

P(s | O ) C P(s ) P(O | s )

Prediction at time 0: 

P(s0 | O0) C (s0)P(O0| s0)

Prediction at time 1: 
 )|()O|()O|( 010001 ssPsPsP 0010001 )|()O|()O|( dsssPsPsP 





P(s0| O0) C P(s0) P(O0| s0)

P(s1 | O0,O1) C P(s1 | O0) P(O1|s1) P(s1| O0 ,O1) C P(s1| O0) P(O1| s1)
Update after O1: 


0

)|()|()|( 010001
s

0010001 


( 1 | 0, 1) ( 1 | 0) ( 1| 1) ( 1| 0 1) ( 1| 0) ( 1| 1)



Discrete vs. Continuous State Systemsy
1 2 ),( 1 ttt sfs 

0 3 ),( ttt sgo 

Prediction at time t: 





1

)|()O|()O|( 11-t:011-t:0
ts

tttt ssPsPsP
111-t:011-t:0 )|()O|()O|( 




 ttttt dsssPsPsP

Update after Ot: 

)|O()O|()O|( 1-t:0t:0 tttt sPsCPsP )|O()O|()O|( 1-t:0t:0 tttt sPsCPsP 



Discrete vs. Continuous State Systemsy
1 2 ),( 1 ttt sfs 

0 3 ),( ttt sgo 

Initial state prob.

Parameters
 )(sP

)|( 1tt ssP)|(}{ 1 isjsPT ttij  Transition prob

)|O( sP )|( soPObservation prob



Special case: Linear Gaussian model
tttt sAs  1

    






 


 15.0exp
||)2(

1)( T

d
P

     101)( T

 A linear state dynamics equation
tttt sBo      






 


 15.0exp
||)2(

1)( T

d
P

A linear state dynamics equation
 Probability of state driving term  is Gaussian
 Sometimes viewed as a driving term  and additive g 

zero-mean noise
 A linear observation equationq
 Probability of observation noise  is Gaussian

 At, Bt and Gaussian parameters assumed knownt, t p
 May vary with time
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The initial state probability

    T

d
ssRsssP  1

0 5.0exp1)(     
d R

0
||)2( 

),;()(0 RssGaussiansP  ),;()(0

 We also assume the initial state distribution 
to be Gaussian
 Often assumed zero mean
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The observation probability

tttt sBo  ),;()(  GaussianP

),;()|(   ttttt sBoGaussiansoP

 The probability of the observation, given the state, is 
simply the probability of the noise, with the mean 
shifted
 Since the only uncertainty is from the noise

 The new mean is the mean of the distribution of the 
noise + the value of the observation in the absence 
of noise
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The updated state probability at T=0

 P(s0| o0) = C P(s0) P(o0| s0)

),;()( 00 RssGaussiansP 

),;()|( 00000   sBoGaussiansoP

),;(),;()|( 000000   sBoGaussianRssCGaussianosP
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Note 1: product of two Gaussians

Th d t f t G i i G i The product of two Gaussians is a Gaussian

),;(),;(  BsoGaussianRssGaussian 
   )()(5.0exp)()(5.0exp 1

2
1

1 BsoBsoCssRssC TT   

      11111111 ,)(;.   BBRoBsRBBRsGaussianC TTT 
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The updated state probability at T=0

 P(s0| o0) = C P(s0) P(o0| s0)

),;()( 00 RssGaussiansP 

),;()|( 00000   sBoGaussiansoP

)|( 00 osP
      11111111 TTT      1

0
1

0
1

0
1

0
11

0
1

0
1

0 ,)(;   BBRoBsRBBRsGaussian TTT
 

 00000
ˆˆ;)|( RssGaussianosP 
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The state transition probability
),;()(  GaussianPtttt sAs  1

),;()|( 11    ttttt sAsGaussianssP

 The probability of the state at time t, given the 
state at time t-1 is simply the probability of 
the driving term, with the mean shiftedg ,

16 Nov 2010 11-755/18797 41



Note 2:  integral of product of two 
Gaussians

Th i t l f th d t f t G i The integral of the product of two Gaussians 
is a Gaussian

