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11-755 Machine Learning for Signal Processing 

Eigen representations; 
Detecting faces in images 

Class 5.  7 Sep 2010 

Instructor: Bhiksha Raj 
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Administrivia 
  Homeworks were up last week 

  Questions to be directed to Sourish/Sohail/Myself 
  Delays are worth negative points  

  Project ideas next class 
  Begin thinking about what project you will do 
  You are welcome to think up your own ideas/projects 
  Think workshop paper – novel problems, novel ideas can get published 

  Projects will be done by teams 
  2-4 people 
  Begin forming teams by yourselves 
  Students without teams will be assigned to teams 

  Class of 28th:  Intel’s open house 
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Last Class: Representing Audio 

  Basic DFT 
  Computing a Spectrogram 
  Computing additional features from a 

spectrogram 
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What about images? 

  DCT of small segments 
  8x8 
  Each image becomes a matrix of DCT vectors 

  DCT of the image 
  Haar transform (checkerboard) 
  Or data-driven representations.. 

DCT 

Npixels / 64 columns 
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Returning to Eigen Computation 

  A collection of faces 
  All normalized to 100x100 pixels 

  What is common among all of them? 
  Do we have a common descriptor? 
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A least squares typical face 

  Can we do better than a blank screen to find the most common portion of faces? 
  The first checkerboard; the zeroth frequency component.. 

  Assumption: There is a “typical” face that captures most of what is common to all 
faces 
  Every face can be represented by a scaled version of a typical face 

  Approximate every face f as f = wf V 

  Estimate V to minimize the squared error over all faces 
  How?  
  What is V? 

The typical face 

7 Sep 2010 6 



9/9/10 

2 

11755/18797 

A collection of least squares typical faces 

  Assumption: There are a set of K “typical” faces that captures most of all faces 
  Approximate every face f as f = wf,1 V1+ wf,2 V2 + wf,3 V3 +.. + wf,k Vk  

  V2 is used to “correct” errors resulting from using only V1 
  So the total energy in wf,2 must be lesser than the total energy in wf,1  
  Σ wf,2

2 >Σ wf,1
2 

  V3 corrects errors remaining after correction with V2 
  The total energy in wf,3 must be lesser than that even in wf,2 

  And so on.. 
  V = [V1 V2 V3] 

  Estimate V to minimize the squared error 
  How?  
  What is V? 7 Sep 2010 7 11755/18797 

A recollection 

M =  

W =  

V=PINV(W)*M 

? U =  
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How about the other way? 

  W = M * Pinv(V) 

M =  

W =  ? ? 

V =  

U =  
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How about the other way? 

    

M =  

W =  ? ? 

V =  

U =  

? 
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The Correlation and Covariance Matrices 
M MT

= 
C

(1/Ν)Σim1,i2

N
(1/Ν)Σimk,imk,j

  Consider a set of column vectors represented as a DxN 
matrix M 

  The correlation matrix is 
  C = (1/N) MMT = (1/N)Σi MiMi

T  
  Diagonal elements represent average of the squared value of 

each dimension 
  Off diagonal elements represent how two components are related 

  How much knowing one lets us guess the value of the other 
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The Correlation and Covariance Matrices 
M MT

= 
C

(1/Ν)Σim1,i2

N
(1/Ν)Σimk,imk,j

  If we “center” the data first, we get the covariance matrix 
  Mean = 1/N Σi Mi 

  Mi is the ith column of M 

  The centered data are obtained by subtracting the mean from every 
column of M 
  Mcentered = M – Mean*1 
  1 is a 1xN row matrix 

  The Covariance matrix is 
  Cov = (1/N) Mcentered Mcentered

T 
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Correlation / Covariance matrix 

  Covariance and correlation matrices are 
symmetric 
  Cij = Cji 

  Properties of symmetric matrices: 
  Eigenvalues and Eigenvectors are real 
  Can be expressed as 

  C = VLVT 

  V is the matrix of Eigenvectors 
  L is a diagonal matrix of Eigenvalues 
  VT = V-1 
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Correlation / Covariance Matrix 

  The square root of a correlation or covariance matrix is easily 
derived from the eigen vectors and eigen values 
  The eigen values of the square root of the correlation matrix are 

the square roots of the eigen values of the correlation matrix 
  These are also the “singular values” of the data set 
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Square root of the Covariance Matrix 

  The square root of the covariance matrix 
represents the elliptical scatter of the data 

  The eigenvectors of the matrix represent the 
major and minor axes 

7 Sep 2010 15 11755/18797 

PCA:  The Covariance Matrix 

  Projections along the N eigenvectors with the largest 
eigenvalues represent the N most informative 
components of the matrix 
  N directions along which variance is maximum 
  These represent the N principal components 

Any vector V = aV,1 * eigenvec1 + aV,2 *eigenvec2 + .. 

