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11-755 Machine Learning for Signal Processing 

Representing Images and 
Sounds 

Class 4.  2 Sep 2010 

Instructor: Bhiksha Raj 
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Administrivia 
  Homework up 

  Basics of probability: Will not be covered 
  Very nice lecture by Aarthi Singh 

  http://www.cs.cmu.edu/~epxing/Class/10701/Lecture/lecture2.pdf 

  Another nice lecture by Paris Smaragdis 
  http://www.cs.illinois.edu/~paris/cs598-f10/cs598-f10/Lectures.html 

  Look for Lecture 2 

  Amazing number of resources on the web 
  Things to know: 

  Basic probability, Bayes rule 
  Probability distributions over discrete variables 
  Probability density and Cumulative density over continuous variables 

  Particularly Gaussian densities 
  Moments of a distribution 
  What is independence 
  Nice to know 

  What is maximum likelihood estimation 
  MAP estimation 
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Representing an Elephant 
  It was six men of Indostan,  

To learning much inclined,  
Who went to see the elephant,  
(Though all of them were blind),  
That each by observation  
Might satisfy his mind. 

  The first approached the elephant,  
And happening to fall  
Against his broad and sturdy side,  
At once began to bawl:  
"God bless me! But the elephant  
Is very like a wall!“ 

  The second, feeling of the tusk,  
Cried: "Ho! What have we here,  
So very round and smooth and sharp?  
To me 'tis very clear,  
This wonder of an elephant  
Is very like a spear!“ 

  The third approached the animal,  
And happening to take  
The squirming trunk within his hands,  
Thus boldly up and spake:  
"I see," quoth he, "the elephant  
Is very like a snake!“ 

  The fourth reached out an eager hand,  
And felt about the knee.  
"What most this wondrous beast is like  
Is might plain," quoth he;  
"Tis clear enough the elephant  
Is very like a tree." 

  The fifth, who chanced to touch the ear,  
Said: "E'en the blindest man  
Can tell what this resembles most:  
Deny the fact who can,  
This marvel of an elephant  
Is very like a fan.“ 

  The sixth no sooner had begun  
About the beast to grope,  
Than seizing on the swinging tail  
That fell within his scope,  
"I see," quoth he, "the elephant  
Is very like a rope.“ 

  And so these men of Indostan  
Disputed loud and long,  
Each in his own opinion  
Exceeding stiff and strong.  
Though each was partly right,  
All were in the wrong. 
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Representation 

  Describe these 
images 
  Such that a listener 

can visualize what you 
are describing 

  More images 
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Still more images 

How do you describe them? 
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Sounds 

  Sounds are just sequences of numbers 

  When plotted, they just look like blobs 
  Which leads to the natural “sounds are blobs” 

  Or more precisely, “sounds are sequences of numbers that, when 
plotted, look like blobs” 

  Which wont get us anywhere 
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Representation 

  Representation is description 
  But in compact form 
  Must describe the salient characteristics of the data 

  E.g. a pixel-wise description of the two images here will be 
completely different 

  Must allow identification, comparison, storage.. 

A A
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Representing images 

  The most common element in the image: 
background 
  Or rather large regions of relatively featureless shading 
  Uniform sequences of numbers 
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Image = 

Representing images using a “plain” image 

  Most of the figure is a more-or-less uniform shade 
  Dumb approximation – a image is a block of uniform shade 

  Will be mostly right! 
  How much of the figure is uniform? 

  How? Projection 
  Represent the images as vectors and compute the projection of the image on the 

“basis” 

B = 
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Adding more bases 

  Lets improve the approximation 
  Images have some fast varying regions 

  Dramatic changes 
  Add a second picture that has very fast changes 

  A checkerboard where every other pixel is black and the rest are white 

B1 B2 B2 B1 
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Adding still more bases 

  Regions that change with different speeds 

B1 B2 B3 B4 B5 B6 

Getting closer at 625 bases! 
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Representation using checkerboards 
  A “standard” representation 

  Checker boards are the same regardless of what picture you’re 
trying to describe 
  As opposed to using “nose shape” to describe faces and “leaf colour” 

to describe trees. 

  Any image can be specified as (for example) 
0.8*checkerboard(0) + 0.2*checkerboard(1) + 
0.3*checkerboard(2) .. 

  The definition is sufficient to reconstruct the image to some 
degree 
  Not perfectly though 
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What about sounds? 

  Square wave equivalents of checker boards 
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Projecting sounds 

B1 B2 B3 

= 
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Why checkerboards are great bases 
  We cannot explain one checkerboard 

in terms of another 
  The two are orthogonal to one another! 