   








 dxbAxyGaussianxGaussian

TT

yxx ),;(),;(

11



   


  dxbAxybAxyCxxC y
T

xx
T

x )()(5.0exp)()(5.0exp 1
2

1
1 

 T
xyx AAbAyGaussian  ,; 
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The predicted state probability at t=1






 0010001 )|()|s()o|( dsssPoPsP


),;()|( 01101   sAsGaussianssP

  00000
ˆ,ˆ;)|( RssGaussianosP 

 


 




 001100001 ),;(ˆ,ˆ;)o|( dssAsGaussianRssGaussiansP 

 Tˆ

 Remains Gaussian

 TARAsAsGaussianosP 10101101
ˆ,ˆ;)|(  

Remains Gaussian
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The updated state probability at T=1

 P(s1| o0:1) = C P(s1 |o0) P(o1| s1)

 TARAsAsGaussianosP 10101101
ˆ,ˆ;)|(  

),;()|( 11111   sBoGaussiansoP

 1111:01
ˆ,ˆ;)|( RssGaussianosP   1111:01 ,;)|(
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The Kalman Filter!

 Prediction at T

 T
tttttttt ARAsAsGaussianosP 111:0

ˆ,ˆ;)|(   

 RG iP )|(

 Update at T

 ttttt RssGaussianosP ,;)|( :0 

p

      11111111 )( 
 TTT BBRBRBBRG

)|( :0 tt osP

      11111111 ,)(;   t
T
ttt

T
tttt

T
ttt BBRoBsRBBRsGaussian  

 RssGaussianosP ˆˆ;)|( 
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Linear Gaussian Model
tttt sAs  1

P(s)  P(st|st 1)  P(Ot|st) 
tttt sBo 

tttt 1

P(s) P(st|st-1) P(Ot|st)

P(s0) P(s)

a priori Transition prob. State output prob

P(s0| O0) C P(s0) P(O0| s0)

0010001 )|()O|()O|( dsssPsPsP 


 0010001 )|()O|()O|( dsssPsPsP 


P(s1| O0:1) C P(s1| O0) P(O1| s0)

)|()O|()O|( dPPP 


1121:011:02 )|()O|()O|( dsssPsPsP 




P(s2| O0:2) C P(s2| O0:1) P(O2| s2)

All distributions remain Gaussian



The Kalman filter

 The actual state estimate is the mean of the 
d t d di t ib tiupdated distribution

 Predicted state at time t Predicted state at time t

  11:0 ˆ)]|([ ttttt sAosPmeans

 Updated estimate of state at time t

   )()]|([ˆ 11111 
 TT BRBBRP    )()]|([ˆ 1111

:0   
t

T
tttt

T
ttttt oBsRBBRosPmeans
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Stable Estimation
   )()]|([ˆ 11111

:0   
t

T
tttt

T
ttttt oBsRBBRosPmeans

 The above equation fails if there is no 
observation noiseobservation noise
  = 0
 Paradoxical?
 Happens because we do not use the relationship 

between o and s effectively

 Alternate derivation required
 Conventional Kalman filter formulation
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Estimating P(s|o)
),;()|( 1:0 RssGaussianosP t 

 11 T

Assuming  is 0 mean

Dropping subscript t for brevity

 Define y as the noiseless version of o

 Bso  


 



15.0exp
||)2(

1)( 


 T

d
P

 Define y as the noiseless version of o

D fi th f ll i t d d t

Bsy   yo

 Define the following extended vectors:








y

Y 






o

O 








G GYO 



s 



s

O 



0

G GYO 














0

0;)( GGaussianGP
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00

,0;)( GGaussianGP



The probability distribution of Y
Bsy  










s
y

Y

Si i G i Y i G i



),;()|( 1:0 RssGaussianosP t 

 Since s is Gaussian , Y is Gaussian

sBBsEynExpectatio  ][][

);()|( YG iYP 

BRssssBEssyEyE TT  ]))(([])])([[(

),;()|( 1:0 YYt YGaussianoYP  














BRBRBsB T

YY ;
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 RRBs TYY ;



The probability distribution of O
GYO 



















00
0

,0;)( GGaussianGP




















RRB
BRBRB

s
sB

T

T

YY ;
),;()|( 1:0 YYt YGaussianoYP  

 RRBs





 


