11-755 Machine Learning for Signal Processing

Representing Images and Sounds

Class 4. 2 Sep 2010

Instructor: Bhiksha Raj

Administrivia

- Homework up
- **Basics of probability: Will not be covered**
- **Very nice lecture by Aarthi Singh**
	- http://www.cs.cmu.edu/~epxing/Class/10701/Lecture/lecture2.pdf
- **Another nice lecture by Paris Smaragdis**
	- □ http://www.cs.illinois.edu/~paris/cs598-f10/cs598-f10/Lectures.html
		- **Look for Lecture 2**
- **Amazing number of resources on the web**
- **Things to know:**
	- □ Basic probability, Bayes rule
	- **Probability distributions over discrete variables**
	- **n** Probability density and Cumulative density over continuous variables
		- Particularly Gaussian densities
	- □ Moments of a distribution
	- □ What is independence
	- **Nice to know**
		- What is maximum likelihood estimation
		- MAP estimation

Representing an Elephant

- It was six men of Indostan, To learning much inclined, Who went to see the elephant, (Though all of them were blind), That each by observation Might satisfy his mind.
- \blacksquare The first approached the elephant, And happening to fall Against his broad and sturdy side, At once began to bawl: "God bless me! But the elephant Is very like a wall!"
- \blacksquare The second, feeling of the tusk, Cried: "Ho! What have we here, So very round and smooth and sharp? To me 'tis very clear, This wonder of an elephant Is very like a spear!"
- \blacksquare The third approached the animal, And happening to take The squirming trunk within his hands, Thus boldly up and spake: "I see," quoth he, "the elephant Is very like a snake!"
- **The fourth reached out an eager hand,** And felt about the knee. "What most this wondrous beast is like Is might plain," quoth he; "Tis clear enough the elephant $2 \text{ Sep } 201$ Nery like a tree." $11-755 / 18-797$ 3
- The fifth, who chanced to touch the ear, Said: "E'en the blindest man Can tell what this resembles most: Deny the fact who can, This marvel of an elephant Is very like a fan."
- **The sixth no sooner had begun** About the beast to grope, Than seizing on the swinging tail That fell within his scope, "I see," quoth he, "the elephant Is very like a rope."
- And so these men of Indostan Disputed loud and long, Each in his own opinion Exceeding stiff and strong. Though each was partly right, All were in the wrong.

11-755 / 18-797

Representation

- **Describe these** images
	- **□** Such that a listener can visualize what you are describing
- **More images**

Still more images

aboard Apollo space capsule. 1038 x 1280 - 142k LIFE

Apollo Xi 1280 x 1255 - 226k LIFE

aboard Apollo space capsule. 1029 x 1280 - 128k **LIFE**

Building Apollo space ship. 1280 x 1257 - 114k LIFE

aboard Apollo space capsule. 1017 x 1280 - 130k **LIFE**

Apollo Xi 1228 x 1280 - 181k LIFE

Apollo 10 space ship, w. 1280 x 853 - 72k LIFE

Splashdown of Apollo XI mission. 1280 x 866 - 184k LIFE

Earth seen from space during the $1280 \times 839 - 60k$ LIFE

Apollo 11 1280 x 1277 - 142k LIFE

Apollo Xi 844 x 1280 - 123k **LIFE**

Apollo 8 Crew 968 x 1280 - 125k **LIFE**

Apollo 8 1278 x 1280 - 74k
LIFE

How do you describe them?

the moon as seen from Apollo 8 1223 x 1280 - 214k LIFE

- Sounds are just sequences of numbers
- **Number** When plotted, they just look like blobs
	- □ Which leads to the natural "sounds are blobs"
		- **Or more precisely, "sounds are sequences of numbers that, when** plotted, look like blobs"
	- □ Which wont get us anywhere

Representation

- **Representation is description**
- But in compact form
- **Nust describe the salient characteristics of the data**
	- □ E.g. a pixel-wise description of the two images here will be completely different

Must allow identification, comparison, storage...

Representing images

aboard Apollo space capsule 1038 x 1280 - 142k **TIFF**

LIFE.

LIFE

aboard Apollo space capsule. 1280 x 1255 - 226k 1029 x 1280 - 128k LIFE.

