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Administrivia
 Registration: Anyone on waitlist still?

 We have a second TA
 Sohail Bahmani
 sbahmani@andrew.cmu.edu

 Homework:  Slightly delayed
 Linear algebra
 Adding some fun new problems.
 Use the discussion lists on blackboard.andrew.cmu.edu

 Blackboard – if you are not registered on blackboard 
please register
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Overview
 Vectors and matrices

B i t / t i ti Basic vector/matrix operations
 Vector products

M t i d t Matrix products
 Various matrix types

M t i i i Matrix inversion
 Matrix interpretation
 Eigenanalysis
 Singular value decomposition
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The Identity Matrix










10
01

Y

 An identity matrix is a square matrix wherey q
 All diagonal elements are 1.0
 All off-diagonal elements are 0.0

 Multiplication by an identity matrix does not change vectors
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Diagonal Matrix











10
02

Y
 10

 All off-diagonal elements are zero
Di l l t Diagonal elements are non-zero

 Scales the axes
 May flip axes
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 May flip axes
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Diagonal matrix to transform images

 How?
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Stretching

















101065121
10.2.22.2.11

010
002












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


 1.1.00.1.11
10.10.65.1.21

100
010

 Location-based 
representation
Scaling matrix only Scaling matrix – only 
scales the X axis
 The Y axis and pixel value p

are scaled by identity
 Not a good way of scaling.
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Stretching

D =

.5.15.0

.005.1









)2x(
.0000
.5.000 NNA


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
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

Newpic
.....

DA

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 Better way
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Modifying color





 BGR













P






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

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
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


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





100
020 PNewpic

 Scale only Green
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Permutation Matrix

 yx010 5
(3,4,5)

Z (old X)
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


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
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



























x
z
y

z
y
x

 
001
100
010 5

Y

Z

3
Y (old Z)

Z (old X)

 xz001
3

4
X 4

5
X (old Y)

 A permutation matrix simply rearranges the axes
 The row entries are axis vectors in a different order
 The result is a combination of rotations and reflections

 The permutation matrix effectively permutes the 
arrangement of the elements in a vector
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arrangement of the elements in a vector
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Permutation Matrix






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


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




001
100
010

P
 100  001


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
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


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



1.1.00.1.11
10.10.65.1.21
10.2.22.2.11

 

 Reflections and 90 degree rotations of 
images and objects
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images and objects
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Permutation Matrix







001
010

P 





100
010

P











100
001P












001
100P





 Nxxx ..21

 Reflections and 90 degree rotations of images and objects









 N

N

zzz
yyy

..

.. 

21

21

 Reflections and 90 degree rotations of images and objects
 Object represented as a matrix of 3-Dimensional “position” 

vectors
 Positions identify each point on the surface
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 Positions identify each point on the surface
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Rotation Matrix










 


cossin
sincos

x



R newXXR 


cossin'
sincos'

yxy
yxx




















'x
X

y
x

X
(x,y) (x,y)

(x’,y’)
y’
y








'y

X new

Y Y



X X x’ x

 A rotation matrix rotates the vector by some angle 
 Alternately viewed, it rotates the axes
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 The new axes are at an angle  to the old one
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Rotating a picture















 


100
045cos45sin
045sin45cos

R

 

















1.1.00.1.11
..10.65.1.21
..2.22.2.11















 

1.1.00.1.11
..212.2827.23.232
..28.2423.2.20

 Note the representation: 3-row matrix Note the representation: 3 row matrix
 Rotation only applies on the “coordinate” rows
 The value does not change
 Why is pacman grainy?
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 Why is pacman grainy?
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3-D Rotation

Y

Xnew

Ynew

X

Y

Z


Znew


 2 degrees of freedom

X

2 degrees of freedom
 2 separate angles

 What will the rotation matrix be? What will the rotation matrix be?
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Projectionsj

 What would we see if the cone to the left were transparent if we 
looked at it along the normal to the plane
 The plane goes through the origin
 Answer: the figure to the right

 How do we get this?  Projection

11-755/18-797

g j
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Projectionsj

 Each pixel in the cone to the left is mapped onto to its “shadow” on the plane in 
the figure to the right

 The location of the pixel’s “shadow” is obtained by multiplying the vector  V
representing the pixel’s location in the first figure by a matrix A
 Shadow (V )= A V

 The matrix A is a projection matrix The matrix A is a projection matrix
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Projections
90degrees

j
90degrees

W2

projectionW1

 Consider any plane specified by a set of vectors W1, W2..
 Or matrix [W W ] Or matrix [W1 W2 ..]