ΣV aV,i = eigenvalue(i) 
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An audio example 

  The spectrogram has 974 vectors of 
dimension 1025 

  The covariance matrix is size 1025 x 1025 
  There are 1025 eigenvectors 
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Eigen Reduction 

  Compute the Covariance 
  Compute Eigen vectors and values 
  Create matrix from the 25 Eigen vectors corresponding to 25 highest 

Eigen values 
  Compute the weights of the 25 eigenvectors 
  To reconstruct the spectrogram – compute the projection on the 25 

eigen vectors  

1025x1000 

1025x1025 

1025x25 

25x1000 

1025x1000 

V = 1025x1025 
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Eigenvalues and Eigenvectors 

  Left panel: Matrix with 1025 eigen vectors 
  Right panel: Corresponding eigen values 

  Most eigen values are close to zero 
  The corresponding eigenvectors are “unimportant” 
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Eigenvalues and Eigenvectors 

  The vectors in the spectrogram are linear combinations of all 
1025 eigen vectors 

  The eigen vectors with low eigen values contribute very little 
  The average value of ai is proportional to the square root of the 

eigenvalue 
  Ignoring these will not affect the composition of the spectrogram 

Vec = a1 *eigenvec1 + a2 * eigenvec2 + a3 * eigenvec3 … 

7 Sep 2010 20 

11755/18797 

An audio example 

  The same spectrogram projected down to the 25 
principal eigenvectors with the highest eigenvalues 
  Only the 25-dimensional weights are shown 

  The weights with which the 25 eigen vectors must be added to 
compose a least squares approximation to the spectrogram 
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An audio example 

  The same spectrogram constructed from only the 25 eigen 
vectors with the highest eigen values 
  Looks similar 

  With 100 eigenvectors, it would be indistinguishable from the original 
  Sounds pretty close 
  But now sufficient to store 25 numbers per vector (instead of 

1024) 
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With only 5 eigenvectors 

  The same spectrogram constructed from only 
the 5 eigen vectors with the highest eigen 
values 
  Highly recognizable 
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Covariance vs. Correlation 

  If Eigenvectors are computed from the correlation 
matrix, they represent the most energy carrying 
bases 
  As opposed to the most informative bases obtained 

from the covariance 
  If the data are centered, the two are the same, but not 

otherwise 

  Eigen decomposition of Correlations:  
  Direct computation using Singular Value Decomposition 
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Covariance vs. correlation 

  Data are Gaussian, mean at [3,3] 

  Left: Eigen vectors from covariance 
  Aligned to the direction of scatter 

  But not aligned to data 

  Right: Eigen vectors from correlation (SVD) 
  Aligned to average direction of data 

  But not the scatter 
11755/18797 7 Sep 2010 25 11755/18797 

Singular Value Decomposition 
  A matrix decomposition method 

  Breaks up the input into a product of three matrices, two 
orthogonal and one diagonal 

  The right matrix are Eigenvectors in row space 
  The diagonal will represent how much spread is in each 

direction and contains the singular values 
  Also the square root of the eigen value matrix of the correlations 

  The left matrix are the Eigen vectors of column space 
  Also Eigenvectors of correlation 

Σ
. . 

