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11-755/18-797 Machine Learning for Signal Processing

Fundamentals of Linear 
Algebra, Part II

Class 2.  31 August 2009

Instructor: Bhiksha Raj
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Administrivia
 Registration: Anyone on waitlist still?

 We have a second TA
 Sohail Bahmani
 sbahmani@andrew.cmu.edu

 Homework: Slightly delayed

11-755/18-797

 Homework:  Slightly delayed
 Linear algebra
 Adding some fun new problems.
 Use the discussion lists on blackboard.andrew.cmu.edu

 Blackboard – if you are not registered on blackboard 
please register
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Overview

 Vectors and matrices
 Basic vector/matrix operations
 Vector products
 Matrix products

V i t i t
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 Various matrix types
 Matrix inversion
 Matrix interpretation
 Eigenanalysis
 Singular value decomposition
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The Identity Matrix
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 An identity matrix is a square matrix where
 All diagonal elements are 1.0
 All off-diagonal elements are 0.0

 Multiplication by an identity matrix does not change vectors
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Diagonal Matrix
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 All off-diagonal elements are zero
 Diagonal elements are non-zero
 Scales the axes

 May flip axes
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Diagonal matrix to transform images
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 How?
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Stretching

 Location-based 
representation
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representation

 Scaling matrix – only 
scales the X axis
 The Y axis and pixel value 

are scaled by identity

 Not a good way of scaling.
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Stretching
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 Better way
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Modifying color
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 Scale only Green




















100

020

001

 PNewpic

31 Aug 2010 9

Permutation Matrix
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 A permutation matrix simply rearranges the axes
 The row entries are axis vectors in a different order

 The result is a combination of rotations and reflections

 The permutation matrix effectively permutes the 
arrangement of the elements in a vector

( )
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Permutation Matrix
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 Reflections and 90 degree rotations of 
images and objects
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Permutation Matrix
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 Reflections and 90 degree rotations of images and objects
 Object represented as a matrix of 3-Dimensional “position” 

vectors
 Positions identify each point on the surface
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Rotation Matrix
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 A rotation matrix rotates the vector by some angle 
 Alternately viewed, it rotates the axes

 The new axes are at an angle  to the old one

X

Y

X

Y

x’ x

31 Aug 2010 13

Rotating a picture
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 Note the representation: 3-row matrix
 Rotation only applies on the “coordinate” rows
 The value does not change
 Why is pacman grainy?

 1.1.00.1.11 
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3-D Rotation
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 2 degrees of freedom
 2 separate angles

 What will the rotation matrix be?
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Projections

11-755/18-797

 What would we see if the cone to the left were transparent if we 
looked at it along the normal to the plane
 The plane goes through the origin
 Answer: the figure to the right

 How do we get this?  Projection
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Projections

 Each pixel in the cone to the left is mapped onto to its “shadow” on the plane in 
the figure to the right

 The location of the pixel’s “shadow” is obtained by multiplying the vector  V
representing the pixel’s location in the first figure by a matrix A
 Shadow (V )= A V

 The matrix A is a projection matrix

31 Aug 2010 11-755/18-797 17

Projections
90degrees

projectionW1

W2
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 Consider any plane specified by a set of vectors W1, W2..
 Or matrix [W1 W2 ..]

 Any vector can be projected onto this plane by 
multiplying it with the projection matrix for the plane
 The projection is the shadow

projection
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Projection Matrix
90degrees

projectionW1

W2
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 Given a set of vectors W1, W2, which form a matrix W = [W1 W2.. ]

 The projection matrix that transforms any vector X to its projection on the plane is

 P = W (WTW)-1 WT

 We will visit matrix inversion shortly

 Magic – any set of vectors from the same plane that are expressed as a matrix will give 
you the same projection matrix

 P = V (VTV)-1 VT

projection

31 Aug 2010 19

Projections

11-755/18-797

 HOW?
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Projections

11-755/18-797

 Draw any two vectors W1 and W2 that lie on the plane
 ANY two so long as they have different angles

 Compose a matrix W = [W1 W2]

 Compose the projection matrix P = W (WTW)-1 WT

 Multiply every point on the cone by P to get its projection

 View it 
 I’m missing a step here – what is it?
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Projections

11-755/18-797

 The projection actually projects it onto the plane, but you’re still seeing 
the plane in 3D
 The result of the projection is a 3-D vector

 P = W (WTW)-1 WT = 3x3,  P*Vector = 3x1

 The image must be rotated till the plane is in the plane of the paper
 The Z axis in this case will always be zero and can be ignored

 How will you rotate it? (remember you know W1 and W2)
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Projection matrix properties
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 The projection of any vector that is already on the plane is the vector itself
 Px = x if x is on the plane

 If the object is already on the plane, there is no further projection to be performed