 Any vector can be projected onto this plane by 
multiplying it with the projection matrix for the plane

11-755/18-797

 The projection is the shadow

31 Aug 2010 18



Projection Matrix
90degrees

j
90degrees

W2

projectionW1

 Given a set of vectors W1, W2, which form a matrix W = [W1 W2.. ]
 The projection matrix that transforms any vector X to its projection on the plane isp j y p j p

 P = W (WTW)-1 WT

 We will visit matrix inversion shortly

 Magic – any set of vectors from the same plane that are expressed as a matrix will give 
you the same projection matrix

11-755/18-797

you the same projection matrix
 P = V (VTV)-1 VT
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Projectionsj

 HOW?
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Projectionsj

 Draw any two vectors W1 and W2 that lie on the plane
 ANY two so long as they have different angles

 Compose a matrix W = [W1 W2]
 Compose the projection matrix P = W (WTW)-1 WT

 Multiply every point on the cone by P to get its projection

11-755/18-797

 View it 
 I’m missing a step here – what is it?
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Projectionsj

 The projection actually projects it onto the plane, but you’re still seeing 
the plane in 3D
 The result of the projection is a 3-D vector
 P = W (WTW)-1 WT = 3x3,  P*Vector = 3x1
 The image must be rotated till the plane is in the plane of the paper

 The Z axis in this case will always be zero and can be ignored

11-755/18-797

 How will you rotate it? (remember you know W1 and W2)
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Projection matrix propertiesj

 The projection of any vector that is already on the plane is the vector itself
 Px = x if x is on the plane
 If the object is already on the plane, there is no further projection to be performed

 The projection of a projection is the projection
 P (Px) = Px
 That is because Px is already on the plane
P j ti t i id t t

11-755/18-797

 Projection matrices are idempotent
 P2 = P

 Follows from the above31 Aug 2010 23



Projections: A more physical meaningj
 Let W1, W2 .. Wk be “bases”

W t t l i d t i t f th We want to explain our data in terms of these 
“bases”
 We often cannot do so We often cannot do so
 But we can explain a significant portion of it

Th ti f th d t th t b d i The portion of the data that can be expressed in 
terms of our vectors W1, W2, .. Wk,  is the projection 
of the data on the W1 Wk (hyper) planeof the data on the W1 .. Wk (hyper) plane
 In our previous example, the “data” were all the points on a 

cone
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 The interpretation for volumetric data is obvious
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Projection : an example with soundsj

Th t ( t i ) f i f i The spectrogram (matrix) of a piece of music

 How much of the above music was composed of the 
above notes
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above notes
 I.e. how much can it be explained by the notes
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Projection: one notej

M = 

Th t ( t i ) f i f i The spectrogram (matrix) of a piece of music

W = 

 M = spectrogram;   W = note
P W (WTW) 1 WT

11-755/18-797

 P = W (WTW)-1 WT

 Projected Spectrogram = P * M
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Projection: one note – cleaned upj

M = 

Th t ( t i ) f i f i The spectrogram (matrix) of a piece of music

W = 

 Floored all matrix values below a threshold to zero
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Projection: multiple notesj

M = 

Th t ( t i ) f i f i The spectrogram (matrix) of a piece of music

W = 

 P = W (WTW)-1 WT

P j t d S t P * M

11-755/18-797

 Projected Spectrogram = P * M
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Projection: multiple notes, cleaned upj

