
9/2/10

1

11-755 Machine Learning for Signal Processing

Representing Images and
Sounds

Class 4. 2 Sep 2010

Instructor: Bhiksha Raj

2 Sep 2010 1 11-755 / 18-797

Administrivia
  Homework up

  Basics of probability: Will not be covered
  Very nice lecture by Aarthi Singh

  http://www.cs.cmu.edu/~epxing/Class/10701/Lecture/lecture2.pdf

  Another nice lecture by Paris Smaragdis
  http://www.cs.illinois.edu/~paris/cs598-f10/cs598-f10/Lectures.html

  Look for Lecture 2

  Amazing number of resources on the web
  Things to know:

  Basic probability, Bayes rule
  Probability distributions over discrete variables
  Probability density and Cumulative density over continuous variables

  Particularly Gaussian densities
  Moments of a distribution
  What is independence
  Nice to know

  What is maximum likelihood estimation
  MAP estimation

11-755 / 18-797 2 Sep 2010 2

11-755 / 18-797

Representing an Elephant
  It was six men of Indostan,

To learning much inclined,
Who went to see the elephant,
(Though all of them were blind),
That each by observation
Might satisfy his mind.

  The first approached the elephant,
And happening to fall
Against his broad and sturdy side,
At once began to bawl:
"God bless me! But the elephant
Is very like a wall!“

  The second, feeling of the tusk,
Cried: "Ho! What have we here,
So very round and smooth and sharp?
To me 'tis very clear,
This wonder of an elephant
Is very like a spear!“

  The third approached the animal,
And happening to take
The squirming trunk within his hands,
Thus boldly up and spake:
"I see," quoth he, "the elephant
Is very like a snake!“

  The fourth reached out an eager hand,
And felt about the knee.
"What most this wondrous beast is like
Is might plain," quoth he;
"Tis clear enough the elephant
Is very like a tree."

  The fifth, who chanced to touch the ear,
Said: "E'en the blindest man
Can tell what this resembles most:
Deny the fact who can,
This marvel of an elephant
Is very like a fan.“

  The sixth no sooner had begun
About the beast to grope,
Than seizing on the swinging tail
That fell within his scope,
"I see," quoth he, "the elephant
Is very like a rope.“

  And so these men of Indostan
Disputed loud and long,
Each in his own opinion
Exceeding stiff and strong.
Though each was partly right,
All were in the wrong.

2 Sep 2010 3 11-755 / 18-797

Representation

  Describe these
images
  Such that a listener

can visualize what you
are describing

  More images

2 Sep 2010 4

11-755 / 18-797

Still more images

How do you describe them?

2 Sep 2010 5 11-755 / 18-797

Sounds

  Sounds are just sequences of numbers

  When plotted, they just look like blobs
  Which leads to the natural “sounds are blobs”

  Or more precisely, “sounds are sequences of numbers that, when
plotted, look like blobs”

  Which wont get us anywhere
2 Sep 2010 6

9/2/10

2

11-755 / 18-797

Representation

  Representation is description
  But in compact form
  Must describe the salient characteristics of the data

  E.g. a pixel-wise description of the two images here will be
completely different

  Must allow identification, comparison, storage..

A A

2 Sep 2010 7 11-755 / 18-797

Representing images

  The most common element in the image:
background
  Or rather large regions of relatively featureless shading
  Uniform sequences of numbers

2 Sep 2010 8

11-755 / 18-797

Image =

Representing images using a “plain” image

  Most of the figure is a more-or-less uniform shade
  Dumb approximation – a image is a block of uniform shade

  Will be mostly right!
  How much of the figure is uniform?

  How? Projection
  Represent the images as vectors and compute the projection of the image on the

“basis”

B =

2 Sep 2010 9 11-755 / 18-797

Adding more bases

  Lets improve the approximation
  Images have some fast varying regions

  Dramatic changes
  Add a second picture that has very fast changes

  A checkerboard where every other pixel is black and the rest are white

B1 B2 B2 B1

2 Sep 2010 10

11-755 / 18-797

Adding still more bases

  Regions that change with different speeds

B1 B2 B3 B4 B5 B6

Getting closer at 625 bases!
2 Sep 2010 11 11-755 / 18-797

Representation using checkerboards
  A “standard” representation

  Checker boards are the same regardless of what picture you’re
trying to describe
  As opposed to using “nose shape” to describe faces and “leaf colour”

to describe trees.

  Any image can be specified as (for example)
0.8*checkerboard(0) + 0.2*checkerboard(1) +
0.3*checkerboard(2) ..

