11-755/18-797 Machine Learning for Signal Processing

Fundamentals of Linear Algebra, Part II

Class 2. 31 August 2009

Instructor: Bhiksha Raj

Administrivia

- Registration: Anyone on waitlist still?
- We have a second TA
 - Sohail Bahmani
 - sbahmani@andrew.cmu.edu

Homework: Slightly delayed

- □ Linear algebra
- Adding some fun new problems.
- Use the discussion lists on blackboard.andrew.cmu.edu

Blackboard – if you are not registered on blackboard please register

Overview

- Vectors and matrices
- Basic vector/matrix operations
- Vector products
- Matrix products
- Various matrix types
- Matrix inversion
- Matrix interpretation
- Eigenanalysis
- Singular value decomposition

- An identity matrix is a square matrix where
 - All diagonal elements are 1.0
 - □ All off-diagonal elements are 0.0
- Multiplication by an identity matrix does not change vectors

Diagonal Matrix

0

All off-diagonal elements are zero

1.5

2

0.5

- Diagonal elements are non-zero
- Scales the axes

-0.5

May flip axes

0.8

0.6

0.4

0.2

0 -0.2

-0.4

-0.6

-0.8

-1_-2

-1.5

-1

Diagonal matrix to transform images

Stretching

2	0	0	[1	1	•	2	•	2	2	•	2	•	10
0	1	0	1	2	•	1	•	5	6	•	10	•	10
0	0	1	1	1	•	1	•	0	0	•	1	•	1

- Location-based representation
- Scaling matrix only scales the X axis
 - The Y axis and pixel value are scaled by identity
- Not a good way of scaling.

Stretching

D =

1	1	1	1	1	1	1	1	1	1
1	1	1	1	0	0	0	1	1	1
1	1	1	1	0	0	0	1	1	1
1	1	1	1	0	1	0	1	1	1
1	1	1	1	1	1	1	1	1	1
1	1	1	1	1	1	1	1	1	1
1	1	0	1	1	1	1	1	0	1
1	0	0	1	1	1	1	1	0	0
1	0	0	0	1	1	1	0	0	0
1	0	0	0	1	1	1	0	0	Ο
1	1	1	1	1	1	1	1	1	1

$$A = \begin{bmatrix} 1 & .5 & 0 & 0 & .\\ 0 & .5 & 1 & .5 & .\\ 0 & 0 & 0 & .5 & .\\ 0 & 0 & 0 & 0 & .\\ . & . & . & . \end{bmatrix} (N \ge 2N)$$

$$Newpic = DA$$

Better way

Modifying color

Scale only Green

Permutation Matrix

- A permutation matrix simply rearranges the axes
 - The row entries are axis vectors in a different order
 - The result is a combination of rotations and reflections
- The permutation matrix effectively *permutes* the arrangement of the elements in a vector

Permutation Matrix

Reflections and 90 degree rotations of images and objects

Permutation Matrix

- Reflections and 90 degree rotations of images and objects
 - Object represented as a matrix of 3-Dimensional "position" vectors
 - Positions identify each point on the surface

- A rotation matrix *rotates* the vector by some angle θ
- Alternately viewed, it rotates the axes
 - The new axes are at an angle θ to the old one

Note the representation: 3-row matrix

- Rotation only applies on the "coordinate" rows
- □ The value does not change
- Why is pacman grainy?

3-D Rotation $\underbrace{x_{new}}_{\bigvee f \to f} \bigoplus_{i \to i} \bigoplus_{j \to i} \bigoplus_{i \to i} \bigoplus_{i \to i} \bigoplus_{j \to i} \bigoplus_{i \to i}$

- 2 degrees of freedom
 - □ 2 separate angles
- What will the rotation matrix be?