M = 

Th t ( t i ) f i f i The spectrogram (matrix) of a piece of music

W = 

 P = W (WTW)-1 WT

P j t d S t P * M

11-755/18-797

 Projected Spectrogram = P * M
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Projection and Least Squaresj
 Projection actually computes a least squared error estimate
 For each vector V in the music spectrogram matrix

 Approximation:  Vapprox = a*note1 + b*note2 + c*note3..pp approx

















 b
a

Vapprox  ot
e1

ot
e2

ot
e3

 Error vector E =  V – Vapprox











 c

app ox n n n
 Squared error energy for V     e(V) = norm(E)2

 Total error = sum_over_all_V { e(V) } = V e(V)
 Projection computes Vapprox for all vectors such that Total error is 

i i i dminimized
 It does not give you “a”, “b”, “c”.. Though

 That needs a different operation – the inverse / pseudo inverse
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Orthogonal and Orthonormal matrices







010
001





 

612035407070
612.0     354.0    707.0









 100
010












5.0866.0       0
612.0 354.0      707.0

 Orthogonal Matrix  :  AAT = diagonal
 Each row vector lies exactly along the normal to the plane 

specified by the rest of the vectors in the matrix

 Orthonormal Matrix: AAT = ATA = I
 In additional to be orthogonal, each vector has length exactly = 

1.0
 Interesting observation: In a square matrix if the length of the row 

11-755/18-797

vectors is 1.0, the length of the column vectors is also 1.0
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Orthogonal and Orthonormal Matrices

 Orthonormal matrices will retain the relative angles 
between transformed vectorsbetween transformed vectors
 Essentially, they are combinations of rotations, reflections 

and permutations
 Rotation matrices and permutation matrices are all 

orthonormal matrices
 The vectors in an orthonormal matrix are at 90degrees to The vectors in an orthonormal matrix are at 90degrees to 

one another.
 Orthogonal matrices are like Orthonormal matrices 

with stretching
 The product of a diagonal matrix and an orthonormal matrix
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Matrix Rank and Rank-Deficient Matrices

P * Cone = 

 Some matrices will eliminate one or more dimensions during g
transformation
 These are rank deficient matrices
 The rank of the matrix is the dimensionality of the trasnsformed

11-755/18-797

 The rank of the matrix is the dimensionality of the trasnsformed 
version of a full-dimensional object
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Matrix Rank and Rank-Deficient Matrices

 Some matrices will eliminate one or more dimensions 

Rank = 2 Rank = 1

during transformation
 These are rank deficient matrices
 The rank of the matrix is the dimensionality of the transformed 

11-755/18-797

y
version of a full-dimensional object
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Projections are often examples of rank-deficient transforms

M = 

P W (WTW) 1 WT P j t d S t P * M

W = 

 P = W (WTW)-1 WT ; Projected Spectrogram = P * M
 The original spectrogram can never be recovered

 P is rank deficient
 P explains all vectors in the new spectrogram as a 

mixture of only the 4 vectors in W
 There are only 4 independent bases
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 There are only 4 independent bases
 Rank of P is 4
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Non-square Matrices

 98 



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
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















06.
9.1.
9.8.

















N

N

N

zzz
yyy
xxx

..

..

..

21

21

21

 Non-square matrices add or subtract axes


X = 2D data P = transform PX = 3D, rank 2



Non square matrices add or subtract axes
 More rows than columns  add axes

 But does not increase the dimensionality of the data
 Fewer rows than columns reduce axes

11-755/18-797

 Fewer rows than columns  reduce axes
 May reduce dimensionality of the data
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Non-square Matrices










N

N

yyy
xxx

..

..

21

21









115.
2.13.

















N

N

zzz
yyy
xxx

..

..

21
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 Non-square matrices add or subtract axes

X = 3D data, rank 3


P = transform PX = 2D, rank 2
 Nzzz ..21

Non square matrices add or subtract axes
 More rows than columns  add axes

 But does not increase the dimensionality of the data
 Fewer rows than columns reduce axes
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 Fewer rows than columns  reduce axes
 May reduce dimensionality of the data
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The Rank of  a Matrix

 98









115.
2.13.

















06.
9.1.
9.8.

