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Administrivia
 Registration: Anyone on waitlist still?

 We have a second TA
 Sohail Bahmani
 sbahmani@andrew.cmu.edu

 Homework:  Slightly delayed
 Linear algebra
 Adding some fun new problems.
 Use the discussion lists on blackboard.andrew.cmu.edu

 Blackboard – if you are not registered on blackboard 
please register
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Overview
 Vectors and matrices

B i t / t i ti Basic vector/matrix operations
 Vector products

M t i d t Matrix products
 Various matrix types

M t i i i Matrix inversion
 Matrix interpretation
 Eigenanalysis
 Singular value decomposition
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The Identity Matrix
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 An identity matrix is a square matrix wherey q
 All diagonal elements are 1.0
 All off-diagonal elements are 0.0

 Multiplication by an identity matrix does not change vectors
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p y y g
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Diagonal Matrix
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 All off-diagonal elements are zero
Di l l t Diagonal elements are non-zero

 Scales the axes
 May flip axes
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 May flip axes
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Diagonal matrix to transform images

 How?
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Stretching
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 Location-based 
representation
Scaling matrix only Scaling matrix – only 
scales the X axis
 The Y axis and pixel value p

are scaled by identity
 Not a good way of scaling.
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Stretching
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 Better way
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Modifying color





 BGR













P














001












100
020 PNewpic

 Scale only Green

11-755/18-797

y

31 Aug 2010 9



Permutation Matrix
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 A permutation matrix simply rearranges the axes
 The row entries are axis vectors in a different order
 The result is a combination of rotations and reflections

 The permutation matrix effectively permutes the 
arrangement of the elements in a vector
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arrangement of the elements in a vector
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Permutation Matrix
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 Reflections and 90 degree rotations of 
images and objects
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images and objects
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Permutation Matrix
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 Reflections and 90 degree rotations of images and objects
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 Reflections and 90 degree rotations of images and objects
 Object represented as a matrix of 3-Dimensional “position” 

vectors
 Positions identify each point on the surface
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 Positions identify each point on the surface
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Rotation Matrix
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 A rotation matrix rotates the vector by some angle 
 Alternately viewed, it rotates the axes
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 The new axes are at an angle  to the old one
31 Aug 2010 13



Rotating a picture
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 Note the representation: 3-row matrix Note the representation: 3 row matrix
 Rotation only applies on the “coordinate” rows
 The value does not change
 Why is pacman grainy?
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 Why is pacman grainy?
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3-D Rotation

Y

Xnew

Ynew

X

Y

Z


Znew


 2 degrees of freedom

X

2 degrees of freedom
 2 separate angles

 What will the rotation matrix be? What will the rotation matrix be?
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Projectionsj

 What would we see if the cone to the left were transparent if we 
looked at it along the normal to the plane
 The plane goes through the origin
 Answer: the figure to the right

 How do we get this?  Projection

11-755/18-797

g j
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Projectionsj

 Each pixel in the cone to the left is mapped onto to its “shadow” on the plane in 
the figure to the right

 The location of the pixel’s “shadow” is obtained by multiplying the vector  V
representing the pixel’s location in the first figure by a matrix A
 Shadow (V )= A V

 The matrix A is a projection matrix The matrix A is a projection matrix
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Projections
90degrees

j
90degrees

W2

projectionW1

 Consider any plane specified by a set of vectors W1, W2..
 Or matrix [W W ] Or matrix [W1 W2 ..]

 Any vector can be projected onto this plane by 
multiplying it with the projection matrix for the plane
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 The projection is the shadow
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Projection Matrix
90degrees

j
90degrees

W2

projectionW1

 Given a set of vectors W1, W2, which form a matrix W = [W1 W2.. ]
 The projection matrix that transforms any vector X to its projection on the plane isp j y p j p

 P = W (WTW)-1 WT

 We will visit matrix inversion shortly

 Magic – any set of vectors from the same plane that are expressed as a matrix will give 
you the same projection matrix
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you the same projection matrix
 P = V (VTV)-1 VT
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Projectionsj

 HOW?
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Projectionsj

 Draw any two vectors W1 and W2 that lie on the plane
 ANY two so long as they have different angles

 Compose a matrix W = [W1 W2]
 Compose the projection matrix P = W (WTW)-1 WT

 Multiply every point on the cone by P to get its projection

11-755/18-797

 View it 
 I’m missing a step here – what is it?
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Projectionsj