  This means that we can find out the 
contributions of individual bases 
separately 
  Joint decompostion with multiple bases 

with give us the same result as 
separate decomposition with each of 
them 

  This never holds true if one basis can 
explain another 

B1 B2 
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Checker boards are not good bases 

  Sharp edges 
  Can never be used to explain rounded curves 
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Sinusoids ARE good bases 

  They are orthogonal 
  They can represent rounded shapes nicely 

  Unfortunately, they cannot represent sharp corners 
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What are the frequencies of the sinusoids 
  Follow the same format as 

the checkerboard: 
  DC 
  The entire length of the signal 

is one period 
  The entire length of the signal 

is two periods. 
  And so on.. 

  The k-th sinusoid: 
  F(n) = sin(2πkn/N) 

  N is the length of the signal 
  k is the number of periods in N 

samples 
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How many frequencies in all? 

  A max of L/2 periods are possible 
  If we try to go to (L/2 + X) periods, it ends up being identical to having (L/2 – X) 

periods 
  With sign inversion 

  Example for L = 20 
  Red curve = sine with 9 cycles (in a 20 point sequence) 

  Y(n) = sin(2π9n/20) 
  Green curve = sine with 11 cycles in 20 points 

  Y(n) = -sin(2π11n/20) 
  The blue lines show the actual samples obtained 

  These are the only numbers stored on the computer 
  This set is the same for both sinusoids 
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How to compose the signal from sinusoids 

  The sines form the vectors of the projection matrix 
  Pinv() will do the trick as usual 

B1 B2 B3 

= 
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How to compose the signal from sinusoids 

  The sines form the vectors of the projection matrix 
  Pinv() will do the trick as usual 

L/2 columns only 
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Interpretation.. 

  Each sinusoid’s amplitude is adjusted until it gives 
us the least squared error 
  The amplitude is the weight of the sinusoid 

  This can be done independently for each sinusoid 
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Interpretation.. 

  Each sinusoid’s amplitude is adjusted until it gives 
us the least squared error 
  The amplitude is the weight of the sinusoid 

  This can be done independently for each sinusoid 
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Interpretation.. 

  Each sinusoid’s amplitude is adjusted until it gives 
us the least squared error 
  The amplitude is the weight of the sinusoid 

  This can be done independently for each sinusoid 

2 Sep 2010 24 



9/2/10 

5 

11-755 / 18-797 

Interpretation.. 

  Each sinusoid’s amplitude is adjusted until it gives 
us the least squared error 
  The amplitude is the weight of the sinusoid 

  This can be done independently for each sinusoid 
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Sines by themselves are not enough 

  Every sine starts at zero 
  Can never represent a signal that is non-zero in the first 

sample! 
  Every cosine starts at 1 

  If the first sample is zero, the signal cannot be represented!  
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The need for phase 

  Allow the sinusoids to move! 

  How much do the sines shift? 

Sines are shifted: 
do not start with 
value = 0 
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Determining phase 

  Least squares fitting: move the sinusoid left / right, 
and at each shift, try all amplitudes 
  Find the combination of amplitude and phase that results in 

the lowest squared error 
  We can still do this separately for each sinusoid 

  The sinusoids are still orthogonal to one another 
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Determining phase 

  Least squares fitting: move the sinusoid left / right, 
and at each shift, try all amplitudes 
  Find the combination of amplitude and phase that results in 

the lowest squared error 
  We can still do this separately for each sinusoid 

  The sinusoids are still orthogonal to one another 
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Determining phase 

  Least squares fitting: move the sinusoid left / right, 
and at each shift, try all amplitudes 
  Find the combination of amplitude and phase that results in 

the lowest squared error 
  We can still do this separately for each sinusoid 

  The sinusoids are still orthogonal to one another 
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Determining phase 

  Least squares fitting: move the sinusoid left / right, 
and at each shift, try all amplitudes 
  Find the combination of amplitude and phase that results in 

the lowest squared error 
  We can still do this separately for each sinusoid 

  The sinusoids are still orthogonal to one another 
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The problem with phase 

  This can no longer be expressed as a simple linear algebraic 
equation 
  The phase is integral to the bases 

  I.e. there’s a component of the basis itself that must be estimated! 
  Linear algebraic notation can only be used if the bases are fully 

known 
  We can only (pseudo) invert a known matrix 

L/2 columns only 
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Complex Exponential to the rescue 

  The cosine is the real part of a complex exponential 
  The sine is the imaginary part 

  A phase term for the sinusoid becomes a 
multiplicative term for the complex exponential!! 
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Α x 

Explaining with Complex Exponentials 

+


=


+
Β x 

C x 
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Complex exponentials are well behaved 
  Like sinusoids, a complex exponential of one 

frequency can never explain one of another 
  They are orthogonal 

  They represent smooth transitions 
  Bonus: They are complex 

  Can even model complex data! 