BRBRBT

O


),;()|( 1:0 OYt OGaussianoOP  

 The mean of the sum of independent Gaussian RVs is the sum 








RRBTO

p
of the means

 The covariance of the sum of independent Gaussian RVs is the p
sum of the covariances
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The probability distribution of O

),;()|,()|( 1:01:0 OYtt OGaussianosoPoOP   ),;()|,()|( 1:01:0 OYtt OGaussianosoPoOP  

  


BBRBRBT 1

     






























 


ss
sBo

RRB
BRBRB

sssBoC
T

T
T5.0exp 

 Writing it out in extended formg
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A matrix inverse identity
   

    









 











11111

111111111

BABCABBABC
BABCBAABBABCBAA

CB
BA

TTT

TTT

T

 Work it out..

      BABCABBABCCB

 Applying it to the inverse covariance of O:
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A matrix inverse identity
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Conditional distribution from 
Gaussians

Gi j i tl G i i bl d Given any jointly Gaussian variables x and y 
such that P(x,y) is Gaussian
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 The conditional distribution P(y|x) is given by
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Stable Estimation

  


BBRBRBT 1
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 The conditional distribution of s

  BRBRBRBRoBRBRBsBBRBRBIsGaussianosP TTTTTT
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111
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 Note that we are not computing 
-1 in this 

formulation
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The Kalman filter

 The actual state estimate is the mean of the 
d t d di t ib tiupdated distribution

 Predicted state at time t Predicted state at time t

  11:0 ˆ)]|([ tttt
pred
tt sAosPmeanss

 Updated estimate of state at time t
  BRBRBRBRoBRBRBsBBRBRBIsGaussianosP TTTTTT

tt
111
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The Kalman filter

 Prediction
ˆ)]|([pred AP   11:0 ˆ)]|([ tttt

pred
tt sAosPmeanss

TARAR 1
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Update
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 Update
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The Kalman filter
 Prediction

 1t̂tt sAs 1ttt

T
tttt ARAR 1

ˆ
 

 Update

  1
TT BRBBRK

 tttttt sBoKss ˆ

  
T
ttt

T
ttt BRBBRK

  tttt RBKIR ˆ

 tttttt
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The Kalman Filter

 Very popular for tracking the state of 
processes
 Control systems

R b ti t ki Robotic tracking
 Simultaneous localization and mapping

 Radars Radars
 Even the stock market..

 What are the parameters of the process?
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Kalman filter contd.

sBo 
tttt sAs  1

 Model parameters A and B must be known

tttt sBo 

 Often the state equation includes an additional 
driving term:   st = Atst-1 + Gtut + t

 The parameters of the driving term must be 
known

Th i iti l t t di t ib ti t b k The initial state distribution must be known
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Defining the parameters
 State state must be carefully defined

 E g for a robotic vehicle the state is an extended E.g. for a robotic vehicle, the state is an extended 
vector that includes the current velocity and 
acceleration
 S = [X, dX, d2X]

 State equation: Must incorporate appropriate State equation: Must incorporate appropriate 
constraints
 If state includes acceleration and velocity, velocity at y, y

next time = current velocity + acc. * time step
 St = ASt-1 + e

A [1 t 0 5t2 0 1 t 0 0 1] A = [1 t 0.5t2;  0 1 t; 0 0 1]
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Parameters

 Observation equation:
C Critical to have accurate observation equation

 Must provide a valid relationship between state 
and observationsand observations

Observations typically high dimensional Observations typically high-dimensional
 May have higher or lower dimensionality than 

statestate
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Problems

)(

),( 1 ttt sfs 

 f() and/or g() may not be nice linear functions

),( ttt sgo 

 f() and/or g() may not be nice linear functions
 Conventional Kalman update rules for are no 

longer validlonger valid

  and/or  may not be Gaussian  and/or  may not be Gaussian
 Gaussian based update rules no longer valid
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Solutions (Next Tuesday)

)(

),( 1 ttt sfs 

 f() and/or g() may not be nice linear functions

),( ttt sgo 

 f() and/or g() may not be nice linear functions
 Conventional Kalman update rules for are no 

longer validg
 Extended Kalman Filter

  and/or  may not be Gaussian
 Gaussian based update rules no longer valid
 Particle Filters
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