  The definition is sufficient to reconstruct the image to some
degree
  Not perfectly though

2 Sep 2010 12

9/2/10

3

11-755 / 18-797

What about sounds?

  Square wave equivalents of checker boards

2 Sep 2010 13 11-755 / 18-797

Projecting sounds

B1 B2 B3

=

2 Sep 2010 14

11-755 / 18-797

Why checkerboards are great bases
  We cannot explain one checkerboard

in terms of another
  The two are orthogonal to one another!

  This means that we can find out the
contributions of individual bases
separately
  Joint decompostion with multiple bases

with give us the same result as
separate decomposition with each of
them

  This never holds true if one basis can
explain another

B1 B2

2 Sep 2010 15 11-755 / 18-797

Checker boards are not good bases

  Sharp edges
  Can never be used to explain rounded curves

2 Sep 2010 16

11-755 / 18-797

Sinusoids ARE good bases

  They are orthogonal
  They can represent rounded shapes nicely

  Unfortunately, they cannot represent sharp corners

2 Sep 2010 17 11-755 / 18-797

What are the frequencies of the sinusoids
  Follow the same format as

the checkerboard:
  DC
  The entire length of the signal

is one period
  The entire length of the signal

is two periods.
  And so on..

  The k-th sinusoid:
  F(n) = sin(2πkn/N)

  N is the length of the signal
  k is the number of periods in N

samples

2 Sep 2010 18

9/2/10

4

11-755 / 18-797

How many frequencies in all?

  A max of L/2 periods are possible
  If we try to go to (L/2 + X) periods, it ends up being identical to having (L/2 – X)

periods
  With sign inversion

  Example for L = 20
  Red curve = sine with 9 cycles (in a 20 point sequence)

  Y(n) = sin(2π9n/20)
  Green curve = sine with 11 cycles in 20 points

  Y(n) = -sin(2π11n/20)
  The blue lines show the actual samples obtained

  These are the only numbers stored on the computer
  This set is the same for both sinusoids

2 Sep 2010 19 11-755 / 18-797

How to compose the signal from sinusoids

  The sines form the vectors of the projection matrix
  Pinv() will do the trick as usual

B1 B2 B3

=

2 Sep 2010 20

11-755 / 18-797

How to compose the signal from sinusoids

  The sines form the vectors of the projection matrix
  Pinv() will do the trick as usual

L/2 columns only

2 Sep 2010 21 11-755 / 18-797

Interpretation..

  Each sinusoid’s amplitude is adjusted until it gives
us the least squared error
  The amplitude is the weight of the sinusoid

  This can be done independently for each sinusoid

2 Sep 2010 22

11-755 / 18-797

Interpretation..

  Each sinusoid’s amplitude is adjusted until it gives
us the least squared error
  The amplitude is the weight of the sinusoid

  This can be done independently for each sinusoid

2 Sep 2010 23 11-755 / 18-797

Interpretation..

  Each sinusoid’s amplitude is adjusted until it gives
us the least squared error
  The amplitude is the weight of the sinusoid

  This can be done independently for each sinusoid

2 Sep 2010 24

9/2/10

5

11-755 / 18-797

Interpretation..

  Each sinusoid’s amplitude is adjusted until it gives
us the least squared error
  The amplitude is the weight of the sinusoid

  This can be done independently for each sinusoid

2 Sep 2010 25 11-755 / 18-797

Sines by themselves are not enough

  Every sine starts at zero
  Can never represent a signal that is non-zero in the first

sample!
  Every cosine starts at 1

  If the first sample is zero, the signal cannot be represented!

2 Sep 2010 26

11-755 / 18-797

The need for phase

  Allow the sinusoids to move!

  How much do the sines shift?

Sines are shifted:
do not start with
value = 0

2 Sep 2010 27 11-755 / 18-797

Determining phase

  Least squares fitting: move the sinusoid left / right,
and at each shift, try all amplitudes
  Find the combination of amplitude and phase that results in

the lowest squared error
  We can still do this separately for each sinusoid

  The sinusoids are still orthogonal to one another

2 Sep 2010 28

11-755 / 18-797

Determining phase

  Least squares fitting: move the sinusoid left / right,
and at each shift, try all amplitudes
  Find the combination of amplitude and phase that results in

the lowest squared error
  We can still do this separately for each sinusoid

  The sinusoids are still orthogonal to one another

2 Sep 2010 29 11-755 / 18-797

Determining phase

  Least squares fitting: move the sinusoid left / right,
and at each shift, try all amplitudes
  Find the combination of amplitude and phase that results in

the lowest squared error
  We can still do this separately for each sinusoid

  The sinusoids are still orthogonal to one another

2 Sep 2010 30

9/2/10

6

11-755 / 18-797

Determining phase

  Least squares fitting: move the sinusoid left / right,
and at each shift, try all amplitudes
  Find the combination of amplitude and phase that results in

the lowest squared error
  We can still do this separately for each sinusoid

  The sinusoids are still orthogonal to one another

2 Sep 2010 31 11-755 / 18-797

The problem with phase

  This can no longer be expressed as a simple linear algebraic
equation
  The phase is integral to the bases