Building Apollo space ship. 1280 x 1257 - 114k **TIFF**

aboard Apollo space capsule. 1017 x 1280 - 130k LIFF

1228 x 1280 - 181k LIFE

Apollo 10 space ship, w. 1280 x 853 - 72k

1280 x 1277 - 142k

LIFF

Earth seen from space during the $1280 \times 839 - 60k$ **LIFE**

Apollo Xi 844 x 1280 - 123k LIFE

working on Apollo space project.

1280 x 956 - 117k

TIFF

LIFE

TIFF

the moon as seen from Apollo 8 1223 x 1280 - 214k

Apollo 8 Crew 968 x 1280 - 125k LIFE

■ The most common element in the image: background

- **Or rather large regions of relatively featureless shading**
- **u** Uniform sequences of numbers

Representing images using a "plain" image

- Most of the figure is a more-or-less uniform shade
	- **Dumb approximation a image is a block of uniform shade**
		- Will be mostly right!
	- **Example 1** How much of the figure is uniform?
- **How? Projection**
	- **Represent the images as vectors and compute the projection of the image on the** "basis"

 $BW \approx \text{Im} age$ $W = p$ inv (B) Image $PROJECTION = BW = B(B^TB)⁻¹B^T. Image$

- **Lets improve the approximation**
- **Images have some fast varying regions**
	- Dramatic changes
	- □ Add a second picture that has very fast changes
		- A checkerboard where every other pixel is black and the rest are white

$$
\text{Im}\,age \approx w_1 B_1 + w_2 B_2
$$
\n
$$
W = \begin{bmatrix} w_1 \\ w_2 \end{bmatrix} \qquad B = \begin{bmatrix} B_1 & B_2 \end{bmatrix}
$$

 $BW \approx \text{Image}$

 $W = p \text{ inv}(B) \text{Image}$

 $PROJECTION = BW = B(B^TB)⁻¹B^T$. Image

Regions that change with different speeds

$$
Im age \approx w_1 B_1 + w_2 B_2 + w_3 B_3 + \dots
$$
\n
$$
W = \begin{bmatrix} w_1 \\ w_2 \\ w_3 \\ \vdots \end{bmatrix} \qquad B = [B_1 \ B_2 \ B_3]
$$

 $BW \approx \text{Image}$ $W = p$ inv (B) Image $PROJECTION = BW = B(B^TB)⁻¹B^T$. Image

Representation using checkerboards

- **A** "standard" representation
	- □ Checker boards are the same regardless of what picture you're trying to describe
		- As opposed to using "nose shape" to describe faces and "leaf colour" to describe trees.
- Any image can be specified as (for example) 0.8*checkerboard(0) + 0.2*checkerboard(1) + 0.3*checkerboard(2) ..
- **The definition is sufficient to reconstruct the image to some** degree
	- Not perfectly though

Square wave equivalents of checker boards

 $BW \approx Signal$ $W = p \text{ inv}(B)$ Signal $PROJECTION = BW = B(B^TB)⁻¹B.Signal$

Why checkerboards are great bases

- **No.** We cannot explain one checkerboard in terms of another
	- □ The two are orthogonal to one another!

- \blacksquare This means that we can find out the contributions of individual bases separately
	- **Joint decompostion with multiple bases** with give us the same result as separate decomposition with each of them
	- This never holds true if one basis can explain another

Q Can *never* be used to explain rounded curves

Sinusoids ARE good bases

- **They are orthogonal**
- **They can represent rounded shapes nicely**
	- □ Unfortunately, they cannot represent sharp corners

What are the frequencies of the sinusoids

- **Follow the same format as** the checkerboard:
	- n DC
	- □ The entire length of the signal is one period
	- □ The entire length of the signal is two periods.
- **And so on..**
- The k-th sinusoid:
	- \Box F(n) = sin(2 π kn/N)
		- N is the length of the signal
		- \blacksquare k is the number of periods in N samples