  They can also model real data 
  exp(j x ) + exp(-j x) is real 

  cos(x) + j sin(x)  + cos(x) – j sin(x) = 2cos(x) 

  More importantly 
                                                                      is real 

  The complex exponentials with frequencies equally spaced 
from L/2 are complex conjugates 

2 Sep 2010 35 11-755 / 18-797 

Complex exponentials are well behaved 

                                                                     is real 

  The complex exponentials with frequencies equally spaced 
from L/2 are complex conjugates 
  “Frequency = k”  k periods in L samples 

  Is also real 
  If the two exponentials are multiplied by numbers that are 

conjugates of one another the result is real 
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Complex Exponential bases 

  Explain the data using L complex exponential bases 
  The weights given to the (L/2 + k)th basis and the (L/2 – k)th basis should be 

complex conjugates, to make the result real 
  Because we are dealing with real data 

  Fortunately, a least squares fit will give us identical weights to both bases 
automatically; there is no need to impose the constraint externally 

 b0  b1  bL/2 

= 

Complex 
 conjugates 
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Complex Exponential Bases: Algebraic 
Formulation 

  Note that SL/2+x = conjugate(SL/2-x) 
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Shorthand Notation 

  Note that SL/2+x = conjugate(SL/2-x) 
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A quick detour 
  Real Orthonormal matrix: 

  XXT = X XT = I 
  But only if all entries are real 

  The inverse of X is its own transpose 

  Definition: Hermitian 
  XH = Complex conjugate of XT 

  Conjugate of a number a + ib = a – ib 
  Conjugate of exp(ix) = exp(-ix) 

  Complex Orthonormal matrix 
  XXH = XH X = I 
  The inverse of a complex orthonormal matrix is its own Hermitian 
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W-1 = WH 

  The complex exponential basis is orthonormal 
  Its inverse is its own Hermitian 
  W-1 = WH 
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Doing it in matrix form 

   Because W-1 = WH 
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The Discrete Fourier Transform 

  The matrix to the right is called the “Fourier 
Matrix” 

  The weights (S0, S1. . Etc.) are called the 
Fourier transform 
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The Inverse Discrete Fourier Transform 

  The matrix to the left is the inverse Fourier matrix 

  Multiplying the Fourier transform by this matrix gives 
us the signal right back from its Fourier transform 
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The Fourier Matrix 

  Left panel: The real part of the Fourier matrix 
  For a 32-point signal 

  Right panel: The imaginary part of the Fourier matrix 
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The FAST Fourier Transform 

  The outcome of the transformation with the Fourier matrix is the 
DISCRETE FOURIER TRANSFORM (DFT) 

  The FAST Fourier transform is an algorithm that takes advantage of 
the symmetry of the matrix to perform the matrix multiplication really fast 

  The FFT computes the DFT 
  Is much faster if the length of the signal can be expressed as 2N 
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Images 

  The complex exponential is two dimensional 
  Has a separate X frequency and Y frequency 

  Would be true even for checker boards! 

  The 2-D complex exponential must be unravelled 
to form one component of the Fourier matrix 
  For a KxL image, we’d have K*L bases in the matrix 

2 Sep 2010 47 

Typical Image Bases 

  Only real components of bases shown 

11-755 / 18-797 2 Sep 2010 48 
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DFT: Properties 

  The DFT coefficients are complex 
  Have both a magnitude and a phase 

  Simple linear algebra tells us that 
  DFT(A + B) = DFT(A) + DFT(B) 
  The DFT of the sum of two signals is the DFT of their sum 

  A horribly common approximation in sound processing 
  Magnitude(DFT(A+B)) = Magnitude(DFT(A)) + Magnitude(DFT(B)) 
  Utterly wrong 
  Absurdly useful 
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The Fourier Transform and Perception: 
Sound 
  The Fourier transforms 

represents the signal 
analogously to a bank of 
tuning forks 

  Our ear has a bank of 
tuning forks 

  The output of the Fourier 
transform is perceptually 
very meaningful 

+ 

FT 

Inverse FT 2 Sep 2010 50 
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Symmetric signals 