 The projection actually projects it onto the plane, but you’re still seeing 
the plane in 3D
 The result of the projection is a 3-D vector
 P = W (WTW)-1 WT = 3x3,  P*Vector = 3x1
 The image must be rotated till the plane is in the plane of the paper

 The Z axis in this case will always be zero and can be ignored

11-755/18-797

 How will you rotate it? (remember you know W1 and W2)
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Projection matrix propertiesj

 The projection of any vector that is already on the plane is the vector itself
 Px = x if x is on the plane
 If the object is already on the plane, there is no further projection to be performed

 The projection of a projection is the projection
 P (Px) = Px
 That is because Px is already on the plane
P j ti t i id t t

11-755/18-797

 Projection matrices are idempotent
 P2 = P

 Follows from the above31 Aug 2010 23



Projections: A more physical meaningj
 Let W1, W2 .. Wk be “bases”

W t t l i d t i t f th We want to explain our data in terms of these 
“bases”
 We often cannot do so We often cannot do so
 But we can explain a significant portion of it

Th ti f th d t th t b d i The portion of the data that can be expressed in 
terms of our vectors W1, W2, .. Wk,  is the projection 
of the data on the W1 Wk (hyper) planeof the data on the W1 .. Wk (hyper) plane
 In our previous example, the “data” were all the points on a 

cone
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 The interpretation for volumetric data is obvious
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Projection : an example with soundsj

Th t ( t i ) f i f i The spectrogram (matrix) of a piece of music

 How much of the above music was composed of the 
above notes
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above notes
 I.e. how much can it be explained by the notes
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Projection: one notej

M = 

Th t ( t i ) f i f i The spectrogram (matrix) of a piece of music

W = 

 M = spectrogram;   W = note
P W (WTW) 1 WT
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 P = W (WTW)-1 WT

 Projected Spectrogram = P * M
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Projection: one note – cleaned upj

M = 

Th t ( t i ) f i f i The spectrogram (matrix) of a piece of music

W = 

 Floored all matrix values below a threshold to zero
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Projection: multiple notesj

M = 

Th t ( t i ) f i f i The spectrogram (matrix) of a piece of music

W = 

 P = W (WTW)-1 WT

P j t d S t P * M
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 Projected Spectrogram = P * M
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Projection: multiple notes, cleaned upj

M = 

Th t ( t i ) f i f i The spectrogram (matrix) of a piece of music

W = 

 P = W (WTW)-1 WT

P j t d S t P * M
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 Projected Spectrogram = P * M
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Projection and Least Squaresj
 Projection actually computes a least squared error estimate
 For each vector V in the music spectrogram matrix

 Approximation:  Vapprox = a*note1 + b*note2 + c*note3..pp approx
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Vapprox  ot
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 Error vector E =  V – Vapprox











 c

app ox n n n
 Squared error energy for V     e(V) = norm(E)2

 Total error = sum_over_all_V { e(V) } = V e(V)
 Projection computes Vapprox for all vectors such that Total error is 

i i i dminimized
 It does not give you “a”, “b”, “c”.. Though

 That needs a different operation – the inverse / pseudo inverse
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Orthogonal and Orthonormal matrices
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 Orthogonal Matrix  :  AAT = diagonal
 Each row vector lies exactly along the normal to the plane 

specified by the rest of the vectors in the matrix

 Orthonormal Matrix: AAT = ATA = I
 In additional to be orthogonal, each vector has length exactly = 

1.0
 Interesting observation: In a square matrix if the length of the row 
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vectors is 1.0, the length of the column vectors is also 1.0
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Orthogonal and Orthonormal Matrices

 Orthonormal matrices will retain the relative angles 
between transformed vectorsbetween transformed vectors
 Essentially, they are combinations of rotations, reflections 

and permutations
 Rotation matrices and permutation matrices are all 

orthonormal matrices
 The vectors in an orthonormal matrix are at 90degrees to The vectors in an orthonormal matrix are at 90degrees to 

one another.
 Orthogonal matrices are like Orthonormal matrices 

with stretching
 The product of a diagonal matrix and an orthonormal matrix
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Matrix Rank and Rank-Deficient Matrices