  I.e. there’s a component of the basis itself that must be estimated!
  Linear algebraic notation can only be used if the bases are fully

known
  We can only (pseudo) invert a known matrix

L/2 columns only

2 Sep 2010 32

11-755 / 18-797

Complex Exponential to the rescue

  The cosine is the real part of a complex exponential
  The sine is the imaginary part

  A phase term for the sinusoid becomes a
multiplicative term for the complex exponential!!

2 Sep 2010 33 11-755 / 18-797

Α x

Explaining with Complex Exponentials

+

=

+
Β x

C x

2 Sep 2010 34

11-755 / 18-797

Complex exponentials are well behaved
  Like sinusoids, a complex exponential of one

frequency can never explain one of another
  They are orthogonal

  They represent smooth transitions
  Bonus: They are complex

  Can even model complex data!

  They can also model real data
  exp(j x) + exp(-j x) is real

  cos(x) + j sin(x) + cos(x) – j sin(x) = 2cos(x)

  More importantly
  is real

  The complex exponentials with frequencies equally spaced
from L/2 are complex conjugates

2 Sep 2010 35 11-755 / 18-797

Complex exponentials are well behaved

  is real

  The complex exponentials with frequencies equally spaced
from L/2 are complex conjugates
  “Frequency = k”  k periods in L samples

  Is also real
  If the two exponentials are multiplied by numbers that are

conjugates of one another the result is real

2 Sep 2010 36

9/2/10

7

11-755 / 18-797

Complex Exponential bases

  Explain the data using L complex exponential bases
  The weights given to the (L/2 + k)th basis and the (L/2 – k)th basis should be

complex conjugates, to make the result real
  Because we are dealing with real data

  Fortunately, a least squares fit will give us identical weights to both bases
automatically; there is no need to impose the constraint externally

 b0 b1 bL/2

=

Complex
 conjugates

2 Sep 2010 37 11-755 / 18-797

Complex Exponential Bases: Algebraic
Formulation

  Note that SL/2+x = conjugate(SL/2-x)

2 Sep 2010 38

11-755 / 18-797

Shorthand Notation

  Note that SL/2+x = conjugate(SL/2-x)

2 Sep 2010 39 11-755 / 18-797

A quick detour
  Real Orthonormal matrix:

  XXT = X XT = I
  But only if all entries are real

  The inverse of X is its own transpose

  Definition: Hermitian
  XH = Complex conjugate of XT

  Conjugate of a number a + ib = a – ib
  Conjugate of exp(ix) = exp(-ix)

  Complex Orthonormal matrix
  XXH = XH X = I
  The inverse of a complex orthonormal matrix is its own Hermitian

2 Sep 2010 40

11-755 / 18-797

W-1 = WH

  The complex exponential basis is orthonormal
  Its inverse is its own Hermitian
  W-1 = WH

2 Sep 2010 41 11-755 / 18-797

Doing it in matrix form

  Because W-1 = WH

2 Sep 2010 42

9/2/10

8

11-755 / 18-797

The Discrete Fourier Transform

  The matrix to the right is called the “Fourier
Matrix”

  The weights (S0, S1. . Etc.) are called the
Fourier transform

2 Sep 2010 43 11-755 / 18-797

The Inverse Discrete Fourier Transform

  The matrix to the left is the inverse Fourier matrix

  Multiplying the Fourier transform by this matrix gives
us the signal right back from its Fourier transform

2 Sep 2010 44

11-755 / 18-797

The Fourier Matrix

  Left panel: The real part of the Fourier matrix
  For a 32-point signal

  Right panel: The imaginary part of the Fourier matrix

2 Sep 2010 45 11-755 / 18-797

The FAST Fourier Transform

  The outcome of the transformation with the Fourier matrix is the
DISCRETE FOURIER TRANSFORM (DFT)

  The FAST Fourier transform is an algorithm that takes advantage of
the symmetry of the matrix to perform the matrix multiplication really fast

  The FFT computes the DFT
  Is much faster if the length of the signal can be expressed as 2N

2 Sep 2010 46

11-755 / 18-797

Images

  The complex exponential is two dimensional
  Has a separate X frequency and Y frequency

  Would be true even for checker boards!