 The matrix rank is the dimensionality of the transformation of a full-
dimensioned object in the original spacej g p

 The matrix can never increase dimensions
 Cannot convert a circle to a sphere or a line to a circle
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 The rank of a matrix can never be greater than the lower of its two 
dimensions31 Aug 2010 38



The Rank of Matrix

M = 

 Projected Spectrogram = P * M
 Every vector in it is a combination of only 4 bases

 The rank of the matrix is the smallest no. of bases 
required to describe the outputrequired to describe the output
 E.g. if note no. 4 in P could be expressed as a combination of 

notes 1,2 and 3, it provides no additional information
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 Eliminating note no. 4 would give us the same projection
 The rank of P would be 3!
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Matrix rank is unchanged by transposition

 805090  4201090

















86.044.042.0
9.04.01.0
8.05.09.0

















86.09.08.0
44.04.05.0
42.01.09.0

 If an N-D object is compressed to a K-D 
object by a matrix it will also be compressedobject by a matrix, it will also be compressed 
to a K-D object by the transpose of the matrix
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Matrix Determinant
(r2) (r1+r2)

(r1)

(r2)

The determinant is the “volume” of a matrix

(r1)

 The determinant is the volume  of a matrix
 Actually the volume of a parallelepiped formed from 

its row vectors
 Also the volume of the parallelepiped formed from its 

column vectors
 Standard formula for determinant: in text book
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 Standard formula for determinant: in text book

31 Aug 2010 41



Matrix Determinant: Another Perspective
Volume = V1 Volume = V2

















7.09.0       7.0
8.0  8.0       0.1
7.0     0    8.0

The determinant is the ratio of N volumes The determinant is the ratio of N-volumes
 If V1 is the volume of an N-dimensional object “O” in N-

dimensional space
O i th l t t f i t ti th t if th bj t O is the complete set of points or vertices that specify the object

 If V2 is the volume of the N-dimensional object specified by A*O,  
where A is a matrix that transforms the space
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 |A| = V2 / V1

31 Aug 2010 42



Matrix Determinants
 Matrix determinants are only defined for square matrices

 They characterize volumes in linearly transformed space of the They characterize volumes in linearly transformed space of the 
same dimensionality as the vectors

 Rank deficient matrices have determinant 0Rank deficient matrices have determinant 0
 Since they compress full-volumed N-D objects into zero-volume 

N-D objects
 E g a 3-D sphere into a 2-D ellipse: The ellipse has 0 volume E.g. a 3 D sphere into a 2 D ellipse:  The ellipse has 0 volume 

(although it does have area)

 Conversely, all matrices of determinant 0 are rank deficientConversely, all matrices of determinant 0 are rank deficient
 Since they compress full-volumed N-D objects into zero-volume 

objects
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Multiplication properties
 Properties of vector/matrix products

 Associative Associative

 Distributive

A  (B C)  (A B) C
 Distributive

 NOT commutative!!!

A  (B C)  A B A C
 NOT commutative!!!

 left multiplications ≠ right multiplications
A B  B A

p g p
 Transposition

  TTT ABBA 
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  ABBA
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Determinant properties
 Associative for square matrices CBACBA 

 Scaling volume sequentially by several matrices is equal to 
scaling once by the product of the matrices

 Volume of sum != sum of Volumes

 The volume of the parallelepiped formed by row vectors of the

CBCB  )(

 The volume of the parallelepiped formed by row vectors of the 
sum of two matrices  is not the sum of the volumes of the 
parallelepipeds formed by the original matrices

 Commutative for square matrices!!!
BAABBA 
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 The order in which you scale the volume of an object is irrelevant
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Matrix Inversion








 8.0  8.0       0.1
7.0     0    8.0

T

 A matrix transforms an N-
D object to a different N-






 7.09.0       7.0

D object to a different N-
D object

 What transforms the new 
object back to the 
original?

1

???






 The inverse transformation

 The inverse 
transformation is called

1

???
??? 