= 

M U VT

DxN 

DxD DxN NxN 
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SVD vs. Eigen decomposition 

  Singluar value decomposition is analogous to the 
eigen decomposition of the correlation matrix of the 
data 

  The “left” singular vectors are the eigenvectors of 
the correlation matrix 
  Show the directions of greatest importance 

  The corresponding singular values are the square 
roots of the eigenvalues of the correlation matrix 
  Show the importance of the eigenvector 
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Thin SVD, compact SVD, reduced SVD 

  Thin SVD:  Only compute the first N columns of U 
  All that is required if N < M 

  Compact SVD: Only the left and right eigen vectors 
corresponding to non-zero singular values are computed 

  Reduced SVD: Only compute the columns of U corresponding to 
the K highest singular values 

. . 
= 

A U VT
DxN DxK 

KxK 

KxN 
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Eigen Faces! 

  Here W, V and U are ALL unknown and must be determined 
  Such that the squared error between U and M is minimum 

  Eigen analysis allows you to find W and V such that U = WV has the least squared 
error with respect to the original data M 

  If the original data are a collection of faces, the columns of W are eigen faces 
  Should the data be centered? 

M = Data Matrix 

U = Approximation 

V 

W 
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Eigen faces 

  Lay all faces side by side in vector form to form a 
matrix 
  In my example: 300 faces. So the matrix is 10000 x 300 

  Multiply the matrix by its transpose 
  The correlation matrix is 10000x10000 

M = Data Matrix 

M
T  

= 
Tr

an
sp

os
ed

 
D

at
a 

M
at

rix
 

Correlation/Covariance = 

10000x300 

300x10000 

10000x10000 
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Eigen faces 

  Compute the eigen vectors 
  Only 300 of the 10000 eigen values are non-zero 

  Why? 

  Retain eigen vectors with high eigen values (>0) 
  Could use a higher threshold 

[U,S] = eig(correlation) 

ei
ge

nf
ac

e1
 

ei
ge

nf
ac

e2
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Eigen Faces 

  The eigen vector with the highest eigen value is the first typical 
face 

  The vector with the second highest eigen value is the second 
typical face. 

  Etc. 

ei
ge

nf
ac

e1
 

ei
ge

nf
ac

e2
 

eigenface1 
eigenface2 

eigenface3 
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Representing a face 

  The weights with which the eigen faces must 
be combined to compose the face are used 
to represent the face! 

= w1 +  w2 +  w3 

Representation                               =     [w1 w2 w3 …. ]T 
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SVD instead of Eigen 

  Do we need to compute a 10000 x 10000 correlation matrix and then 
perform Eigen analysis? 
  Will take a very long time on your laptop 

  SVD 
  Only need to perform “Thin” SVD. Very fast 

  U = 10000 x 300 
  The columns of U are the eigen faces! 
  The Us corresponding to the “zero” eigen values are not computed 

  S = 300 x 300 
  V = 300 x 300 

M = Data Matrix 

10000x300 

U=10000x300 
S=300x300 V=300x300 = 

ei
ge

nf
ac

e1
 

ei
ge

nf
ac

e2
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NORMALIZING OUT 
VARIATIONS 
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Images: Accounting for variations 

  What are the obvious differences in the 
above images 

  How can we capture these differences 
  Hint – image histograms.. 
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Images -- Variations 

  Pixel histograms: what are the differences 
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Normalizing Image Characteristics 
  Normalize the pictures 

  Eliminate lighting/contrast variations 
  All pictures must have “similar” lighting 

  How? 

  Lighting and contrast are represented in the pixel value 
histograms: 
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Histogram Equalization 
  Normalize histograms of images 

  Maximize the contrast 
  Contrast is defined as the “flatness” of the histogram 
  For maximal contrast, every greyscale must happen as frequently as every other 

greyscale 

  Maximizing the contrast: Flattening the histogram 
  Doing it for every image ensures that every image has the same constrast 

  I.e. exactly the same histogram of pixel values 
  Which should be flat 

0 255 
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Histogram Equalization 

  Modify pixel values such that histogram becomes 
“flat”. 

  For each pixel 
  New pixel value = f(old pixel value) 
  What is f()? 