  The 2-D complex exponential must be unravelled
to form one component of the Fourier matrix
  For a KxL image, we’d have K*L bases in the matrix

2 Sep 2010 47

Typical Image Bases

  Only real components of bases shown

11-755 / 18-797 2 Sep 2010 48

9/2/10

9

11-755 / 18-797

DFT: Properties

  The DFT coefficients are complex
  Have both a magnitude and a phase

  Simple linear algebra tells us that
  DFT(A + B) = DFT(A) + DFT(B)
  The DFT of the sum of two signals is the DFT of their sum

  A horribly common approximation in sound processing
  Magnitude(DFT(A+B)) = Magnitude(DFT(A)) + Magnitude(DFT(B))
  Utterly wrong
  Absurdly useful

2 Sep 2010 49 11-755 / 18-797

The Fourier Transform and Perception:
Sound
  The Fourier transforms

represents the signal
analogously to a bank of
tuning forks

  Our ear has a bank of
tuning forks

  The output of the Fourier
transform is perceptually
very meaningful

+

FT

Inverse FT 2 Sep 2010 50

11-755 / 18-797

Symmetric signals

  If a signal is symmetric around L/2, the Fourier coefficients are real!
  A(L/2-k) * exp(-j *f*(L/2-k)) + A(L/2+k) * exp(-j*f*(L/2+k)) is always real if

A(L/2-k) = A(L/2+k)

  We can pair up samples around the center all the way; the final summation term is
always real

  Overall symmetry properties
  If the signal is real, the FT is symmetric
  If the signal is symmetric, the FT is real
  If the signal is real and symmetric, the FT is real and symmetric

*
*
* *

* *
* *

* * * * * *
*

* *
* *

*
* * * *

*

Contributions from points equidistant from L/2
 combine to cancel out imaginary terms

2 Sep 2010 51 11-755 / 18-797

The Discrete Cosine Transform

  Compose a symmetric signal or image
  Images would be symmetric in two dimensions

  Compute the Fourier transform
  Since the FT is symmetric, sufficient to store only half the

coefficients (quarter for an image)
  Or as many coefficients as were originally in the signal / image

2 Sep 2010 52

11-755 / 18-797

DCT

  Not necessary to compute a 2xL sized FFT
  Enough to compute an L-sized cosine transform
  Taking advantage of the symmetry of the problem

  This is the Discrete Cosine Transform

L columns

2 Sep 2010 53 11-755 / 18-797

Representing images

  Most common coding is the DCT
  JPEG: Each 8x8 element of the picture is converted using a DCT
  The DCT coefficients are quantized and stored

  Degree of quantization = degree of compression
  Also used to represent textures etc for pattern recognition and

other forms of analysis

DCT

Multiply by
DCT matrix

2 Sep 2010 54

9/2/10

10

11-755 / 18-797

What does the DFT represent

  The DFT can be written formulaically as above
  There is no restriction on computing the formula for n < 0 or n >

L-1
  Its just a formula
  But computing these terms behind 0 or beyond L-1 tells us what

the signal composed by the DFT looks like outside our narrow
window

2 Sep 2010 55 11-755 / 18-797

What does the DFT represent

  If you extend the DFT-based representation
beyond 0 (on the left) or L (on the right) it
repeats the signal!

  So what does the DFT really mean

s[n] DFT
[S0 S1 .. S31]

0 31 63 -32

2 Sep 2010 56

11-755 / 18-797

What does the DFT represent

  The DFT represents the properties of the
infinitely long repeating signal that you
can generate with it
  Of which the observed signal is ONE period

  This gives rise to some odd effects

2 Sep 2010 57 11-755 / 18-797

  The discrete Fourier transform of the above signal actually
computes the properties of the periodic signal shown below
  Which extends from –infinity to +infinity
  The period of this signal is 32 samples in this example

The discrete Fourier transform

2 Sep 2010 58

11-755 / 18-797

  The DFT of one period of the sinusoid shown in the figure computes
the spectrum of the entire sinusoid from –infinity to +infinity

  The DFT of a real sinusoid has only one non zero frequency
  The second peak in the figure also represents the same frequency as an

effect of aliasing

Windowing

2 Sep 2010 59 11-755 / 18-797

  The DFT of one period of the sinusoid shown in the figure computes
the spectrum of the entire sinusoid from –infinity to +infinity