  If a signal is symmetric around L/2, the Fourier coefficients are real! 
  A(L/2-k) * exp(-j *f*(L/2-k)) + A(L/2+k) * exp(-j*f*(L/2+k)) is always real if 

A(L/2-k) = A(L/2+k) 

  We can pair up samples around the center all the way; the final summation term is 
always real 

  Overall symmetry properties 
  If the signal is real, the FT is symmetric 
  If the signal is symmetric, the FT is real 
  If the signal is real and symmetric, the FT is real and symmetric 

* 
* 
* * 

* * 
* * 

* * * * * * 
* 

* * 
* * 

* 
* * * * 

* 

Contributions from points equidistant from L/2 
 combine to cancel out imaginary terms 
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The Discrete Cosine Transform 

  Compose a symmetric signal or image 
  Images would be symmetric in two dimensions 

  Compute the Fourier transform 
  Since the FT is symmetric, sufficient to store only half the 

coefficients (quarter for an image) 
  Or as many coefficients as were originally in the signal / image 
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DCT 

  Not necessary to compute a 2xL sized FFT 
  Enough to compute an L-sized cosine transform 
  Taking advantage of the symmetry of the problem 

  This is the Discrete Cosine Transform 

L columns 
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Representing images 

  Most common coding is the DCT 
  JPEG: Each 8x8 element of the picture is converted using a DCT 
  The DCT coefficients are quantized and stored 

  Degree of quantization = degree of compression 
  Also used to represent textures etc for pattern recognition and 

other forms of analysis 

DCT 

Multiply by 
DCT matrix 
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What does the DFT represent 

  The DFT can be written formulaically as above 
  There is no restriction on computing the formula for n < 0 or n > 

L-1 
  Its just a formula 
  But computing these terms behind 0 or beyond L-1 tells us what 

the signal composed by the DFT looks like outside our narrow 
window 
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What does the DFT represent 

  If you extend the DFT-based representation 
beyond 0 (on the left) or L (on the right) it 
repeats the signal! 

  So what does the DFT really mean 

s[n] DFT 
[S0 S1 .. S31] 

0 31 63 -32 
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What does the DFT represent 

  The DFT represents the properties of the 
infinitely long repeating signal that you 
can generate with it 
  Of which the observed signal is ONE period 

  This gives rise to some odd effects 
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  The discrete Fourier transform of the above signal actually 
computes the properties of the periodic signal shown below 
  Which extends from –infinity to +infinity 
  The period of this signal is 32 samples in this example 

The discrete Fourier transform 
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  The DFT of one period of the sinusoid shown in the figure computes 
the spectrum of the entire sinusoid from –infinity to +infinity 

  The DFT of a real sinusoid has only one non zero frequency 
  The second peak in the figure also represents the same frequency as an 

effect of aliasing 

Windowing 
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  The DFT of one period of the sinusoid shown in the figure computes 
the spectrum of the entire sinusoid from –infinity to +infinity 

  The DFT of a real sinusoid has only one non zero frequency 
  The second peak in the figure also represents the same frequency as an 

effect of aliasing 

Windowing 

2 Sep 2010 60 



9/2/10 

11 

11-755 / 18-797 

  The DFT of one period of the sinusoid shown in the figure computes 
the spectrum of the entire sinusoid from –infinity to +infinity 

  The DFT of a real sinusoid has only one non zero frequency 
  The second peak in the figure is the “reflection” around L/2 (for real signals) 

Magnitude spectrum 

Windowing 
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Windowing 

  The DFT of any sequence computes the spectrum for an infinite 
repetition of that sequence 

  The DFT of a partial segment of a sinusoid computes the spectrum of 
an infinite repetition of that segment, and not of the entire sinusoid 

  This will not give us the DFT of the sinusoid itself! 
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Windowing 

  The DFT of any sequence computes the spectrum for an infinite 
repetition of that sequence 

  The DFT of a partial segment of a sinusoid computes the spectrum of 
an infinite repetition of that segment, and not of the entire sinusoid 

  This will not give us the DFT of the sinusoid itself! 
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Windowing 

Magnitude spectrum 

  The DFT of any sequence computes the spectrum for an infinite 
repetition of that sequence 

  The DFT of a partial segment of a sinusoid computes the spectrum of 
an infinite repetition of that segment, and not of the entire sinusoid 

  This will not give us the DFT of the sinusoid itself! 
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Windowing 