- What would we see if the cone to the left were transparent if we looked at it along the normal to the plane
 - The plane goes through the origin
 - Answer: the figure to the right
- How do we get this? Projection

- Each pixel in the cone to the left is mapped onto to its "shadow" on the plane in the figure to the right
- The location of the pixel's "shadow" is obtained by multiplying the vector V representing the pixel's location in the first figure by a matrix A
 - $\Box \quad Shadow(V) = A V$
- The matrix *A* is a projection matrix

- Consider any plane specified by a set of vectors W₁, W₂..
 Or matrix [W₁ W₂..]
- Any vector can be projected onto this plane by multiplying it with the projection matrix for the plane
 - The projection is the shadow

- Given a set of vectors W1, W2, which form a matrix W = [W1 W2..]
- The projection matrix that transforms any vector X to its projection on the plane is
 - $\square P = W (W^{\mathsf{T}}W)^{-1} W^{\mathsf{T}}$
 - We will visit matrix inversion shortly
- Magic any set of vectors from the same plane that are expressed as a matrix will give you the same projection matrix

•
$$P = V (V^T V)^{-1} V^T$$

- Draw any two vectors W1 and W2 that lie on the plane
 - ANY two so long as they have different angles
- Compose a matrix W = [W1 W2]
- Compose the projection matrix P = W (W^TW)⁻¹ W^T
- Multiply every point on the cone by P to get its projection
- View it 🙂
 - I'm missing a step here what is it?

- The projection actually projects it onto the plane, but you're still seeing the plane in 3D
 - The result of the projection is a 3-D vector
 - $P = W (W^T W)^{-1} W^T = 3x3, P^*Vector = 3x1$
 - The image must be rotated till the plane is in the plane of the paper
 - The Z axis in this case will always be zero and can be ignored
 - How will you rotate it? (remember you know W1 and W2)

Projection matrix properties

- The projection of any vector that is already on the plane is the vector itself
 - Px = x if x is on the plane
 - If the object is already on the plane, there is no further projection to be performed
- The projection of a projection is the projection

□ P (Px) = Px

- That is because Px is already on the plane
- Projection matrices are *idempotent*
 - □ P² = P
- $_{31 \text{ Aug } 2010}$ Follows from the above

11-755/18-797

Projections: A more physical meaning

- Let W₁, W₂. W_k be "bases"
- We want to explain our data in terms of these "bases"
 - We often cannot do so
 - But we can explain a significant portion of it
- The portion of the data that can be expressed in terms of our vectors W₁, W₂, ... W_k, is the projection of the data on the W₁... W_k (hyper) plane
 - In our previous example, the "data" were all the points on a cone
 - The interpretation for volumetric data is obvious

Projection : an example with sounds

The spectrogram (matrix) of a piece of music

- How much of the above music was composed of the above notes
 - I.e. how much can it be explained by the notes

Projection: one note

31 Aug 2010

11-755/18-797

26

Floored all matrix values below a threshold to zero

Projection: multiple notes

The spectrogram (matrix) of a piece of music

- $\bullet P = W (W^{\mathsf{T}}W)^{-1} W^{\mathsf{T}}$
- Projected Spectrogram = P * M

Projection: multiple notes, cleaned up

The spectrogram (matrix) of a piece of music

- $P = W (W^T W)^{-1} W^T$
- Projected Spectrogram = P * M

Projection and Least Squares

- Projection actually computes a *least squared error* estimate
- For each vector V in the music spectrogram matrix
 - Approximation: $V_{approx} = a*note1 + b*note2 + c*note3..$

- Error vector $E = V V_{approx}$
- Squared error energy for V $e(V) = norm(E)^2$
- Total error = sum_over_all_V { e(V) } = $\Sigma_V e(V)$
- Projection computes V_{approx} for all vectors such that Total error is minimized
 - □ It does not give you "a", "b", "c".. Though
 - That needs a different operation the inverse / pseudo inverse

Orthogonal and Orthonormal matrices

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 0.707 & -0.354 & 0.612 \\ 0.707 & 0.354 & -0.612 \\ 0 & 0.866 & 0.5 \end{bmatrix}$$

- Orthogonal Matrix : AA^{T} = diagonal
 - Each row vector lies exactly along the normal to the plane specified by the rest of the vectors in the matrix
- Orthonormal Matrix: $AA^T = A^TA = I$
 - In additional to be orthogonal, each vector has length exactly = 1.0
 - Interesting observation: In a square matrix if the length of the row vectors is 1.0, the length of the column vectors is also 1.0