  The DFT of a real sinusoid has only one non zero frequency
  The second peak in the figure also represents the same frequency as an

effect of aliasing

Windowing

2 Sep 2010 60

9/2/10

11

11-755 / 18-797

  The DFT of one period of the sinusoid shown in the figure computes
the spectrum of the entire sinusoid from –infinity to +infinity

  The DFT of a real sinusoid has only one non zero frequency
  The second peak in the figure is the “reflection” around L/2 (for real signals)

Magnitude spectrum

Windowing

2 Sep 2010 61 11-755 / 18-797

Windowing

  The DFT of any sequence computes the spectrum for an infinite
repetition of that sequence

  The DFT of a partial segment of a sinusoid computes the spectrum of
an infinite repetition of that segment, and not of the entire sinusoid

  This will not give us the DFT of the sinusoid itself!
2 Sep 2010 62

11-755 / 18-797

Windowing

  The DFT of any sequence computes the spectrum for an infinite
repetition of that sequence

  The DFT of a partial segment of a sinusoid computes the spectrum of
an infinite repetition of that segment, and not of the entire sinusoid

  This will not give us the DFT of the sinusoid itself!
2 Sep 2010 63 11-755 / 18-797

Windowing

Magnitude spectrum

  The DFT of any sequence computes the spectrum for an infinite
repetition of that sequence

  The DFT of a partial segment of a sinusoid computes the spectrum of
an infinite repetition of that segment, and not of the entire sinusoid

  This will not give us the DFT of the sinusoid itself!
2 Sep 2010 64

11-755 / 18-797

Windowing

Magnitude spectrum of segment

Magnitude spectrum of complete sine wave

2 Sep 2010 65 11-755 / 18-797

  The difference occurs due to two reasons:
  The transform cannot know what the signal actually looks like

outside the observed window
  The implicit repetition of the observed signal introduces large

discontinuities at the points of repetition
  This distorts even our measurement of what happens at the

boundaries of what has been reliably observed

Windowing

2 Sep 2010 66

9/2/10

12

11-755 / 18-797

Windowing

  The difference occurs due to two reasons:
  The transform cannot know what the signal actually looks like

outside the observed window
  The implicit repetition of the observed signal introduces large

discontinuities at the points of repetition
  These are not part of the underlying signal

  We only want to characterize the underlying signal
  The discontinuity is an irrelevant detail

2 Sep 2010 67 11-755 / 18-797

Windowing

  While we can never know what the signal looks like outside the
window, we can try to minimize the discontinuities at the
boundaries

  We do this by multiplying the signal with a window function
  We call this procedure windowing
  We refer to the resulting signal as a “windowed” signal

  Windowing attempts to do the following:
  Keep the windowed signal similar to the original in the central

regions
  Reduce or eliminate the discontinuities in the implicit periodic signal 2 Sep 2010 68

11-755 / 18-797

Windowing

  While we can never know what the signal looks like outside the
window, we can try to minimize the discontinuities at the
boundaries

  We do this by multiplying the signal with a window function
  We call this procedure windowing
  We refer to the resulting signal as a “windowed” signal

  Windowing attempts to do the following:
  Keep the windowed signal similar to the original in the central

regions
  Reduce or eliminate the discontinuities in the implicit periodic signal 2 Sep 2010 69 11-755 / 18-797

Windowing

  While we can never know what the signal looks like outside the
window, we can try to minimize the discontinuities at the
boundaries

  We do this by multiplying the signal with a window function
  We call this procedure windowing
  We refer to the resulting signal as a “windowed” signal

  Windowing attempts to do the following:
  Keep the windowed signal similar to the original in the central

regions
  Reduce or eliminate the discontinuities in the implicit periodic signal 2 Sep 2010 70

11-755 / 18-797

Windowing

Magnitude spectrum

2 Sep 2010 71 11-755 / 18-797

Windowing

Magnitude spectrum of windowed signal

Magnitude spectrum of complete sine wave

Magnitude spectrum of original segment

2 Sep 2010 72

9/2/10

13

11-755 / 18-797

Windowing

  Windowing is not a perfect solution
  The original (unwindowed) segment is identical to the original (complete) signal

within the segment
  The windowed segment is often not identical to the complete signal anywhere

  Several windowing functions have been proposed that strike different tradeoffs
between the fidelity in the central regions and the smoothing at the boundaries

2 Sep 2010 73 11-755 / 18-797

  Cosine windows:
  Window length is M
  Index begins at 0

  Hamming: w[n] = 0.54 – 0.46 cos(2πn/M)
  Hanning: w[n] = 0.5 – 0.5 cos(2πn/M)
  Blackman: 0.42 – 0.5 cos(2πn/M) + 0.08 cos(4πn/M)