- \blacksquare A max of L/2 periods are possible
- If we try to go to $(L/2 + X)$ periods, it ends up being identical to having $(L/2 X)$ periods
	- **u** With sign inversion
- Example for $L = 20$
	- \Box Red curve = sine with 9 cycles (in a 20 point sequence)
		- $Y(n) = \sin(2\pi 9n/20)$
	- Green curve = sine with 11 cycles in 20 points
		- $Y(n) = -\sin(2\pi 11n/20)$
	- \Box The blue lines show the actual samples obtained
		- **These are the only numbers stored on the computer**
		- **This set is the same for both sinusoids**

How to compose the signal from sinusoids

 $BW \approx Signal$ $W = p \text{inv}(B)$ Signal $PROJECTION = BW = B(B^TB)⁻¹B.Signal$

- **The sines form the vectors of the projection matrix**
	- \Box Pinv() will do the trick as usual

2 Sep 2010 20

How to compose the signal from sinusoids

The sines form the vectors of the projection matrix Pinv() will do the trick as usual

Interpretation..

- Each sinusoid's amplitude is adjusted until it gives us the least squared error
	- □ The amplitude is the weight of the sinusoid
- **This can be done independently for each sinusoid**

- Each sinusoid's amplitude is adjusted until it gives us the least squared error
	- □ The amplitude is the weight of the sinusoid
- **This can be done independently for each sinusoid**

Interpretation..

- Each sinusoid's amplitude is adjusted until it gives us the least squared error
	- □ The amplitude is the weight of the sinusoid
- **This can be done independently for each sinusoid**

Interpretation..

- Each sinusoid's amplitude is adjusted until it gives us the least squared error
	- □ The amplitude is the weight of the sinusoid
- **This can be done independently for each sinusoid**

Sines by themselves are not enough

Every sine starts at zero

□ Can never represent a signal that is non-zero in the first sample!

Every cosine starts at 1

□ If the first sample is zero, the signal cannot be represented!

Allow the sinusoids to move!

 $signal = w_1 \sin(2\pi k n / N + \phi_1) + w_2 \sin(2\pi k n / N + \phi_2) + w_3 \sin(2\pi k n / N + \phi_3) + ...$

How much do the sines shift?

- □ Find the combination of amplitude and phase that results in the lowest squared error
- We can still do this separately for each sinusoid
	- The sinusoids are still orthogonal to one another

- □ Find the combination of amplitude and phase that results in the lowest squared error
- We can still do this separately for each sinusoid
	- The sinusoids are still orthogonal to one another

- **Least squares fitting: move the sinusoid left / right,** and at each shift, try all amplitudes
	- □ Find the combination of amplitude and phase that results in the lowest squared error
- We can still do this separately for each sinusoid
	- The sinusoids are still orthogonal to one another

- **Least squares fitting: move the sinusoid left / right,** and at each shift, try all amplitudes
	- □ Find the combination of amplitude and phase that results in the lowest squared error
- We can still do this separately for each sinusoid
	- The sinusoids are still orthogonal to one another

The problem with phase

L/2 columns only

- **This can no longer be expressed as a simple linear algebraic** equation
	- □ The phase is integral to the bases
		- I.e. there's a component of the basis itself that must be estimated!
- Linear algebraic notation can only be used if the bases are *fully* known
	- *We can only (pseudo) invert a known matrix*

 $\exp(j * f \, \text{reg}^* n + \phi) = \exp(j * f \, \text{reg}^* n) \exp(\phi) = \cos(f \, \text{reg}^* n + \phi) + j \sin(f \, \text{reg}^* n + \phi)$

- \blacksquare The cosine is the real part of a complex exponential □ The sine is the imaginary part
- A phase term for the sinusoid becomes a multiplicative term for the complex exponential!!