Orthogonal and Orthonormal Matrices

- Orthonormal matrices will retain the relative angles between transformed vectors
 - Essentially, they are combinations of rotations, reflections and permutations
 - Rotation matrices and permutation matrices are all orthonormal matrices
 - The vectors in an orthonormal matrix are at 90degrees to one another.
- Orthogonal matrices are like Orthonormal matrices with stretching
 - The product of a diagonal matrix and an orthonormal matrix

Matrix Rank and Rank-Deficient Matrices

- Some matrices will eliminate one or more dimensions during transformation
 - These are *rank deficient* matrices
 - The rank of the matrix is the dimensionality of the trasnsformed version of a full-dimensional object

Matrix Rank and Rank-Deficient Matrices

- Some matrices will eliminate one or more dimensions during transformation
 - These are *rank deficient* matrices
 - The rank of the matrix is the dimensionality of the transformed version of a full-dimensional object

Projections are often examples of rank-deficient transforms

- $P = W (W^T W)^{-1} W^T$; Projected Spectrogram = P * M
- The original spectrogram can never be recovered
 P is rank deficient
- P explains all vectors in the new spectrogram as a mixture of only the 4 vectors in W
 - There are only 4 *independent* bases
 - Rank of P is 4

- Non-square matrices add or subtract axes
 - More rows than columns \rightarrow add axes
 - But does not increase the dimensionality of the data

31 Aug 2010

- Non-square matrices add or subtract axes

 - □ Fewer rows than columns \rightarrow reduce axes
 - May reduce dimensionality of the data

The Rank of a Matrix

- The matrix rank is the dimensionality of the transformation of a fulldimensioned object in the original space
- The matrix can never *increase* dimensions
 - Cannot convert a circle to a sphere or a line to a circle
- The rank of a matrix can never be greater than the lower of its two
 Audimensions
 11-755/18-797

The Rank of Matrix

- Projected Spectrogram = P * M
 - Every vector in it is a combination of only 4 bases
- The rank of the matrix is the smallest no. of bases required to describe the output
 - E.g. if note no. 4 in P could be expressed as a combination of notes 1,2 and 3, it provides no additional information
 - Eliminating note no. 4 would give us the same projection
 - The rank of P would be 3!

If an N-D object is compressed to a K-D object by a matrix, it will also be compressed to a K-D object by the transpose of the matrix

- The determinant is the "volume" of a matrix
- Actually the volume of a parallelepiped formed from its row vectors
 - Also the volume of the parallelepiped formed from its column vectors
- Standard formula for determinant: in text book

Matrix Determinant: Another Perspective

- The determinant is the ratio of N-volumes
 - If V₁ is the volume of an N-dimensional object "O" in Ndimensional space
 - O is the complete set of points or vertices that specify the object
 - If V₂ is the volume of the N-dimensional object specified by A*O, where A is a matrix that transforms the space
 - $|A| = V_2 / V_1$

Matrix Determinants

- Matrix determinants are only defined for square matrices
 - They characterize volumes in linearly transformed space of the same dimensionality as the vectors
- Rank deficient matrices have determinant 0
 - Since they compress full-volumed N-D objects into zero-volume N-D objects
 - E.g. a 3-D sphere into a 2-D ellipse: The ellipse has 0 volume (although it does have area)
- Conversely, all matrices of determinant 0 are rank deficient
 - Since they compress full-volumed N-D objects into zero-volume objects

Multiplication properties

Properties of vector/matrix products

Associative

$$\mathbf{A} \cdot (\mathbf{B} \cdot \mathbf{C}) = (\mathbf{A} \cdot \mathbf{B}) \cdot \mathbf{C}$$

Distributive

$$\mathbf{A} \cdot (\mathbf{B} + \mathbf{C}) = \mathbf{A} \cdot \mathbf{B} + \mathbf{A} \cdot \mathbf{C}$$

NOT commutative!!!