Windowing

2 Sep 2010 74

11-755 / 18-797

  Geometric windows:

  Rectangular (boxcar):

  Triangular (Bartlett):

  Trapezoid:

Windowing

2 Sep 2010 75 11-755 / 18-797

Zero Padding

  We can pad zeros to the end of a signal to make it a desired
length
  Useful if the FFT (or any other algorithm we use) requires signals

of a specified length
  E.g. Radix 2 FFTs require signals of length 2n i.e., some power

of 2. We must zero pad the signal to increase its length to the
appropriate number

  The consequence of zero padding is to change the periodic
signal whose Fourier spectrum is being computed by the DFT

2 Sep 2010 76

11-755 / 18-797

  We can pad zeros to the end of a signal to make it a desired
length
  Useful if the FFT (or any other algorithm we use) requires signals of a

specified length
  E.g. Radix 2 FFTs require signals of length 2n i.e., some power of 2.

We must zero pad the signal to increase its length to the appropriate
number

  The consequence of zero padding is to change the periodic
signal whose Fourier spectrum is being computed by the DFT

Zero Padding

2 Sep 2010 77 11-755 / 18-797

  The DFT of the zero padded signal is essentially the same as
the DFT of the unpadded signal, with additional spectral
samples inserted in between
  It does not contain any additional information over the original DFT
  It also does not contain less information

Zero Padding

Magnitude spectrum

2 Sep 2010 78

9/2/10

14

11-755 / 18-797

Magnitude spectra

2 Sep 2010 79 11-755 / 18-797

  Zero padding windowed signals results in signals
that appear to be less discontinuous at the edges
  This is only illusory
  Again, we do not introduce any new information into the

signal by merely padding it with zeros

Zero Padding

2 Sep 2010 80

11-755 / 18-797

Zero Padding

  The DFT of the zero padded signal is essentially the same as
the DFT of the unpadded signal, with additional spectral
samples inserted in between
  It does not contain any additional information over the original DFT
  It also does not contain less information

2 Sep 2010 81 11-755 / 18-797

Magnitude spectra

2 Sep 2010 82

11-755 / 18-797

8000Hz

8000Hz

time

frequency

frequency

128 samples from a speech signal sampled at 16000 Hz

The first 65 points of a 128 point DFT. Plot shows log of the magnitude spectrum

The first 513 points of a 1024 point DFT. Plot shows log of the magnitude spectrum

Zero padding a speech signal

2 Sep 2010 83 11-755 / 18-797

The process of parameterization

  The signal is processed in segments of 25-64 ms
  Because the properties of audio signals change quickly
  They are “stationary” only very briefly

2 Sep 2010 84

9/2/10

15

11-755 / 18-797

The process of parameterization

  The signal is processed in segments of 25-64 ms
  Because the properties of audio signals change quickly
  They are “stationary” only very briefly

  Adjacent segments overlap by 15-48 ms

2 Sep 2010 85 11-755 / 18-797

The process of parameterization

  The signal is processed in segments of 25-64 ms
  Because the properties of audio signals change quickly
  They are “stationary” only very briefly

  Adjacent segments overlap by 15-48 ms

2 Sep 2010 86

11-755 / 18-797

The process of parameterization

  The signal is processed in segments of 25-64 ms
  Because the properties of audio signals change quickly
  They are “stationary” only very briefly

  Adjacent segments overlap by 15-48 ms

2 Sep 2010 87 11-755 / 18-797

The process of parameterization

  The signal is processed in segments of 25-64 ms
  Because the properties of audio signals change quickly
  They are “stationary” only very briefly

  Adjacent segments overlap by 15-48 ms

2 Sep 2010 88

11-755 / 18-797

The process of parameterization

  The signal is processed in segments of 25-64 ms
  Because the properties of audio signals change quickly
  They are “stationary” only very briefly

  Adjacent segments overlap by 15-48 ms

2 Sep 2010 89 11-755 / 18-797

The process of parameterization

  The signal is processed in segments of 25-64 ms
  Because the properties of audio signals change quickly
  They are “stationary” only very briefly

  Adjacent segments overlap by 15-48 ms

2 Sep 2010 90

9/2/10

16

11-755 / 18-797

The process of parameterization

Each segment is typically 25-64
milliseconds wide
Audio signals typically do not change
significantly within this short time interval

Segments shift every
10-16 milliseconds

2 Sep 2010 91 11-755 / 18-797

The process of parameterization

Each segment is windowed
and a DFT is computed from it

Windowing

Frequency (Hz)