P * Cone = 

 Some matrices will eliminate one or more dimensions during g
transformation
 These are rank deficient matrices
 The rank of the matrix is the dimensionality of the trasnsformed

11-755/18-797

 The rank of the matrix is the dimensionality of the trasnsformed 
version of a full-dimensional object
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Matrix Rank and Rank-Deficient Matrices

 Some matrices will eliminate one or more dimensions 

Rank = 2 Rank = 1

during transformation
 These are rank deficient matrices
 The rank of the matrix is the dimensionality of the transformed 

11-755/18-797

y
version of a full-dimensional object
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Projections are often examples of rank-deficient transforms

M = 

P W (WTW) 1 WT P j t d S t P * M

W = 

 P = W (WTW)-1 WT ; Projected Spectrogram = P * M
 The original spectrogram can never be recovered

 P is rank deficient
 P explains all vectors in the new spectrogram as a 

mixture of only the 4 vectors in W
 There are only 4 independent bases
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 There are only 4 independent bases
 Rank of P is 4
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Non-square Matrices
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 Non-square matrices add or subtract axes


X = 2D data P = transform PX = 3D, rank 2



Non square matrices add or subtract axes
 More rows than columns  add axes

 But does not increase the dimensionality of the data
 Fewer rows than columns reduce axes
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 Fewer rows than columns  reduce axes
 May reduce dimensionality of the data
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Non-square Matrices
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 Non-square matrices add or subtract axes

X = 3D data, rank 3


P = transform PX = 2D, rank 2
 Nzzz ..21

Non square matrices add or subtract axes
 More rows than columns  add axes

 But does not increase the dimensionality of the data
 Fewer rows than columns reduce axes
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 Fewer rows than columns  reduce axes
 May reduce dimensionality of the data
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The Rank of  a Matrix
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 The matrix rank is the dimensionality of the transformation of a full-
dimensioned object in the original spacej g p

 The matrix can never increase dimensions
 Cannot convert a circle to a sphere or a line to a circle
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 The rank of a matrix can never be greater than the lower of its two 
dimensions31 Aug 2010 38



The Rank of Matrix

M = 

 Projected Spectrogram = P * M
 Every vector in it is a combination of only 4 bases

 The rank of the matrix is the smallest no. of bases 
required to describe the outputrequired to describe the output
 E.g. if note no. 4 in P could be expressed as a combination of 

notes 1,2 and 3, it provides no additional information
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 Eliminating note no. 4 would give us the same projection
 The rank of P would be 3!
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Matrix rank is unchanged by transposition
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 If an N-D object is compressed to a K-D 
object by a matrix it will also be compressedobject by a matrix, it will also be compressed 
to a K-D object by the transpose of the matrix
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Matrix Determinant
(r2) (r1+r2)

(r1)

(r2)

The determinant is the “volume” of a matrix

(r1)

 The determinant is the volume  of a matrix
 Actually the volume of a parallelepiped formed from 

its row vectors
 Also the volume of the parallelepiped formed from its 

column vectors
 Standard formula for determinant: in text book

11-755/18-797

 Standard formula for determinant: in text book
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Matrix Determinant: Another Perspective
Volume = V1 Volume = V2
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The determinant is the ratio of N volumes The determinant is the ratio of N-volumes
 If V1 is the volume of an N-dimensional object “O” in N-

dimensional space
O i th l t t f i t ti th t if th bj t O is the complete set of points or vertices that specify the object

 If V2 is the volume of the N-dimensional object specified by A*O,  
where A is a matrix that transforms the space
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 |A| = V2 / V1
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Matrix Determinants
 Matrix determinants are only defined for square matrices

 They characterize volumes in linearly transformed space of the They characterize volumes in linearly transformed space of the 
same dimensionality as the vectors

 Rank deficient matrices have determinant 0Rank deficient matrices have determinant 0
 Since they compress full-volumed N-D objects into zero-volume 

N-D objects
 E g a 3-D sphere into a 2-D ellipse: The ellipse has 0 volume E.g. a 3 D sphere into a 2 D ellipse:  The ellipse has 0 volume 

(although it does have area)

 Conversely, all matrices of determinant 0 are rank deficientConversely, all matrices of determinant 0 are rank deficient
 Since they compress full-volumed N-D objects into zero-volume 

objects
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Multiplication properties
 Properties of vector/matrix products

 Associative Associative

 Distributive

A  (B C)  (A B) C
 Distributive

 NOT commutative!!!