Complex exponentials are well behaved

- **Like sinusoids, a complex exponential of one** frequency can never explain one of another
	- □ They are orthogonal
- **They represent smooth transitions**
- Bonus: They are *complex*
	- □ Can even model complex data!
- **They can also model real data**
	- \Box exp(j x) + exp(-j x) is real
		- $cos(x) + j sin(x) + cos(x) j sin(x) = 2cos(x)$
- **Nore importantly**

$$
\exp\left(j2\pi\frac{(L/2-x)n}{L}\right) + \exp\left(j2\pi\frac{(L/2+x)n}{L}\right)
$$
 is real

 The complex exponentials with frequencies equally spaced from L/2 are complex conjugates

Complex exponentials are well behaved

$$
\exp\left(j2\pi\frac{(L/2-x)n}{L}\right) + \exp\left(j2\pi\frac{(L/2+x)n}{L}\right)
$$
 is real

- □ The complex exponentials with frequencies equally spaced from L/2 are complex conjugates
	- **Figure 1.5 Frequency = k**" \rightarrow k periods in L samples

$$
a \exp\left(j2\pi \frac{(L/2 - x)n}{L}\right) + \text{conj ugat}(a) \exp\left(j2\pi \frac{(L/2 + x)n}{L}\right)
$$

- **Is also real**
- \Box If the two exponentials are multiplied by numbers that are conjugates of one another the result is real

- **Explain the data using L complex exponential bases**
- The weights given to the $(L/2 + k)$ th basis and the $(L/2 k)$ th basis should be complex conjugates, to make the result real
	- **Because we are dealing with real data**
- **F** Fortunately, a least squares fit will give us identical weights to both bases automatically; there is no need to impose the constraint externally

Complex Exponential Bases: Algebraic Formulation

 \blacksquare Note that $S_{L/2+x} = \text{conjugate}(S_{L/2-x})$

Shorthand Notation

$$
W_L^{k,n} = \frac{1}{\sqrt{L}} \exp(j2\pi kn/L) = \frac{1}{\sqrt{L}} (\cos(2\pi kn/L) + j\sin(2\pi kn/L))
$$

$$
\begin{bmatrix}\nW_L^{0,0} & W_L^{L/2,0} & W_L^{L-1,0} \\
W_L^{0,1} & W_L^{L/2,1} & W_L^{L-1,1} \\
\vdots & \vdots & \vdots & \vdots \\
W_L^{0,L-1} & W_L^{L/2,L-1} & W_L^{L-1,L-1}\n\end{bmatrix}\n\begin{bmatrix}\nS_0 \\
\vdots \\
S_{L/2} \\
\vdots \\
S_{L-1}\n\end{bmatrix} =\n\begin{bmatrix}\ns[0] \\
s[1] \\
\vdots \\
s[L-1]\n\end{bmatrix}
$$

Note that $S_{L/2+x} = \text{conjugate}(S_{L/2-x})$

A quick detour

- **Real Orthonormal matrix:**
	- Γ XX^T = X X^T = I
		- **But only if all entries are real**
	- \Box The inverse of X is its own transpose
- **Definition: Hermitian**
	- X^H = Complex conjugate of X^T
		- **Conjugate of a number** $a + ib = a ib$
		- Conjugate of $exp(ix) = exp(-ix)$
- **Complex Orthonormal matrix**
	- Γ XX^H = X^H X = I
	- □ The inverse of a complex orthonormal matrix is its own Hermitian

$$
\mathbf{W}^{\text{-1}} = \mathbf{W}^{\text{H}}
$$

$$
W = \begin{bmatrix} W_L^{0,0} & W_L^{L/2,0} & W_L^{L-1,0} \\ W_L^{0,1} & W_L^{L/2,1} & W_L^{L-1,1} \\ \vdots & \vdots & \vdots & \vdots \\ W_L^{0,L-1} & W_L^{L/2,L-1} & W_L^{L-1,L-1} \\ \vdots & \vdots & \vdots & \vdots \\ W_L^{0,L-1} & W_L^{L/2,L-1} & W_L^{L-1,L-1} \end{bmatrix}
$$

\n
$$
W_L^{0,0} = \begin{bmatrix} W_L^{0,0} & W_L^{-0,L/2} & W_L^{-0,L-1} \\ W_L^{-1,0} & W_L^{-1,L/2} & W_L^{-1,L-1} \\ \vdots & \vdots & \vdots & \vdots \\ W_L^{-(L-1),0} & W_L^{-(L-1),L/2} & W_L^{-(L-1),(L-1)} \\ \vdots & \vdots & \vdots & \vdots \\ W_L^{-(L-1),0} & W_L^{-(L-1),L/2} & W_L^{-(L-1),(L-1)} \end{bmatrix}
$$