C
om

pl
ex

sp

ec
tru

m

2 Sep 2010 92

11-755 / 18-797

The process of parameterization

Each segment is windowed
and a DFT is computed from it

Windowing

2 Sep 2010 93 11-755 / 18-797

Computing a Spectrogram

Compute Fourier Spectra of segments of audio and stack them side-by-side

2 Sep 2010 94

11-755 / 18-797

Computing a Spectrogram

Compute Fourier Spectra of segments of audio and stack them side-by-side

frequency
frequency
frequency
frequency
frequency
frequency
frequency

2 Sep 2010 95 11-755 / 18-797

Computing a Spectrogram

Compute Fourier Spectra of segments of audio and stack them side-by-side

frequency
frequency
frequency
frequency
frequency
frequency
frequency

frequency
frequency
frequency
frequency
frequency
frequency
frequency

2 Sep 2010 96

9/2/10

17

11-755 / 18-797

Computing a Spectrogram

Compute Fourier Spectra of segments of audio and stack them side-by-side

frequency
frequency
frequency
frequency
frequency
frequency
frequency

frequency
frequency
frequency
frequency
frequency
frequency
frequency

frequency
frequency
frequency
frequency
frequency
frequency
frequency

2 Sep 2010 97 11-755 / 18-797

Computing a Spectrogram

Compute Fourier Spectra of segments of audio and stack them side-by-side

frequency
frequency
frequency
frequency
frequency
frequency
frequency

frequency
frequency
frequency
frequency
frequency
frequency
frequency

frequency
frequency
frequency
frequency
frequency
frequency
frequency

2 Sep 2010 98

11-755 / 18-797

Computing a Spectrogram

Compute Fourier Spectra of segments of audio and stack them side-by-side

frequency
frequency
frequency
frequency
frequency
frequency
frequency

frequency
frequency
frequency
frequency
frequency
frequency
frequency

frequency
frequency
frequency
frequency
frequency
frequency
frequency

2 Sep 2010 99 11-755 / 18-797

Computing a Spectrogram

Compute Fourier Spectra of segments of audio and stack them side-by-side

frequency
frequency
frequency
frequency
frequency
frequency
frequency

frequency
frequency
frequency
frequency
frequency
frequency
frequency

frequency
frequency
frequency
frequency
frequency
frequency
frequency

2 Sep 2010 100

11-755 / 18-797

Computing a Spectrogram

Compute Fourier Spectra of segments of audio and stack them side-by-side

frequency
frequency
frequency
frequency
frequency
frequency
frequency

frequency
frequency
frequency
frequency
frequency
frequency
frequency

frequency
frequency
frequency
frequency
frequency
frequency
frequency

2 Sep 2010 101 11-755 / 18-797

Computing a Spectrogram

Compute Fourier Spectra of segments of audio and stack them side-by-side

frequency
frequency
frequency
frequency
frequency
frequency
frequency

frequency
frequency
frequency
frequency
frequency
frequency
frequency

frequency
frequency
frequency
frequency
frequency
frequency
frequency

2 Sep 2010 102

9/2/10

18

11-755 / 18-797

Computing a Spectrogram

Compute Fourier Spectra of segments of audio and stack them side-by-side

frequency
frequency
frequency
frequency
frequency
frequency
frequency

frequency
frequency
frequency
frequency
frequency
frequency
frequency

frequency
frequency
frequency
frequency
frequency
frequency
frequency

2 Sep 2010 103 11-755 / 18-797

Computing a Spectrogram

Compute Fourier Spectra of segments of audio and stack them side-by-side

frequency
frequency
frequency
frequency
frequency
frequency
frequency

frequency
frequency
frequency
frequency
frequency
frequency
frequency

frequency
frequency
frequency
frequency
frequency
frequency
frequency

2 Sep 2010 104

11-755 / 18-797

Computing a Spectrogram

Compute Fourier Spectra of segments of audio and stack them side-by-side

frequency
frequency
frequency
frequency
frequency
frequency
frequency

frequency
frequency
frequency
frequency
frequency
frequency
frequency

frequency
frequency
frequency
frequency
frequency
frequency
frequency

2 Sep 2010 105 11-755 / 18-797

Computing a Spectrogram

Compute Fourier Spectra of segments of audio and stack them side-by-side

frequency
frequency
frequency
frequency
frequency
frequency
frequency

frequency
frequency
frequency
frequency
frequency
frequency
frequency

frequency
frequency
frequency
frequency
frequency
frequency
frequency

2 Sep 2010 106

11-755 / 18-797

Computing a Spectrogram

Compute Fourier Spectra of segments of audio and stack them side-by-side