A  (B C)  A B A C
 NOT commutative!!!

 left multiplications ≠ right multiplications
A B  B A

p g p
 Transposition

  TTT ABBA 
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  ABBA
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Determinant properties
 Associative for square matrices CBACBA 

 Scaling volume sequentially by several matrices is equal to 
scaling once by the product of the matrices

 Volume of sum != sum of Volumes

 The volume of the parallelepiped formed by row vectors of the

CBCB  )(

 The volume of the parallelepiped formed by row vectors of the 
sum of two matrices  is not the sum of the volumes of the 
parallelepipeds formed by the original matrices

 Commutative for square matrices!!!
BAABBA 
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 The order in which you scale the volume of an object is irrelevant
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Matrix Inversion
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D object to a different N-
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D object to a different N-
D object

 What transforms the new 
object back to the 
original?

1
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 The inverse transformation

 The inverse 
transformation is called
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 TQ

transformation is called 
the matrix inverse
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Matrix Inversion
T T-1

 The product of a matrix and its inverse is the
T-1T = I

 The product of a matrix and its inverse is the 
identity matrix
 Transforming an object and then inverse Transforming an object, and then inverse 

transforming it gives us back the original object
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Inverting rank-deficient matrices
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 Rank deficient matrices “flatten” objects
 In the process, multiple points in the original object get mapped to the same point in the 

transformed  objectj

 It is not possible to go “back” from the flattened object to the original object
 Because of the many-to-one forward mapping
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 Rank deficient matrices have no inverse
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Revisiting Projections and Least Squares
 Projection computes a least squared error estimate
 For each vector V in the music spectrogram matrix

 Approximation: V = a*note1 + b*note2 + c*note3 Approximation:  Vapprox = a note1 + b note2 + c note3..
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bWVapprox

 Error vector E =  V – Vapprox

 Squared error energy for V     e(V) = norm(E)2

 Total error = Total error + e(V) Total error = Total error + e(V)
 Projection computes Vapprox for all vectors such that Total error is 

minimized
B t WHAT ARE “ ” “b” d “ ”?
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 But WHAT ARE “a” “b” and “c”?
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The Pseudo Inverse (PINV)
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 We are approximating spectral vectors V as the
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 We are approximating spectral vectors V as the 
transformation of the vector [a b c]T
 Note – we’re viewing the collection of bases in W as a 

transformation

 The solution is obtained using the pseudo inverse The solution is obtained using the pseudo inverse
 This give us a LEAST SQUARES solution

 If W were square and invertible Pinv(W) = W-1, and V=Vapprox
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Explaining music with one note

M = 

X =PINV(W)*M

W = 

 Recap:  P = W (WTW)-1 WT, Projected Spectrogram = P*M

 Approximation:  M     W*X
 The amount of W in each vector = X = PINV(W)*M

W*Pi (W)*M P j t d S t P*M
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 W*Pinv(W)*M = Projected Spectrogram = P*M
 W*Pinv(W) = Projection matrix = W (WTW)-1 W. PINV(W) = (WTW)-1WT
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Explanation with multiple notes

M = 

X=PINV(W)*M( )

W =W  
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 X =  Pinv(W) * M;   Projected matrix = W*X = W*Pinv(W)*M
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How about the other way?

M = 

V = 

W = ??W  ?? U = 
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 WV \approx M              W = M * Pinv(V)       U = WV
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Pseudo-inverse (PINV)

 Pinv()  applies to non-square matrices
 Pinv ( Pinv (A))) = A
 A*Pinv(A)= projection matrix!
 Projection onto the columns of A

 If A = K x N matrix and K > N, A projects N-D 
vectors into a higher-dimensional K-D space

 Pinv(A)*A = I  in this case
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Matrix inversion (division)
 The inverse of matrix multiplication

 Not element-wise division!!
Provides a way to “undo” a linear transformation Provides a way to “undo” a linear transformation
 Inverse of the unit matrix is itself
 Inverse of a diagonal is diagonal
 Inverse of a rotation is a (counter)rotation (its transpose!)
 Inverse of a rank deficient matrix does not exist!

 But pseudoinverse exists But pseudoinverse exists
 Pay attention to multiplication side!