- **The complex exponential basis is orthonormal**
	- \Box Its inverse is its own Hermitian

 $_{2 \text{ Sep}} \frac{1}{2010} \text{W}^{-1} = \text{W}^{\text{H}}$ 11-755 / 18-797 41

11-755 / 18-797

Because $W^{-1} = W^{H}$

The Discrete Fourier Transform

$$
\begin{bmatrix}\nS_0 \\
\vdots \\
S_{L/2} \\
S_{L-1}\n\end{bmatrix} = \begin{bmatrix}\nW_L^{0,0} & \cdots & W_L^{-0,L/2} & \cdots & W_L^{-0,L-1} \\
W_L^{-1,0} & \cdots & \cdots & W_L^{-1,L-1} \\
\vdots & \vdots & \ddots & \vdots \\
W_L^{-(L-1),0} & \cdots & W_L^{-(L-1),L/2} & \cdots & W_L^{-(L-1), (L-1)}\n\end{bmatrix}\n\begin{bmatrix}\ns[0] \\
s[1] \\
\vdots \\
s[L-1]\n\end{bmatrix}
$$

- The matrix to the right is called the "Fourier Matrix"
- The weights $(S_0, S_1, Etc.)$ are called the Fourier transform

The Inverse Discrete Fourier Transform

$$
\begin{bmatrix}\nW_L^{0,0} & W_L^{L/2,0} & W_L^{L-1,0} \\
W_L^{0,1} & W_L^{L/2,1} & W_L^{L-1,1} \\
\vdots & \vdots & \vdots & \vdots \\
W_L^{0,L-1} & W_L^{L/2,L-1} & W_L^{L-1,L-1}\n\end{bmatrix}\n\begin{bmatrix}\nS_0 \\
\vdots \\
S_{L/2} \\
\vdots \\
S_{L-1}\n\end{bmatrix} =\n\begin{bmatrix}\ns[0] \\
s[1] \\
\vdots \\
s[L-1]\n\end{bmatrix}
$$

- **The matrix to the left is the inverse Fourier matrix**
- **Nultiplying the Fourier transform by this matrix gives** us the signal right back from its Fourier transform

The Fourier Matrix

- **Left panel: The real part of the Fourier matrix** □ For a 32-point signal
- Right panel: The imaginary part of the Fourier matrix

The FAST Fourier Transform

- **The outcome of the transformation with the Fourier matrix is the DISCRETE FOURIER TRANSFORM** (DFT)
- **The FAST Fourier transform** is an algorithm that takes advantage of the symmetry of the matrix to perform the matrix multiplication really fast
- **The FFT computes the DFT**
	- \Box Is much faster if the length of the signal can be expressed as 2^N

Images

The complex exponential is two dimensional

- □ Has a separate X frequency and Y frequency
	- Would be true even for checker boards!
- □ The 2-D complex exponential must be unravelled to form one component of the Fourier matrix
	- For a KxL image, we'd have K*L bases in the matrix

Typical Image Bases

Only real components of bases shown

DFT: Properties

- **The DFT coefficients are complex**
	- □ Have both a magnitude and a phase

 $S_k = S_k |\exp(-j\angle S_k)|$

Simple linear algebra tells us that

$$
\Box \quad \mathsf{DFT}(A + B) = \mathsf{DFT}(A) + \mathsf{DFT}(B)
$$

- □ The DFT of the sum of two signals is the DFT of their sum
- **A horribly common approximation in sound processing**
	- \Box Magnitude(DFT(A+B)) = Magnitude(DFT(A)) + Magnitude(DFT(B))
	- **u** Utterly wrong
	- **Q** Absurdly useful

The Fourier Transform and Perception: Sound

- The Fourier transforms represents the signal analogously to a bank of tuning forks
- Our ear *has* a bank of tuning forks
- **The output of the Fourier** transform is perceptually very meaningful

Symmetric signals

- If a signal is symmetric around $L/2$, the Fourier coefficients are real!
	- $A(L/2-k)$ * exp(-j *f*(L/2-k)) + A(L/2+k) * exp(-j*f*(L/2+k)) is always real if $A(L/2-k) = A(L/2+k)$
	- \Box We can pair up samples around the center all the way; the final summation term is always real
- **Overall symmetry properties**
	- If the *signal* is real, the FT is symmetric
	- If the signal is symmetric, the FT is real
	- \Box If the signal is real and symmetric, the FT is real and symmetric