 The projection of a projection is the projection
 P (Px) = Px

 That is because Px is already on the plane

 Projection matrices are idempotent
 P2 = P

 Follows from the above31 Aug 2010 23

Projections: A more physical meaning

 Let W1, W2 .. Wk be “bases”

 We want to explain our data in terms of these 
“bases”
 We often cannot do so

 But we can explain a significant portion of it
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 The portion of the data that can be expressed in 
terms of our vectors W1, W2, .. Wk,  is the projection 
of the data on the W1 .. Wk (hyper) plane
 In our previous example, the “data” were all the points on a 

cone

 The interpretation for volumetric data is obvious
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Projection : an example with sounds

 The spectrogram (matrix) of a piece of music

11-755/18-797

 How much of the above music was composed of the 
above notes
 I.e. how much can it be explained by the notes
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Projection: one note

 The spectrogram (matrix) of a piece of music

M = 

11-755/18-797

 M = spectrogram;   W = note
 P = W (WTW)-1 WT

 Projected Spectrogram = P * M

W = 

31 Aug 2010 26

Projection: one note – cleaned up

 The spectrogram (matrix) of a piece of music

M = 

11-755/18-797

 Floored all matrix values below a threshold to zero

W = 
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Projection: multiple notes

 The spectrogram (matrix) of a piece of music

M = 

11-755/18-797

 P = W (WTW)-1 WT

 Projected Spectrogram = P * M

W = 
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Projection: multiple notes, cleaned up

 The spectrogram (matrix) of a piece of music

M = 

11-755/18-797

 P = W (WTW)-1 WT

 Projected Spectrogram = P * M

W = 

31 Aug 2010 29

Projection and Least Squares
 Projection actually computes a least squared error estimate

 For each vector V in the music spectrogram matrix
 Approximation:  Vapprox = a*note1 + b*note2 + c*note3..
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 Error vector E =  V – Vapprox

 Squared error energy for V     e(V) = norm(E)2

 Total error = sum_over_all_V { e(V) } = V e(V)

 Projection computes Vapprox for all vectors such that Total error is 
minimized
 It does not give you “a”, “b”, “c”.. Though

 That needs a different operation – the inverse / pseudo inverse
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Orthogonal and Orthonormal matrices

 Orthogonal Matrix  :  AAT = diagonal
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Orthogonal Matrix  :  AA  diagonal
 Each row vector lies exactly along the normal to the plane 

specified by the rest of the vectors in the matrix

 Orthonormal Matrix: AAT = ATA = I
 In additional to be orthogonal, each vector has length exactly = 

1.0

 Interesting observation: In a square matrix if the length of the row 
vectors is 1.0, the length of the column vectors is also 1.0

31 Aug 2010 31

Orthogonal and Orthonormal Matrices

 Orthonormal matrices will retain the relative angles 
between transformed vectors
 Essentially, they are combinations of rotations, reflections 

and permutations

 Rotation matrices and permutation matrices are all 
orthonormal matrices

11-755/18-797

orthonormal matrices

 The vectors in an orthonormal matrix are at 90degrees to 
one another.

 Orthogonal matrices are like Orthonormal matrices 
with stretching
 The product of a diagonal matrix and an orthonormal matrix

31 Aug 2010 32

Matrix Rank and Rank-Deficient Matrices

P * Cone = 

11-755/18-797

 Some matrices will eliminate one or more dimensions during 
transformation
 These are rank deficient matrices

 The rank of the matrix is the dimensionality of the trasnsformed 
version of a full-dimensional object
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Matrix Rank and Rank-Deficient Matrices

11-755/18-797

 Some matrices will eliminate one or more dimensions 
during transformation
 These are rank deficient matrices

 The rank of the matrix is the dimensionality of the transformed 
version of a full-dimensional object

Rank = 2 Rank = 1
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Projections are often examples of rank-deficient transforms

M = 

W = 
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 P = W (WTW)-1 WT ; Projected Spectrogram = P * M
 The original spectrogram can never be recovered

 P is rank deficient

 P explains all vectors in the new spectrogram as a 
mixture of only the 4 vectors in W
 There are only 4 independent bases
 Rank of P is 4
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Non-square Matrices
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 Non-square matrices add or subtract axes
 More rows than columns  add axes

 But does not increase the dimensionality of the data

 Fewer rows than columns  reduce axes
 May reduce dimensionality of the data
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P = transform PX = 3D, rank 2
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Non-square Matrices
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 Non-square matrices add or subtract axes
 More rows than columns  add axes

 But does not increase the dimensionality of the data

 Fewer rows than columns  reduce axes
 May reduce dimensionality of the data
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The Rank of  a Matrix
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 The matrix rank is the dimensionality of the transformation of a full-
dimensioned object in the original space

 The matrix can never increase dimensions
 Cannot convert a circle to a sphere or a line to a circle