frequency
frequency
frequency
frequency
frequency
frequency
frequency

frequency
frequency
frequency
frequency
frequency
frequency
frequency

frequency
frequency
frequency
frequency
frequency
frequency
frequency

2 Sep 2010 107 11-755 / 18-797

Computing a Spectrogram

Compute Fourier Spectra of segments of audio and stack them side-by-side

frequency
frequency
frequency
frequency
frequency
frequency
frequency

frequency
frequency
frequency
frequency
frequency
frequency
frequency

frequency
frequency
frequency
frequency
frequency
frequency
frequency

2 Sep 2010 108

9/2/10

19

11-755 / 18-797

Computing a Spectrogram

Compute Fourier Spectra of segments of audio and stack them side-by-side

frequency
frequency
frequency
frequency
frequency
frequency
frequency

frequency
frequency
frequency
frequency
frequency
frequency
frequency

frequency
frequency
frequency
frequency
frequency
frequency
frequency

2 Sep 2010 109 11-755 / 18-797

Computing a Spectrogram

Compute Fourier Spectra of segments of audio and stack them side-by-side

frequency
frequency
frequency
frequency
frequency
frequency
frequency

frequency
frequency
frequency
frequency
frequency
frequency
frequency

frequency
frequency
frequency
frequency
frequency
frequency
frequency

2 Sep 2010 110

11-755 / 18-797

Computing the Spectrogram

Compute Fourier Spectra of segments of audio and stack them side-by-side
The Fourier spectrum of each window can be inverted to get back the signal.
Hence the spectrogram can be inverted to obtain a time-domain signal

In this example each segment was 25 ms long and adjacent segments overlapped by
15 ms

2 Sep 2010 111 11-755 / 18-797

The result of parameterization

  Each column here represents the FT of a single segment of signal 64ms
wide.
  Adjacent segments overlap by 48 ms.

  DFT details
  1024 points (16000 samples a second).
  2048 point DFT – 1024 points of zero padding.
  Only 1025 points of each DFT are shown

  The rest are “reflections”

  The value shown is actually the magnitude of the complex spectral
values
  Most of our analysis / operations are performed on the magnitude

2 Sep 2010 112

11-755 / 18-797

Magnitude and phase

  All the operations (e.g. the examples shown in the
previous class) are performed on the magnitude

  The phase of the complex spectrum is needed to invert
a DFT to a signal
  Where does that come from?

  Deriving phase is a serious, not-quite solved problem.

?

2 Sep 2010 113 11-755 / 18-797

Phase
  Common tricks: Obtain the phase from the original signal

  Sft = DFT(signal)
  Phase1 = phase(Sft)

  Each term is of the form real + j imag
  For each element, compute arctan(imag/real)

  Smagnitude = magnitude(Sft)
  For each element compute Sqrt(real*real + imag*imag)

  ProcessedSpectrum = Process(Smagnitude)
  New SFT = ProcessedSpectrum*exp(j*Phase)
  Recover signal from SFT

  Some other tricks:
  Compute the FT of a different signal of the same length
  Use the phase from that signal

2 Sep 2010 114

9/2/10

20

11-755 / 18-797

Returning to the speech signal

  For each complex spectral vector, compute a signal from the inverse DFT
  Make sure to have the complete FT (including the reflected portion)

  If need be window the retrieved signal
  Overlap signals from adjacent vectors in exactly the same manner as during

analysis
  E.g. If a 48ms (768 sample) overlap was used during analysis, overlap adjacent

segments by 768 samples

Actually a matrix of complex numbers

16ms (256 samples)

2 Sep 2010 115 11-755 / 18-797

Additional tricks
  The basic representation is the

magnitude spectrogram
  Often it is transformed to a log

spectrum
  By computing the log of each entry in

the spectrogram matrix
  After processing, the entry is

exponentiated to get back the
magnitude spectrum
  To which phase may be factored in to

get a signal

  The log spectrum may be
“compressed” by a dimensionality
reducing matrix
  Usually a DCT matrix

Log()

x DCT(24x1025)

2 Sep 2010 116

11-755 / 18-797

What about images?

  DCT of small segments
  8x8
  Each image becomes a matrix of DCT vectors

  DCT of the image
  Haar transform (checkerboard)
  Various wavelet representations

  Gabor wavelets
  Or data-driven representations

  Eigen faces

DCT

Npixels / 64 columns

2 Sep 2010 117