  Easy way to compute this function: map cumulative 
counts 
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Cumulative Count Function 

  The histogram (count) of a pixel value X is the 
number of pixels in the image that have value X 
  E.g. in the above image, the count of pixel value 180 is 

about 110 
  The cumulative count at pixel value X is the total 

number of pixels that have values in the range  
0 <= x <= X 
  CCF(X) =  H(1) + H(2) + .. H(X)  
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Cumulative Count Function 

  The cumulative count function of a uniform 
histogram is a line 

  We must modify the pixel values of the image 
so that its cumulative count is a line 
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Mapping CCFs 

  CCF(f(x)) -> a*f(x)   [of a*(f(x)+1) if pixels can take 
value 0] 
  x = pixel value 
  f() is the function that converts the old pixel value to a new 

(normalized) pixel value 
  a = (total no. of pixels in image) / (total no. of pixel levels) 

  The no. of pixel levels is 256 in our examples 
  Total no. of pixels is 10000 in a 100x100 image 

Move x axis levels around until the plot to the left 
looks like the plot to the right 
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Mapping CCFs 

  For each pixel value x: 
  Find the location on the red line that has the closet Y value 

to the observed CCF at x  
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Mapping CCFs 

  For each pixel value x: 
  Find the location on the red line that has the closet Y value 

to the observed CCF at x  

x1 

x2 

f(x1) = x2 

x3 

x4 

f(x3) = x4 

Etc. 
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Mapping CCFs 

  For each pixel in the image to the left 
  The pixel has a value x 
  Find the CCF at that pixel value CCF(x) 
  Find x’ such that CCF(x’) in the plot to the right equals 

CCF(x) 
  x’ such that CCF_flat(x’) = CCF(x) 

  Modify the pixel value to x’ 

Move x axis levels around until the plot to the left 
looks like the plot to the right 
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Doing it Formulaically 

  CCFmin is the smallest non-zero value of CCF(x) 
  The value of the CCF at the smallest observed pixel value 

  Npixels is the total no. of pixels in the image 
  10000 for a 100x100 image 

  Max.pixel.value is the highest pixel value 
  255 for 8-bit pixel representations 
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Or even simpler 

  Matlab: 

  Newimage = histeq(oldimage) 
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Histogram Equalization 

  Left column: Original image 
  Right column: Equalized image 
  All images now have similar contrast levels 
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Eigenfaces after Equalization 

  Left panel : Without HEQ 
  Right panel: With HEQ 

  Eigen faces are more face like.. 
  Need not always be the case 
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Detecting Faces in Images 
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Detecting Faces in Images 

  Finding face like patterns 
  How do we find if a picture has faces in it 
  Where are the faces? 

  A simple solution: 
  Define a “typical face” 
  Find the “typical face” in the image 
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Finding faces in an image 

  Picture is larger than the “typical face” 
  E.g. typical face is 100x100, picture is 600x800 

  First convert to greyscale 
  R + G + B 
  Not very useful to work in color 
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Finding faces in an image 

  Goal .. To find out if and where images that 
look like the “typical” face occur in the picture 
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Finding faces in an image 

  Try to “match” the typical face to each 
location in the picture 
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Finding faces in an image 

  Try to “match” the typical face to each 
location in the picture 
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Finding faces in an image 

  Try to “match” the typical face to each 
location in the picture 
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Finding faces in an image 

  Try to “match” the typical face to each 
location in the picture 
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Finding faces in an image 

  Try to “match” the typical face to each 
location in the picture 

7 Sep 2010 59 11755/18797 

Finding faces in an image 

  Try to “match” the typical face to each 
location in the picture 
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Finding faces in an image 

  Try to “match” the typical face to each 
location in the picture 
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Finding faces in an image 

  Try to “match” the typical face to each 
location in the picture 
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Finding faces in an image 

  Try to “match” the typical face to each 
location in the picture 
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Finding faces in an image 

  Try to “match” the typical face to each 
location in the picture 

  The “typical face” will explain some spots on 
the image much better than others 
  These are the spots at which we probably have a 

face! 
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How to “match” 

  What exactly is the “match” 
  What is the match “score” 

  The DOT Product 
  Express the typical face as a vector 
  Express the region of the image being evaluated as a vector 

  But first histogram equalize the region 
  Just the section being evaluated, without considering the rest of the image 

  Compute the dot product of the typical face vector and the 
“region” vector 
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What do we get 

  The right panel shows the dot product at 
various locations 
  Redder is higher 

  The locations of peaks indicate locations of faces! 

  This is a Matched Filter 
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What do we get 

  The right panel shows the dot product a various 
loctions 
  Redder is higher 

  The locations of peaks indicate locations of faces! 