Magnitude spectrum of segment 

Magnitude spectrum of complete sine wave 
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  The difference occurs due to two reasons: 
  The transform cannot know what the signal actually looks like 

outside the observed window  
  The implicit repetition of the observed signal introduces large 

discontinuities at the points of repetition 
  This distorts even our measurement of what happens at the 

boundaries of what has been reliably observed 

Windowing 
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Windowing 

  The difference occurs due to two reasons: 
  The transform cannot know what the signal actually looks like 

outside the observed window  
  The implicit repetition of the observed signal introduces large 

discontinuities at the points of repetition 
  These are not part of the underlying signal 

  We only want to characterize the underlying signal 
  The discontinuity is an irrelevant detail 
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Windowing 

  While we can never know what the signal looks like outside the 
window, we can try to minimize the discontinuities at the 
boundaries 

  We do this by multiplying the signal with a window function 
  We call this procedure windowing 
  We refer to the resulting signal as a “windowed” signal 

  Windowing attempts to do the following: 
  Keep the windowed signal similar to the original in the central 

regions 
  Reduce or eliminate the discontinuities in the implicit periodic signal 2 Sep 2010 68 
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Windowing 

  While we can never know what the signal looks like outside the 
window, we can try to minimize the discontinuities at the 
boundaries 

  We do this by multiplying the signal with a window function 
  We call this procedure windowing 
  We refer to the resulting signal as a “windowed” signal 

  Windowing attempts to do the following: 
  Keep the windowed signal similar to the original in the central 

regions 
  Reduce or eliminate the discontinuities in the implicit periodic signal 2 Sep 2010 69 11-755 / 18-797 

Windowing 

  While we can never know what the signal looks like outside the 
window, we can try to minimize the discontinuities at the 
boundaries 

  We do this by multiplying the signal with a window function 
  We call this procedure windowing 
  We refer to the resulting signal as a “windowed” signal 

  Windowing attempts to do the following: 
  Keep the windowed signal similar to the original in the central 

regions 
  Reduce or eliminate the discontinuities in the implicit periodic signal 2 Sep 2010 70 
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Windowing 

Magnitude spectrum 
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Windowing 

Magnitude spectrum of windowed signal 

Magnitude spectrum of complete sine wave 

Magnitude spectrum of original segment 
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Windowing 

  Windowing is not a perfect solution 
  The original (unwindowed) segment is identical to the original (complete) signal 

within the segment 
  The windowed segment is often not identical to the complete signal anywhere 

  Several windowing functions have been proposed that strike different tradeoffs 
between the fidelity in the central regions and the smoothing at the boundaries  
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  Cosine windows: 
  Window length is M 
  Index begins at 0 

  Hamming: w[n] = 0.54 – 0.46 cos(2πn/M) 
  Hanning: w[n] = 0.5 – 0.5 cos(2πn/M) 
  Blackman: 0.42 – 0.5 cos(2πn/M) + 0.08 cos(4πn/M) 

Windowing 
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  Geometric windows: 

  Rectangular (boxcar): 

  Triangular (Bartlett): 

  Trapezoid: 

Windowing 
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Zero Padding 

  We can pad zeros to the end of a signal to make it a desired 
length 
  Useful if the FFT (or any other algorithm we use) requires signals 

of a specified length 
  E.g. Radix 2 FFTs require signals of length 2n i.e., some power 

of 2. We must zero pad the signal to increase its length to the 
appropriate number 

  The consequence of zero padding is to change the periodic 
signal whose Fourier spectrum is being computed by the DFT 
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  We can pad zeros to the end of a signal to make it a desired 
length 
  Useful if the FFT (or any other algorithm we use) requires signals of a 

specified length 
  E.g. Radix 2 FFTs require signals of length 2n i.e., some power of 2. 

We must zero pad the signal to increase its length to the appropriate 
number 

  The consequence of zero padding is to change the periodic 
signal whose Fourier spectrum is being computed by the DFT 

Zero Padding 
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  The DFT of the zero padded signal is essentially the same as 
the DFT of the unpadded signal, with additional spectral 
samples inserted in between 
  It does not contain any additional information over the original DFT 
  It also does not contain less information 

Zero Padding 

Magnitude spectrum 
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Magnitude spectra 
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  Zero padding windowed signals results in signals 
that appear to be less discontinuous at the edges 
  This is only illusory 
  Again, we do not introduce any new information into the 

signal by merely padding it with zeros 

Zero Padding 
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Zero Padding 

  The DFT of the zero padded signal is essentially the same as 
the DFT of the unpadded signal, with additional spectral 
samples inserted in between 
  It does not contain any additional information over the original DFT 
  It also does not contain less information 
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Magnitude spectra 
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8000Hz 