 TQ

transformation is called 
the matrix inverse
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Matrix Inversion
T T-1

 The product of a matrix and its inverse is the
T-1T = I

 The product of a matrix and its inverse is the 
identity matrix
 Transforming an object and then inverse Transforming an object, and then inverse 

transforming it gives us back the original object
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Inverting rank-deficient matrices

 001




















75.0433.00
433.025.0

001

 Rank deficient matrices “flatten” objects
 In the process, multiple points in the original object get mapped to the same point in the 

transformed  objectj

 It is not possible to go “back” from the flattened object to the original object
 Because of the many-to-one forward mapping
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 Rank deficient matrices have no inverse
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Revisiting Projections and Least Squares
 Projection computes a least squared error estimate
 For each vector V in the music spectrogram matrix

 Approximation: V = a*note1 + b*note2 + c*note3 Approximation:  Vapprox = a note1 + b note2 + c note3..





 1 2 3 



a

 










W
no

te
1

no
te

2
no

te
3

  











c
bWVapprox

 Error vector E =  V – Vapprox

 Squared error energy for V     e(V) = norm(E)2

 Total error = Total error + e(V) Total error = Total error + e(V)
 Projection computes Vapprox for all vectors such that Total error is 

minimized
B t WHAT ARE “ ” “b” d “ ”?
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 But WHAT ARE “a” “b” and “c”?
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The Pseudo Inverse (PINV)

  










 b
a

WVapprox   










 b
a

WV VWPINVb
a

 * )(   










 We are approximating spectral vectors V as the






c 





c c







 We are approximating spectral vectors V as the 
transformation of the vector [a b c]T
 Note – we’re viewing the collection of bases in W as a 

transformation

 The solution is obtained using the pseudo inverse The solution is obtained using the pseudo inverse
 This give us a LEAST SQUARES solution

 If W were square and invertible Pinv(W) = W-1, and V=Vapprox
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Explaining music with one note

M = 

X =PINV(W)*M

W = 

 Recap:  P = W (WTW)-1 WT, Projected Spectrogram = P*M

 Approximation:  M     W*X
 The amount of W in each vector = X = PINV(W)*M

W*Pi (W)*M P j t d S t P*M


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 W*Pinv(W)*M = Projected Spectrogram = P*M
 W*Pinv(W) = Projection matrix = W (WTW)-1 W. PINV(W) = (WTW)-1WT
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Explanation with multiple notes

M = 

X=PINV(W)*M( )

W =W  
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 X =  Pinv(W) * M;   Projected matrix = W*X = W*Pinv(W)*M
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How about the other way?

M = 

V = 

W = ??W  ?? U = 
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 WV \approx M              W = M * Pinv(V)       U = WV
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Pseudo-inverse (PINV)

 Pinv()  applies to non-square matrices
 Pinv ( Pinv (A))) = A
 A*Pinv(A)= projection matrix!
 Projection onto the columns of A

 If A = K x N matrix and K > N, A projects N-D 
vectors into a higher-dimensional K-D space

 Pinv(A)*A = I  in this case
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Matrix inversion (division)
 The inverse of matrix multiplication

 Not element-wise division!!
Provides a way to “undo” a linear transformation Provides a way to “undo” a linear transformation
 Inverse of the unit matrix is itself
 Inverse of a diagonal is diagonal
 Inverse of a rotation is a (counter)rotation (its transpose!)
 Inverse of a rank deficient matrix does not exist!

 But pseudoinverse exists But pseudoinverse exists
 Pay attention to multiplication side!

A B  C,  A  C B1,  B  A 1 C
 Matrix inverses defined for square matrices only

 If matrix not square use a matrix pseudoinverse:
A B C A C B B A  C

11-755/18-797
 MATLAB syntax: inv(a), pinv(a)

A B  C,  A  C B ,   B  A C
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What is the  Matrix   ?
 Duality in terms of the matrix identity

Can be a container of data Can be a container of data
 An image, a set of vectors, a table, etc …

 Can be a linear transformation
 A process by which to transform data in another matrix

 We’ll usually start with the first definition and 
then apply the second one on it
 Very frequent operation