  Correctly detects all three faces 
  Likes George’s face most 

  He looks most like the typical face 
  Also finds a face where there is none! 

  A false alarm 
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Scaling and Rotation Problems 

  Scaling 
  Not all faces are the same size 
  Some people have bigger faces 
  The size of the face on the image 

changes with perspective 
  Our “typical face” only represents 

one of these sizes 

  Rotation 
  The head need not always be 

upright! 
  Our typical face image was 

upright 
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Solution 

  Create many “typical faces” 
  One for each scaling factor 
  One for each rotation 

  How will we do this? 
  Match them all 

  Does this work 
  Kind of .. Not well enough at all 
  We need more sophisticated models 
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Face Detection: A Quick Historical Perspective 

  Many more complex methods 
  Use edge detectors and search for face like patterns 
  Find “feature” detectors (noses, ears..) and employ them in complex 

neural networks.. 

  The Viola Jones method 
  Boosted cascaded classifiers 

  But first, what is boosting 
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And even before that – what is classification? 

  Given “features” describing an entity, determine the 
category it belongs to 
  Walks on two legs, has no hair. Is this 

  A Chimpanizee 
  A Human 

  Has long hair, is 5’4” tall, is this 
  A man 
  A woman 

  Matches “eye” pattern with score 0.5, “mouth pattern” with 
score 0.25, “nose” pattern with score 0.1. Are we looking at 
  A face 
  Not a face? 
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Classification 
  Multi-class classification 

  Many possible categories 
  E.g. Sounds “AH, IY, UW, EY..” 
  E.g. Images “Tree, dog, house, person..” 

  Binary classification 
  Only two categories 

  Man vs. Woman 
  Face vs. not a face.. 

  Face detection: Recast as binary face classification 
  For each little square of the image, determine if the square 

represents a face or not 
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Face Detection as Classification 

  Faces can be many sizes 
  They can happen anywhere in the image 
  For each face size 

  For each location 
  Classify a rectangular region of the face size, at that location, as a 

face or not a face 
  This is a series of binary classification problems 

For each square, run a 
classifier to find out if it 
is a face or not 

7 Sep 2010 73 11755/18797 

Introduction to Boosting 
  An ensemble method that sequentially combines many simple 

BINARY classifiers to construct a final complex classifier 
  Simple classifiers are often called “weak” learners 
  The complex classifiers are called “strong” learners 

  Each weak learner focuses on instances where the previous 
classifier failed 

  Give greater weight to instances that have been incorrectly 
classified by previous learners 

  Restrictions for weak learners 
  Better than 50% correct 

  Final classifier is weighted sum of weak classifiers 
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Boosting: A very simple idea 
  One can come up with many rules to classify 

  E.g. Chimpanzee vs. Human classifier: 
  If arms == long, entity is chimpanzee 
  If height > 5’6” entity is human 
  If lives in house == entity is human 
  If lives in zoo == entity is chimpanzee 

  Each of them is a reasonable rule, but makes many mistakes 
  Each rule has an intrinsic error rate 

  Combine the predictions of these rules 
  But not equally 
  Rules that are less accurate should be given lesser weight 
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Boosting and the Chimpanzee Problem 

  The total confidence in all classifiers that classify the entity as a chimpanzee is 

  The total confidence in all classifiers that classify it as a human is  

  If Scorechimpanzee > Scorehuman then the our belief that we have a chimpanzee is 
greater than the belief that we have a human 

Arm length? 
αarmlength 

Height? 
αheight 

Lives in house? 
αhouse 

Lives in zoo? 
αzoo 

human human chimp chimp 
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Boosting as defined by Freund 
  A gambler wants to write a program to predict winning horses. His 

program must encode the expertise of his brilliant winner friend 

  The friend has no single, encodable algorithm. Instead he has many 
rules of thumb 

  He uses a different rule of thumb for each set of races 
  E.g. “in this set, go with races that have black horses with stars on 

their foreheads” 

  But cannot really enumerate what rules of thumbs go with 
what sets of races: he simply “knows” when he encounters  
a set 