 The rank of a matrix can never be greater than the lower of its two 
dimensions
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The Rank of Matrix

M = 

11-755/18-797

 Projected Spectrogram = P * M
 Every vector in it is a combination of only 4 bases

 The rank of the matrix is the smallest no. of bases 
required to describe the output
 E.g. if note no. 4 in P could be expressed as a combination of 

notes 1,2 and 3, it provides no additional information

 Eliminating note no. 4 would give us the same projection

 The rank of P would be 3!
31 Aug 2010 39

Matrix rank is unchanged by transposition
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 If an N-D object is compressed to a K-D 
object by a matrix, it will also be compressed 
to a K-D object by the transpose of the matrix
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Matrix Determinant
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 The determinant is the “volume” of a matrix
 Actually the volume of a parallelepiped formed from 

its row vectors
 Also the volume of the parallelepiped formed from its 

column vectors

 Standard formula for determinant: in text book
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Matrix Determinant: Another Perspective
Volume = V1 Volume = V2
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 The determinant is the ratio of N-volumes
 If V1 is the volume of an N-dimensional object “O” in N-

dimensional space
 O is the complete set of points or vertices that specify the object

 If V2 is the volume of the N-dimensional object specified by A*O,  
where A is a matrix that transforms the space

 |A| = V2 / V1
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Matrix Determinants

 Matrix determinants are only defined for square matrices
 They characterize volumes in linearly transformed space of the 

same dimensionality as the vectors

 Rank deficient matrices have determinant 0
 Since they compress full-volumed N-D objects into zero-volume 

11-755/18-797

N-D objects
 E.g. a 3-D sphere into a 2-D ellipse:  The ellipse has 0 volume 

(although it does have area)

 Conversely, all matrices of determinant 0 are rank deficient
 Since they compress full-volumed N-D objects into zero-volume 

objects
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Multiplication properties

 Properties of vector/matrix products
 Associative

 Distributive

A  (B C)  (A B) C

A  (B C)  A B A C

11-755/18-797

 NOT commutative!!!

 left multiplications ≠ right multiplications

 Transposition

A B  B A

A (B C) A B A C

  TTT ABBA 
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Determinant properties

 Associative for square matrices

 Scaling volume sequentially by several matrices is equal to 
scaling once by the product of the matrices

 Volume of sum != sum of Volumes

CBACBA 

CBCB  )(
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 The volume of the parallelepiped formed by row vectors of the 
sum of two matrices  is not the sum of the volumes of the 
parallelepipeds formed by the original matrices

 Commutative for square matrices!!!

 The order in which you scale the volume of an object is irrelevant

BAABBA 
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Matrix Inversion

 A matrix transforms an N-
D object to a different N-
D object

 What transforms the new 
object back to the 
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original?
 The inverse transformation

 The inverse 
transformation is called 
the matrix inverse

1
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Matrix Inversion
T T-1

T-1T = I
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 The product of a matrix and its inverse is the 
identity matrix
 Transforming an object, and then inverse 

transforming it gives us back the original object
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Inverting rank-deficient matrices
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 Rank deficient matrices “flatten” objects
 In the process, multiple points in the original object get mapped to the same point in the 

transformed  object

 It is not possible to go “back” from the flattened object to the original object
 Because of the many-to-one forward mapping

 Rank deficient matrices have no inverse

  75.0433.00
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Revisiting Projections and Least Squares
 Projection computes a least squared error estimate

 For each vector V in the music spectrogram matrix
 Approximation:  Vapprox = a*note1 + b*note2 + c*note3..
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 Error vector E =  V – Vapprox

 Squared error energy for V     e(V) = norm(E)2

 Total error = Total error + e(V)

 Projection computes Vapprox for all vectors such that Total error is 
minimized

 But WHAT ARE “a” “b” and “c”?

 c
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The Pseudo Inverse (PINV)

 We are approximating spectral vectors V as the 
transformation of the vector [a b c]T
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transformation of the vector [a b c]
 Note – we’re viewing the collection of bases in W as a 

transformation

 The solution is obtained using the pseudo inverse
 This give us a LEAST SQUARES solution

 If W were square and invertible Pinv(W) = W-1, and V=Vapprox
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Explaining music with one note

M = 

X =PINV(W)*M
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 Recap:  P = W (WTW)-1 WT, Projected Spectrogram = P*M

 Approximation:  M     W*X

 The amount of W in each vector = X = PINV(W)*M

 W*Pinv(W)*M = Projected Spectrogram = P*M
 W*Pinv(W) = Projection matrix = W (WTW)-1 W.

W = 

PINV(W) = (WTW)-1WT

31 Aug 2010 51



Explanation with multiple notes

M = 

X=PINV(W)*M
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 X =  Pinv(W) * M;   Projected matrix = W*X = W*Pinv(W)*M

W = 
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How about the other way?