The Discrete Cosine Transform

- Compose a symmetric signal or image
	- \Box Images would be symmetric in two dimensions
- Compute the Fourier transform
	- □ Since the FT is symmetric, sufficient to store only half the coefficients (quarter for an image)
		- Or as many coefficients as were originally in the signal / image

L columns

- Not necessary to compute a 2xL sized FFT
	- Enough to compute an L-sized *cosine* transform
	- □ Taking advantage of the symmetry of the problem
- **This is the Discrete Cosine Transform**

 $\sqrt{220}$

Representing images

- **Most common coding is the DCT**
- **JPEG: Each 8x8 element of the picture is converted using a DCT**
- The DCT coefficients are quantized and stored
	- \Box Degree of quantization = degree of compression
- **Also used to represent textures etc for pattern recognition and** other forms of analysis

What does the DFT represent

 $s[n] = \sum S_k \exp(j2\pi kn/L)$

- **The DFT can be written formulaically as above**
- There is no restriction on computing the formula for $n < 0$ or $n >$ L-1
	- \Box Its just a formula
	- □ But computing these terms behind 0 or beyond L-1 tells us what the signal composed by the DFT looks like outside our narrow window

- **If you extend the DFT-based representation** beyond 0 (on the left) or L (on the right) it repeats the signal!
- So what does the DFT really mean

What does the DFT represent

The DFT represents the properties of the infinitely long repeating signal that you can generate with it

□ Of which the observed signal is ONE period

This gives rise to some odd effects

The discrete Fourier transform

- **The discrete Fourier transform of the above signal actually** computes the properties of the periodic signal shown below
	- □ Which extends from –infinity to +infinity
	- □ The period of this signal is 32 samples in this example

The DFT of one period of the sinusoid shown in the figure computes the spectrum of the entire sinusoid from –infinity to +infinity

The DFT of one period of the sinusoid shown in the figure computes the spectrum of the entire sinusoid from –infinity to +infinity

- **The DFT of one period of the sinusoid shown in the figure computes** the spectrum of the entire sinusoid from –infinity to +infinity
- **The DFT of a real sinusoid has only one non zero frequency**
	- □ The second peak in the figure is the "reflection" around L/2 (for real signals)

The DFT of *any* **sequence computes the spectrum for an infinite** repetition of that sequence

- **The DFT of** *any* **sequence computes the spectrum for an infinite** repetition of that sequence
- **The DFT of a partial segment of a sinusoid computes the spectrum of** an infinite repetition of that segment, and not of the entire sinusoid

- **The DFT of** *any* **sequence computes the spectrum for an infinite** repetition of that sequence
- **The DFT of a partial segment of a sinusoid computes the spectrum of** an infinite repetition of that segment, and not of the entire sinusoid
- **This will not give us the DFT of the sinusoid itself!**

- **The difference occurs due to two reasons:**
- The transform cannot know what the signal actually looks like outside the observed window

- The difference occurs due to two reasons:
- The transform cannot know what the signal actually looks like outside the observed window
- The implicit repetition of the observed signal introduces large discontinuities at the points of repetition
	- □ These are not part of the underlying signal
		- **Notaklary We only want to characterize the underlying signal**
			- \Box The discontinuity is an irrelevant detail

 While we can never know what the signal looks like outside the window, we can try to minimize the discontinuities at the boundaries

11-755 / 18-797 / 18-797 / 19-79

- We do this by multiplying the signal with a *window* function
	- **U** We call this procedure windowing
	- □ We refer to the resulting signal as a "windowed" signal

- While we can never know what the signal looks like outside the window, we can try to minimize the discontinuities at the boundaries
- We do this by multiplying the signal with a *window* function
	- **U** We call this procedure windowing
	- □ We refer to the resulting signal as a "windowed" signal
- Windowing attempts to do the following:
	- □ Keep the windowed signal similar to the original in the central regions