 $\mathbf{A} \cdot \mathbf{B} \neq \mathbf{B} \cdot \mathbf{A}$

left multiplications ≠ right multiplications

Transposition

$$(\mathbf{A} \cdot \mathbf{B})^T = \mathbf{B}^T \cdot \mathbf{A}^T$$

Determinant properties

Associative for square matrices

$$|\mathbf{A} \cdot \mathbf{B} \cdot \mathbf{C}| = |\mathbf{A}| \cdot |\mathbf{B}| \cdot |\mathbf{C}|$$

- Scaling volume sequentially by several matrices is equal to scaling once by the product of the matrices
- Volume of sum != sum of Volumes

$$|(\mathbf{B} + \mathbf{C})| \neq |\mathbf{B}| + |\mathbf{C}|$$

- The volume of the parallelepiped formed by row vectors of the sum of two matrices is not the sum of the volumes of the parallelepipeds formed by the original matrices
- Commutative for square matrices!!! $|\mathbf{A} \cdot \mathbf{B}| = |\mathbf{B} \cdot \mathbf{A}| = |\mathbf{A}| \cdot |\mathbf{B}|$
 - □ The order in which you scale the volume of an object is irrelevant

Matrix Inversion

- A matrix transforms an N-D object to a different N-D object
- What transforms the new object back to the original?
 - □ The *inverse transformation*
- The inverse transformation is called the matrix inverse

Matrix Inversion

- The product of a matrix and its inverse is the identity matrix
 - Transforming an object, and then inverse transforming it gives us back the original object

- Rank deficient matrices "flatten" objects
 - In the process, multiple points in the original object get mapped to the same point in the transformed object
- It is not possible to go "back" from the flattened object to the original object
 - Because of the many-to-one forward mapping
- Rank deficient matrices have no inverse

Revisiting Projections and Least Squares

- Projection computes a *least squared error* estimate
- For each vector V in the music spectrogram matrix
 - Approximation: $V_{approx} = a*note1 + b*note2 + c*note3..$

- Error vector $E = V V_{approx}$
- Squared error energy for V $e(V) = norm(E)^2$
- Total error = Total error + e(V)
- Projection computes V_{approx} for all vectors such that Total error is minimized
- But WHAT ARE "a" "b" and "c"?

- We are approximating spectral vectors V as the transformation of the vector [a b c]^T
 - Note we're viewing the collection of bases in W as a transformation
- The solution is obtained using the *pseudo inverse*
 - □ This give us a *LEAST* SQUARES solution
 - If W were square and invertible Pinv(W) = W⁻¹, and V=V_{approx}

- Recap: P = W (W^TW)⁻¹ W^T, Projected Spectrogram = P*M
- Approximation: $M \approx W^*X$
- The amount of W in each vector = X = PINV(W)*M
- W*Pinv(W)*M = Projected Spectrogram = P*M
 - W*Pinv(W) = Projection matrix = W (W^TW)⁻¹ W. PINV(W) = (W^TW)⁻¹W^T

31 Aug 2010

X = Pinv(W) * M; Projected matrix = W*X = W*Pinv(W)*M

How about the other way?

WV \approx M

$$W = M * Pinv(V)$$
 $U = WV$

31 Aug 2010

Pseudo-inverse (PINV)

- Pinv() applies to non-square matrices
- Pinv (Pinv (A))) = A
- A*Pinv(A)= projection matrix!
 - Projection onto the columns of A
- If A = K x N matrix and K > N, A projects N-D vectors into a higher-dimensional K-D space
 Pinv(A)*A = I in this case

Matrix inversion (division)

- The inverse of matrix multiplication
 - Not element-wise division!!
- Provides a way to "undo" a linear transformation
 - Inverse of the unit matrix is itself
 - Inverse of a diagonal is diagonal
 - Inverse of a rotation is a (counter)rotation (its transpose!)
 - Inverse of a rank deficient matrix does not exist!
 - But pseudoinverse exists
- Pay attention to multiplication side!