8000Hz 

time 

frequency 

frequency 

128 samples from a speech signal sampled at 16000 Hz 

The first 65 points of a 128 point DFT. Plot shows log of the magnitude spectrum 

The first 513 points of a 1024 point DFT. Plot shows log of the magnitude spectrum 

Zero padding a speech signal 
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The process of parameterization 

  The signal is processed in segments of 25-64 ms 
  Because the properties of audio signals change quickly 
  They are “stationary” only very briefly 
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The process of parameterization 

  The signal is processed in segments of 25-64 ms 
  Because the properties of audio signals change quickly 
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  Adjacent segments overlap by 15-48 ms 
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The process of parameterization 

  The signal is processed in segments of 25-64 ms 
  Because the properties of audio signals change quickly 
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The process of parameterization 

Each segment is typically 25-64 
milliseconds wide 
Audio signals typically do not change 
significantly within this short time interval 

Segments shift every 
10-16  milliseconds  
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The process of parameterization 

Each segment is windowed 
and a DFT is computed from it 

Windowing 

Frequency (Hz) 
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The process of parameterization 

Each segment is windowed 
and a DFT is computed from it 

Windowing 
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Computing a Spectrogram 

Compute Fourier Spectra of segments of audio and stack them side-by-side 
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Computing a Spectrogram 

Compute Fourier Spectra of segments of audio and stack them side-by-side 
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Computing a Spectrogram 
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Computing the Spectrogram 

Compute Fourier Spectra of segments of audio and stack them side-by-side 
The Fourier spectrum of each window can be inverted to get back the signal. 
Hence the spectrogram can be inverted to obtain a time-domain signal 

In this example each segment was 25 ms long and adjacent segments overlapped by 
15 ms 
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The result of parameterization 

  Each column here represents the FT of a single segment of signal 64ms 
wide. 
  Adjacent segments overlap by 48 ms. 

  DFT details 
  1024 points (16000 samples a second). 
  2048 point DFT – 1024 points of zero padding. 
  Only 1025 points of each DFT are shown 

  The rest are “reflections”  

  The value shown is actually the magnitude of the complex spectral 
values 
  Most of our analysis / operations are performed on the magnitude 

2 Sep 2010 112 

11-755 / 18-797 

Magnitude and phase 

  All the operations (e.g. the examples shown in the 
previous class) are performed on the magnitude 

  The phase of the complex spectrum is needed to invert 
a DFT to a signal 
  Where does that come from? 

  Deriving phase is a serious, not-quite solved problem. 

? 
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Phase 
  Common tricks: Obtain the phase from the original signal 

  Sft = DFT(signal) 
  Phase1 = phase(Sft) 

  Each term is of the form  real + j imag 
  For each element, compute arctan(imag/real) 

  Smagnitude = magnitude(Sft) 
  For each element compute Sqrt(real*real + imag*imag) 

  ProcessedSpectrum = Process(Smagnitude) 
  New SFT = ProcessedSpectrum*exp(j*Phase) 
  Recover signal from SFT 

  Some other tricks: 
  Compute the FT of a different signal of the same length 
  Use the phase from that signal 
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Returning to the speech signal 

  For each complex spectral vector, compute a signal from the inverse DFT 
  Make sure to have the complete FT (including the reflected portion) 

  If need be window the retrieved signal 
  Overlap signals from adjacent vectors in exactly the same manner as during 

analysis 
  E.g. If a 48ms (768 sample) overlap was used during analysis, overlap adjacent 

segments by 768 samples 

Actually a matrix of complex numbers 

16ms (256 samples) 
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Additional tricks 
  The basic representation is the 

magnitude spectrogram 
  Often it is transformed to a log 

spectrum 
  By computing the log of each entry in 

the spectrogram matrix 
  After processing, the entry is 

exponentiated to get back the 
magnitude spectrum 
  To which phase may be factored in to 

get a signal 

  The log spectrum may be 
“compressed” by a dimensionality 
reducing matrix 
  Usually a DCT matrix 

Log() 

x DCT(24x1025) 
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What about images? 

  DCT of small segments 
  8x8 
  Each image becomes a matrix of DCT vectors 

  DCT of the image 
  Haar transform (checkerboard) 
  Various wavelet representations 

  Gabor wavelets 
  Or data-driven representations 

  Eigen faces 

DCT 

Npixels / 64 columns 
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