A B  C,  A  C B1,  B  A 1 C
 Matrix inverses defined for square matrices only

 If matrix not square use a matrix pseudoinverse:
A B C A C B B A  C
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 MATLAB syntax: inv(a), pinv(a)

A B  C,  A  C B ,   B  A C
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What is the  Matrix   ?
 Duality in terms of the matrix identity

Can be a container of data Can be a container of data
 An image, a set of vectors, a table, etc …

 Can be a linear transformation
 A process by which to transform data in another matrix

 We’ll usually start with the first definition and 
then apply the second one on it
 Very frequent operation

R b ti i fl ti t Room reverberations, mirror reflections, etc …
 Most of signal processing and machine 

learning are matrix operations!
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learning are matrix operations!
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Eigenanalysis
 If something can go through a process mostly 

unscathed in character it is an eigen-somethingg g
 Sound example:

 A vector that can undergo a matrix multiplication 
and keep pointing the same way is an 
eigenvector
 Its length can change though Its length can change though

 How much its length changes is expressed by its 
corresponding eigenvaluep g g
 Each eigenvector of a matrix has its eigenvalue

 Finding these “eigenthings” is called 
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eigenanalysis
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EigenVectors and EigenValues
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Black 
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eigen 
vectors

 Vectors that do not change angle upon transformation
They may change length They may change length

V i t

VMV 
 V = eigen vector
  = eigen value
 Matlab:  [V, L] = eig(M)

L i di l t i h t i th i l
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 L is a diagonal matrix whose entries are the eigen values
 V is a maxtrix whose columns are the eigen vectors
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Eigen vector example
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Matrix multiplication revisited
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 2.11.1

 Matrix transformation “transforms” the space Matrix transformation transforms  the space
 Warps the paper so that the normals to the two 

vectors now lie along the axes
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ec o s o e a o g e a es
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A stretching operation
1.4 0.8

 Draw two lines
 Stretch / shrink the paper along these lines by p p g y

factors 1 and 2
 The factors could be negative – implies flipping the paper
The result is a transformation of the space
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 The result is a transformation of the space
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A stretching operation

 Draw two lines
 Stretch / shrink the paper along these lines by p p g y

factors 1 and 2
 The factors could be negative – implies flipping the paper
The result is a transformation of the space
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 The result is a transformation of the space

31 Aug 2010 62



Physical interpretation of eigen vector

 The result of the stretching is exactly the same as transformation 
by a matrix

 The axes of stretching/shrinking are the eigenvectorse a es o st etc g/s g a e t e e ge ecto s
 The degree of stretching/shrinking are the corresponding 

eigenvalues
 The EigenVectors and EigenValues convey all the information
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 The EigenVectors and EigenValues convey all the information 
about the matrix
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Physical interpretation of eigen vector
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 The result of the stretching is exactly the same as transformation 
by a matrix

 The axes of stretching/shrinking are the eigenvectors
 The degree of stretching/shrinking are the corresponding 

eigenvalues
 The EigenVectors and EigenValues convey all the information 

b t th t i
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about the matrix
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Eigen Analysis
 Not all square matrices have nice eigen values and 

vectorsvectors
 E.g. consider a rotation matrix

 sincos 
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R



 This rotates every vector in the plane








'y

X new

 No vector that remains unchanged
 In these cases the Eigen vectors and values are 

complex
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complex
 Some matrices are special however..
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Symmetric Matrices





  7.05.1





 17.0

 Matrices that do not change on transposition Matrices that do not change on transposition
 Row and column vectors are identical

 Symmetric matrix: Eigen vectors and Eigen values 
are always real

 Eigen vectors are always orthogonal
At 90 degrees to one another
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 At 90 degrees to one another
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Symmetric Matrices











17.0

7.05.1

 Eigen vectors point in the direction of the Eigen vectors point in the direction of the 
major and minor axes of the ellipsoid 
resulting from the transformation of aresulting from the transformation of a 
spheroid
 The eigen values are the lengths of the axes
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g g
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Symmetric matrices
 Eigen vectors Vi are orthonormal

 Vi
TVi = 1

 Vi
TVj = 0, i != j

 Listing all eigen vectors in matrix form V
VT V 1 VT = V-1

 VT V = I
 V VT= I

 M Vi = Vi

 In matrix form  :  M V  = V L
 L is a diagonal matrix with all eigen values

 M = V L VT
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 M  V L V
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