 $\mathbf{A} \cdot \mathbf{B} = \mathbf{C}, \ \mathbf{A} = \mathbf{C} \cdot \mathbf{B}^{-1}, \ \mathbf{B} = \mathbf{A}^{-1} \cdot \mathbf{C}$

- Matrix inverses defined for square matrices only
 - If matrix not square use a matrix pseudoinverse:

$$\mathbf{A} \cdot \mathbf{B} = \mathbf{C}, \ \mathbf{A} = \mathbf{C} \cdot \mathbf{B}^+, \ \mathbf{B} = \mathbf{A}^+ \cdot \mathbf{C}$$

MATLAB syntax: inv(a), pinv(a) 11-755/18-797

31 Aug 2010

What is the Matrix ? MATRIX

Duality in terms of the matrix identity

- Can be a container of data
 - An image, a set of vectors, a table, etc ...
- Can be a <u>linear</u> transformation
 - A process by which to transform data in another matrix
- We'll usually start with the first definition and then apply the second one on it
 - Very frequent operation
 - Room reverberations, mirror reflections, etc …
- Most of signal processing and machine learning are matrix operations!

Eigenanalysis

- If something can go through a process mostly unscathed in character it is an *eigen*-something
 - Sound example:
 Sound example:
- A vector that can undergo a matrix multiplication and keep pointing the same way is an eigenvector
 - Its length can change though
- How much its length changes is expressed by its corresponding *eigenvalue*
 - Each eigenvector of a matrix has its eigenvalue
- Finding these "eigenthings" is called eigenanalysis

- Vectors that do not change angle upon transformation
 - They may change length

 $MV = \lambda V$

- \Box V = eigen vector
- $\Box \quad \lambda = eigen value$
- Matlab: [V, L] = eig(M)
 - L is a diagonal matrix whose entries are the eigen values
 - V is a maxtrix whose columns are the eigen vectors

Eigen vector example

Matrix multiplication revisited

Matrix transformation "transforms" the space
 Warps the paper so that the normals to the two vectors now lie along the axes

- Draw two lines
- Stretch / shrink the paper along these lines by factors λ_1 and λ_2
 - □ The factors could be negative implies flipping the paper
- The result is a transformation of the space

A stretching operation

- Draw two lines
- Stretch / shrink the paper along these lines by factors λ_1 and λ_2
 - □ The factors could be negative implies flipping the paper
- The result is a transformation of the space

Physical interpretation of eigen vector

- The result of the stretching is exactly the same as transformation by a matrix
- The axes of stretching/shrinking are the eigenvectors
 - The degree of stretching/shrinking are the corresponding eigenvalues
- The EigenVectors and EigenValues convey all the information about the matrix

Physical interpretation of eigen vector

- The result of the stretching is exactly the same as transformation by a matrix
- The axes of stretching/shrinking are the eigenvectors
 - The degree of stretching/shrinking are the corresponding eigenvalues
- The EigenVectors and EigenValues convey all the information about the matrix

Eigen Analysis

- Not all square matrices have nice eigen values and vectors
 - E.g. consider a rotation matrix

- □ This rotates every vector in the plane
 - No vector that remains unchanged
- In these cases the Eigen vectors and values are complex
- Some matrices are special however..

- Matrices that do not change on transposition
 - Row and column vectors are identical
- Symmetric matrix: Eigen vectors and Eigen values are always real
- Eigen vectors are always orthogonal
 - □ At 90 degrees to one another

- Eigen vectors point in the direction of the major and minor axes of the ellipsoid resulting from the transformation of a spheroid
 - □ The eigen values are the lengths of the axes

Symmetric matrices

• Eigen vectors V_i are orthonormal

$$V_i V_i = 1 V_i V_j = 0, i!= j$$

Listing all eigen vectors in matrix form V
 VT – V-1

$$V^{\mathsf{T}} \mathsf{V} = \mathsf{V}^{\mathsf{T}}$$

- \Box V V^T= I
- $M V_i = \lambda V_i$
- In matrix form : M V = V L

L is a diagonal matrix with all eigen values

 $\blacksquare M = V L V^{\mathsf{T}}$