M = 

V = 
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 WV \approx M              W = M * Pinv(V)       U = WV

W = ?? U = 

31 Aug 2010 53

Pseudo-inverse (PINV)

 Pinv()  applies to non-square matrices

 Pinv ( Pinv (A))) = A

 A*Pinv(A)= projection matrix!
 Projection onto the columns of A

11-755/18-797

 If A = K x N matrix and K > N, A projects N-D 
vectors into a higher-dimensional K-D space

 Pinv(A)*A = I  in this case

31 Aug 2010 54
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Matrix inversion (division)
 The inverse of matrix multiplication

 Not element-wise division!!

 Provides a way to “undo” a linear transformation
 Inverse of the unit matrix is itself
 Inverse of a diagonal is diagonal
 Inverse of a rotation is a (counter)rotation (its transpose!)

I f k d fi i t t i d t i t!
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 Inverse of a rank deficient matrix does not exist!
 But pseudoinverse exists

 Pay attention to multiplication side!

 Matrix inverses defined for square matrices only
 If matrix not square use a matrix pseudoinverse:

 MATLAB syntax: inv(a), pinv(a)

A B  C,   A  C B1,   B  A 1 C

A B  C,   A  C B,   B  A  C
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What is the  Matrix   ?

 Duality in terms of the matrix identity
 Can be a container of data

 An image, a set of vectors, a table, etc …

 Can be a linear transformation
 A process by which to transform data in another matrix
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 We’ll usually start with the first definition and 
then apply the second one on it
 Very frequent operation
 Room reverberations, mirror reflections, etc …

 Most of signal processing and machine 
learning are matrix operations!
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Eigenanalysis

 If something can go through a process mostly 
unscathed in character it is an eigen-something
 Sound example:

 A vector that can undergo a matrix multiplication 
and keep pointing the same way is an 
eigenvector

11-755/18-797

eigenvector
 Its length can change though

 How much its length changes is expressed by its 
corresponding eigenvalue
 Each eigenvector of a matrix has its eigenvalue

 Finding these “eigenthings” is called 
eigenanalysis
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EigenVectors and EigenValues
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 Vectors that do not change angle upon transformation
 They may change length

 V = eigen vector
  = eigen value
 Matlab:  [V, L] = eig(M)

 L is a diagonal matrix whose entries are the eigen values
 V is a maxtrix whose columns are the eigen vectors

VMV 
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Eigen vector example

11-755/18-79731 Aug 2010 59

Matrix multiplication revisited
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 Matrix transformation “transforms” the space
 Warps the paper so that the normals to the two 

vectors now lie along the axes
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A stretching operation
1.4 0.8

11-755/18-797

 Draw two lines
 Stretch / shrink the paper along these lines by 

factors 1 and 2
 The factors could be negative – implies flipping the paper

 The result is a transformation of the space
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A stretching operation
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 Draw two lines
 Stretch / shrink the paper along these lines by 

factors 1 and 2
 The factors could be negative – implies flipping the paper

 The result is a transformation of the space
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Physical interpretation of eigen vector

11-755/18-797

 The result of the stretching is exactly the same as transformation 
by a matrix

 The axes of stretching/shrinking are the eigenvectors
 The degree of stretching/shrinking are the corresponding 

eigenvalues

 The EigenVectors and EigenValues convey all the information 
about the matrix
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Physical interpretation of eigen vector
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VLVM

 The result of the stretching is exactly the same as transformation 
by a matrix

 The axes of stretching/shrinking are the eigenvectors
 The degree of stretching/shrinking are the corresponding 

eigenvalues
 The EigenVectors and EigenValues convey all the information 

about the matrix
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Eigen Analysis

 Not all square matrices have nice eigen values and 
vectors
 E.g. consider a rotation matrix
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 This rotates every vector in the plane
 No vector that remains unchanged

 In these cases the Eigen vectors and values are 
complex

 Some matrices are special however..
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Symmetric Matrices
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 Matrices that do not change on transposition
 Row and column vectors are identical

 Symmetric matrix: Eigen vectors and Eigen values 
are always real

 Eigen vectors are always orthogonal
 At 90 degrees to one another
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Symmetric Matrices
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 Eigen vectors point in the direction of the 
major and minor axes of the ellipsoid 
resulting from the transformation of a 
spheroid
 The eigen values are the lengths of the axes
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Symmetric matrices
 Eigen vectors Vi are orthonormal

 Vi
TVi = 1

 Vi
TVj = 0, i != j

 Listing all eigen vectors in matrix form V
 VT = V-1

 VT V = I
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 V VT= I

 M Vi = Vi

 In matrix form  :  M V  = V L
 L is a diagonal matrix with all eigen values

 M = V L VT
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