R b ti i fl ti t Room reverberations, mirror reflections, etc …
 Most of signal processing and machine 

learning are matrix operations!
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learning are matrix operations!
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Eigenanalysis
 If something can go through a process mostly 

unscathed in character it is an eigen-somethingg g
 Sound example:

 A vector that can undergo a matrix multiplication 
and keep pointing the same way is an 
eigenvector
 Its length can change though Its length can change though

 How much its length changes is expressed by its 
corresponding eigenvaluep g g
 Each eigenvector of a matrix has its eigenvalue

 Finding these “eigenthings” is called 

11-755/18-797

eigenanalysis
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EigenVectors and EigenValues








 


0170
7.05.1

M
Black 
vectors

 0.17.0
are
eigen 
vectors

 Vectors that do not change angle upon transformation
They may change length They may change length

V i t

VMV 
 V = eigen vector
  = eigen value
 Matlab:  [V, L] = eig(M)

L i di l t i h t i th i l
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 L is a diagonal matrix whose entries are the eigen values
 V is a maxtrix whose columns are the eigen vectors
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Eigen vector example
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Matrix multiplication revisited





 


07.00.1

M 



 2.11.1

 Matrix transformation “transforms” the space Matrix transformation transforms  the space
 Warps the paper so that the normals to the two 

vectors now lie along the axes

11-755/18-797

ec o s o e a o g e a es
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A stretching operation
1.4 0.8

 Draw two lines
 Stretch / shrink the paper along these lines by p p g y

factors 1 and 2
 The factors could be negative – implies flipping the paper
The result is a transformation of the space
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 The result is a transformation of the space
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A stretching operation

 Draw two lines
 Stretch / shrink the paper along these lines by p p g y

factors 1 and 2
 The factors could be negative – implies flipping the paper
The result is a transformation of the space
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 The result is a transformation of the space
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Physical interpretation of eigen vector

 The result of the stretching is exactly the same as transformation 
by a matrix

 The axes of stretching/shrinking are the eigenvectorse a es o st etc g/s g a e t e e ge ecto s
 The degree of stretching/shrinking are the corresponding 

eigenvalues
 The EigenVectors and EigenValues convey all the information

11-755/18-797

 The EigenVectors and EigenValues convey all the information 
about the matrix
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Physical interpretation of eigen vector

 21 VVV

2

1

0
0








L




1
2



VLVM

 The result of the stretching is exactly the same as transformation 
by a matrix

 The axes of stretching/shrinking are the eigenvectors
 The degree of stretching/shrinking are the corresponding 

eigenvalues
 The EigenVectors and EigenValues convey all the information 

b t th t i

11-755/18-797

about the matrix
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Eigen Analysis
 Not all square matrices have nice eigen values and 

vectorsvectors
 E.g. consider a rotation matrix

 sincos 
























 


'

cossin
sincos

x
X

y
x

X




R



 This rotates every vector in the plane








'y

X new

 No vector that remains unchanged
 In these cases the Eigen vectors and values are 

complex
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complex
 Some matrices are special however..
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Symmetric Matrices





  7.05.1





 17.0

 Matrices that do not change on transposition Matrices that do not change on transposition
 Row and column vectors are identical

 Symmetric matrix: Eigen vectors and Eigen values 
are always real

 Eigen vectors are always orthogonal
At 90 degrees to one another
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 At 90 degrees to one another

31 Aug 2010 66



Symmetric Matrices











17.0

7.05.1

 Eigen vectors point in the direction of the Eigen vectors point in the direction of the 
major and minor axes of the ellipsoid 
resulting from the transformation of aresulting from the transformation of a 
spheroid
 The eigen values are the lengths of the axes
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g g

31 Aug 2010 67



Symmetric matrices
 Eigen vectors Vi are orthonormal

 Vi
TVi = 1

 Vi
TVj = 0, i != j

 Listing all eigen vectors in matrix form V
VT V 1 VT = V-1

 VT V = I
 V VT= I

 M Vi = Vi

 In matrix form  :  M V  = V L
 L is a diagonal matrix with all eigen values

 M = V L VT
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 M  V L V
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