Windowing \overline{o} .e $O.G$ $O.4$ \mathbf{r} illlar Ω -0.2 -0.4 -0.6 -0.8 - ס \Rightarrow o ട്റ 4ō ട്ഠ ഒറ ∕่α ക് ട്റ 100

- While we can never know what the signal looks like outside the window, we can try to minimize the discontinuities at the boundaries
- We do this by multiplying the signal with a *window* function
	- □ We call this procedure windowing
	- We refer to the resulting signal as a "windowed" signal
- Windowing attempts to do the following:
	- □ Keep the windowed signal similar to the original in the central regions

 $_{\rm 2\,Sep}$ $_{\rm 201}$ Reduce or eliminate the discontinuities in the implicit periodic signal

Windowing

Windowing

- **Number** Windowing is not a perfect solution
	- □ The original (unwindowed) segment is identical to the original (complete) signal within the segment
	- □ The windowed segment is often not identical to the complete signal anywhere
- Several windowing functions have been proposed that strike different tradeoffs between the fidelity in the central regions and the smoothing at the boundaries

- **Cosine windows:**
	- Window length is M
	- \Box Index begins at 0
- **Hamming: w[n] = 0.54 0.46 cos(2πn/M)**
- **Hanning: w[n] = 0.5 0.5 cos(2πn/M)**
- **Blackman:** $0.42 0.5 \cos(2\pi n/M) + 0.08 \cos(4\pi n/M)$

Geometric windows:

Rectangular (boxcar):

D Trapezoid:

- We can pad zeros to the end of a signal to make it a desired length
	- □ Useful if the FFT (or any other algorithm we use) requires signals of a specified length
	- □ E.g. Radix 2 FFTs require signals of length 2ⁿ i.e., some power of 2. We must zero pad the signal to increase its length to the appropriate number

- We can pad zeros to the end of a signal to make it a desired length
	- □ Useful if the FFT (or any other algorithm we use) requires signals of a specified length
	- **E.g. Radix 2 FFTs require signals of length 2ⁿ i.e., some power of 2.** We must zero pad the signal to increase its length to the appropriate number
- **The consequence of zero padding is to change the periodic** signal whose Fourier spectrum is being computed by the DFT

- The DFT of the zero padded signal is essentially the same as the DFT of the unpadded signal, with additional spectral samples inserted in between
	- \Box It does not contain any additional information over the original DFT
	- \Box It also does not contain less information

Zero Padding

- Zero padding windowed signals results in signals that appear to be less discontinuous at the edges
	- **D** This is only illusory
	- **Example 20** Again, we do not introduce any new information into the signal by merely padding it with zeros

- **The DFT of the zero padded signal is essentially the same as** the DFT of the unpadded signal, with additional spectral samples inserted in between
	- □ It does not contain any additional information over the original DFT
	- \Box It also does not contain less information

11-755 / 18-797 2 Sep 2010 82

Zero padding a speech signal

The first 65 points of a 128 point DFT. Plot shows *log* **of the magnitude spectrum**

The first 513 points of a 1024 point DFT. Plot shows *log* **of the magnitude spectrum**

- □ Because the properties of audio signals change quickly
- □ They are "stationary" only very briefly

- □ Because the properties of audio signals change quickly
- □ They are "stationary" only very briefly
- Adjacent segments overlap by 15-48 ms

- □ Because the properties of audio signals change quickly
- □ They are "stationary" only very briefly
- Adjacent segments overlap by 15-48 ms

- □ Because the properties of audio signals change quickly
- □ They are "stationary" only very briefly
- Adjacent segments overlap by 15-48 ms

- □ Because the properties of audio signals change quickly
- □ They are "stationary" only very briefly
- Adjacent segments overlap by 15-48 ms

- □ Because the properties of audio signals change quickly
- □ They are "stationary" only very briefly
- Adjacent segments overlap by 15-48 ms

- □ Because the properties of audio signals change quickly
- □ They are "stationary" only very briefly
- Adjacent segments overlap by 15-48 ms

Computing a Spectrogram 30 frequency 8000 7000 $\ddot{\mathbf{e}}$ $500c$ 4000 3000 2000 $100c$ \mathbf{c}_{∞} Time