  A common problem that faces us in many situations 

  Problem: 
  How best to combine all of the friend’s rules of thumb 
  What is the best set of races to present to the friend, to 

extract the various rules of thumb 
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Boosting 
 The basic idea: Can a “weak” learning 

algorithm that performs just slightly better than 
random guessing be boosted into an arbitrarily 
accurate “strong” learner 

  Each of the gambler’s rules may be just better 
than random guessing 

 This is  a “meta” algorithm, that poses no 
constraints on the form of the weak learners 
themselves 

  The gambler’s rules of thumb can be anything 
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Boosting: A Voting Perspective 
 Boosting can be considered a form of voting 

  Let a number of different classifiers classify the data 
  Go with the majority 
  Intuition says that as the number of classifiers increases, 

the dependability of the majority vote increases 

 The corresponding algorithms were called Boosting 
by majority 

  A (weighted) majority vote taken over all the classifiers 
  How do we compute weights for the classifiers? 
  How do we actually train the classifiers 
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ADA Boost: Adaptive algorithm for 
learning the weights 
  ADA Boost: Not named of ADA Lovelace 
  An adaptive algorithm that learns the weights 

of each classifier sequentially 
  Learning adapts to the current accuracy 

  Iteratively: 
  Train a simple classifier from training data 

  It will make errors even on training data 
  Train a new classifier that focuses on the training data 

points that have been misclassified 
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 Red dots represent training data from Red class 
 Blue dots represent training data from Blue class 

Boosting: An Example 
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 Very simple weak learner 
  A line that is parallel to one of the two axes 

Blue class Red class 

Boosting: An Example 
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 First weak learner makes many mistakes 
  Errors coloured black 

Blue class Red class 

Boosting: An Example 
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 Second weak learner focuses on errors made by 
first learner 

Boosting: An Example 
Blue class 

Red class 
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 Second strong  learner: weighted combination of first and 
second weak learners 
‒  Decision boundary shown by black lines 

BLUE 

RED 

RED 

RED 

Boosting: An Example 
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 The second strong learner also makes 
mistakes 

  Errors colored black 

BLUE 

RED 

RED 

RED 

Boosting: An Example 
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 Third weak learner concentrates on errors 
made by second strong learner 

Blue class 

Red class 

BLUE 

RED 

RED 

RED 

Boosting: An Example 
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 Third weak learner concentrates on errors made by 
combination of previous weak learners 

 Continue adding weak learners until…. 

Blue class Red class 

Blue class 

Red class 

Blue class 

Red class 

Boosting: An Example 
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Boosting: An Example 

 Voila! Final strong learner: very few errors on the 
training data 
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Boosting: An Example 

 The final strong learner has learnt a complicated 
decision boundary 
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Boosting: An Example 

 The final strong learner has learnt a complicated 
decision boundary 

  Decision boundaries in areas with low density of training 
points assumed inconsequential 
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Overall Learning Pattern 
 Strong learner increasingly accurate with increasing 

number of weak learners 

 Residual errors increasingly difficult to correct 
‒  Additional weak learners less and less effective 

Error of nth weak learner 

Error of nth strong learner 

number of weak learners 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ADABoost 
  Cannot just add new classifiers that work well only the 

the previously misclassified data 

  Problem: The new classifier will make errors on the 
points that the earlier classifiers got right 
  Not good 
  On test data we have no way of knowing which points were 

correctly classified by the first classifier 

  Solution: Weight the data when training the second 
classifier 
  Use all the data but assign them weights 

  Data that are already correctly classified have less weight 
  Data that are currently incorrectly classified have more weight 
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ADA Boost 

  The red and blue points (correctly classified) will have a weight α < 1 
  Black points (incorrectly classified) will have a weight β (= 1/α) > 1 
  To compute the optimal second classifier, we minimize the total 

weighted error 
  Each data point contributes α or β to the total count of correctly and 

incorrectly classified points 
  E.g. if one of the red points is misclassified by the new classifier, the total 

error of the new classifier goes up by α 
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ADA Boost 

  Each new classifier modifies the weights of the data 
points based on the accuracy of the current classifier 

  The final classifier too is a weighted combination 
of all component classifiers 
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Will continue next week   

  Next class: Project ideas. 

  Today’s lecture and the next lecture are the 
basis for HW 2. 
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