Computing a Spectrogram frequency 8000 7000 $\ddot{\mathbf{e}}$ $500c$ 4000 3000 2000 $100c$ \mathbf{c}_{∞} Time

Computing a Spectrogram frequency 8000 7000 $\ddot{\mathbf{e}}$ $500c$ 4000 3000 2000 $100c$ \mathbf{c}_{∞}

Compute Fourier Spectra of segments of audio and stack them side-by-side

Time

Computing a Spectrogram $\overline{\mathbf{A}}$ frequency 8000 7000 $\ddot{\mathbf{e}}$ $500c$ 4000 3000 2000 $100c$ \mathbf{c}_{∞} Time

Computing a Spectrogram 4000 frequency 8000 7000 $\ddot{\mathbf{e}}$ $500c$ § 4000 3000 2000 $100c$ \mathbf{c}_{∞} Time

Compute Fourier Spectra of segments of audio and stack them side-by-side

Time

8000 7000 $\ddot{\mathbf{e}}$ $500c$

4000 3000 2000 $100c$ \mathbf{c}_{∞}

§
Computing a Spectrogram

Compute Fourier Spectra of segments of audio and stack them side-by-side

§

Computing a Spectrogram

Compute Fourier Spectra of segments of audio and stack them side-by-side

§

Compute Fourier Spectra of segments of audio and stack them side-by-side The Fourier spectrum of each window can be inverted to get back the signal. Hence the spectrogram can be inverted to obtain a time-domain signal

In this example each segment was 25 ms long and adjacent segments overlapped by 15 ms

The result of parameterization

- Each column here represents the FT of a single segment of signal 64ms wide.
	- **□** Adjacent segments overlap by 48 ms.
- **DET** details
	- \Box 1024 points (16000 samples a second).
	- □ 2048 point DFT 1024 points of zero padding.
	- □ Only 1025 points of each DFT are shown
		- The rest are "reflections"
- **The value shown is actually the magnitude of the complex spectral** values

2 Sep 2010 11-755 / 18-797 112 Most of our analysis / operations are performed on the magnitude

- **All the operations (e.g. the examples shown in the** previous class) are performed on the magnitude
- The phase of the complex spectrum is needed to invert a DFT to a signal
	- Where does that come from?
- Deriving phase is a serious, not-quite solved problem.

Phase

- Common tricks: Obtain the phase from the original signal
	- $Sft = DFT$ (signal)
	- Phase1 = phase(Sft)
		- Each term is of the form $real + j$ imag
		- For each element, compute $arctan(\text{imag}/\text{real})$
	- \Box Smagnitude = magnitude(Sft)
		- For each element compute $Sqrtreal*real + imag*imag)$
	- ProcessedSpectrum = Process(Smagnitude)
	- \Box New SFT = ProcessedSpectrum*exp(j*Phase)
	- Recover signal from SFT
- Some other tricks:
	- □ Compute the FT of a different signal of the same length
	- □ Use the phase from that signal

Returning to the speech signal Actually a matrix of complex numbers

16ms (256 samples)

- **For each complex spectral vector, compute a signal from the inverse DFT**
	- □ Make sure to have the complete FT (including the reflected portion)
- If need be window the retrieved signal
- **Detamage 1** Overlap signals from adjacent vectors in exactly the same manner as during analysis
	- E.g. If a 48ms (768 sample) overlap was used during analysis, overlap adjacent segments by 768 samples

Additional tricks

- **The basic representation is the** magnitude spectrogram
- Often it is transformed to a *log* spectrum
	- **By computing the log of each entry in** the spectrogram matrix
	- **Example 2 After processing, the entry is** exponentiated to get back the magnitude spectrum
		- To which phase may be factored in to get a signal
- \blacksquare The log spectrum may be "compressed" by a dimensionality reducing matrix
	- **<u>D</u>** Usually a DCT matrix

- DCT of small segments
	- **a** 8x8
	- □ Each image becomes a matrix of DCT vectors
- DCT of the image
- **Haar transform (checkerboard)**
- **Number** Various wavelet representations
	- **D** Gabor wavelets
- *Or data-driven representations*
	- **Eigen faces**