11-755 Machine Learning for Signal Processing

Eigen representations;
Detecting faces in images

Class 5. 7 Sep 2010

Instructor: Bhiksha Raj
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‘ Administrivia

= Homeworks were up last week
o Questions to be directed to Sourish/Sohail/Myself
o Delays are worth negative points ©

= Project ideas next class
o Begin thinking about what project you will do
o You are welcome to think up your own ideas/projects
o Think workshop paper — novel problems, novel ideas can get published

= Projects will be done by teams
o 2-4 people

o Begin forming teams by yourselves
o Students without teams will be assigned to teams

= Class of 28™: Intel's open house
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‘ Last Class: Representmg Audio

= Basic DFT
= Computing a Spectrogram

= Computing additional features from a
spectrogram
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What about i 1ma es? ! E

Npixels / 64 columns

= DCT of small segments
o 8x8
o Each image becomes a matrix of DCT vectors
= DCT of the image
Haar transform (checkerboard)
= Or data-driven representations..
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‘ Returning to Eigen Computation

C I
W W M E

= A collection of faces
o All normalized to 100x100 pixels

= What is common among all of them?
o Do we have a common descriptor?
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‘ A least uares typical face e ypicaface
Q*’ 'b;h‘ B
=

= Can we do better than a blank screen to find the most common portion of faces?

o The first the zeroth
= Assumption: There is a “typical” face that captures most of what is common to all
faces

o Every face can be represented by a scaled version of a typical face
= Approximate every face fas f = w; V
= Estimate V to minimize the squared error over all faces

2 How?

o Whatis V?
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A collection of least squares typical faces %
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Assumption: There are a set of K “typical” faces that captures most of all faces
Approximate every face fas f = w;; Vi+ wg, V, + wis Vi +. 4+ wi, 'V
0V, is used to “correct” errors resulting from using only V,;
So the total energy in w; , must be lesser than the total energy in Wy,
w2 2T w
0 V; corrects errors remaining after correction with V,
The total energy in w; ; must be lesser than that even in w;,
o Andsoon. ’ ’
a V=[ViVa Vi
Estimate V to minimize the squared error
o How?
7 sep2o10 What is V2 11755/18797

w=| u= 7

W =M * Pinv(V)
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The Correlation and Covariance Matrices

M g .
e
=N = T
_ - (AN)Zmy m,

Consider a set of column vectors represented as a DxN

matrix M

The correlation matrix is

a €= (1/N) MMT = (1/N)s; MM/

o Diagonal elements represent average of the squared value of
each dimension

o Off diagonal elements represent how two components are related

How much knowing one lets us guess the value of the other
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V=PINV(W)*"M
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WV =M
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The Correlation and Covariance Matrices

M MT /—\
e
=N T
——— (I/N)Zmy jmy

If we “center” the data first, we get the covariance matrix

Mean = 1/N % M;

o M;is the ith column of M

The centered data are obtained by subtracting the mean from every
column of M

9 Megneres = M — Mean*1

o 1isa 1xN row matrix

The Covariance matrix is

5 Cov = (1/N) Meenered Meenered”
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Correlation / Covariance matrix

Covariance and correlation matrices are
symmetric

Q Cij = Cji

Properties of symmetric matrices:

o Eigenvalues and Eigenvectors are real

o Can be expressed as
C=VvLVT
V is the matrix of Eigenvectors
L is a diagonal matrix of Eigenvalues
V= w1
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Correlation / Covariance Matrix

c=vivT
| SqruC) =v.Sqrur) v’

Sqri(C).Sqri(C)|=V Sqre(L) VTV Sqri(L)y'T

—V Sqri(L).Sqri LT =vLyT

The square root of a correlation or covariance matrix is easily
derived from the eigen vectors and eigen values

o The eigen values of the square root of the correlation matrix are
the square roots of the eigen values of the correlation matrix
o These are also the “singular values” of the data set
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Square root of the Covariance Matrix

The square root of the covariance matrix
represents the elliptical scatter of the data

The eigenvectors of the matrix represent the
major and minor axes
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PCA: The Covariance Matrix

Any vector V = ay, * eigenvecl + a,;, *eigenvec2 +..

3y ay; = eigenvalue(i)

Projections along the N eigenvectors with the largest
eigenvalues represent the N most informative
components of the matrix

o N directions along which variance is maximum

o These represent the N principal components
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An audio example

The spectrogram has 974 vectors of
dimension 1025

The covariance matrix is size 1025 x 1025
There are 1025 eigenvectors
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Eigen Reduction

M = spectrogram  1025x1000

C=M,pes-ML s 102551025
V =1025x1025 [V,L] =eig(C)
Vetweea =Wy -+ Vas]  1025x25
M, iim = Pirv(V, e )M 2551000

reconsructed = VreduceaMiowaim - 1025x1000

Compute the Covariance

Compute Eigen vectors and values

Create matrix from the 25 Eigen vectors corresponding to 25 highest
Eigen values

Compute the weights of the 25 eigenvectors

To reconstruct the spectrogram — compute the projection on the 25
eigen vectors
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Eigenvalues and Eigenvectors

Left panel: Matrix with 1025 eigen vectors
Right panel: Corresponding eigen values

o Most eigen values are close to zero
The corresponding eigenvectors are “unimportant”

7 Sep 2010 11755/18797 19

Eigenvalues and Eigenvectors

U Vec = al *eigenvecl + a2 * eigenvec2 + a3 * eigenvec3 ...

The vectors in the spectrogram are linear combinations of all
1025 eigen vectors

The eigen vectors with low eigen values contribute very little

o The average value of a; is proportional to the square root of the
eigenvalue

o Ignoring these will not affect the composition of the spectrogram
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An audio example Vorr = o . Vil
=P inv(I/m(IuL‘ed)M

lowdim

The same spectrogram projected down to the 25
principal eigenvectors with the highest eigenvalues
o Only the 25-dimensional weights are shown

The weights with which the 25 eigen vectors must be added to
compose a least squares approximation to the spectrogram
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An audio example

M iim

M, cconsimciea = Veducea
The same spectrogram constructed from only the 25 eigen
vectors with the highest eigen values
o Looks similar

With 100 eigenvectors, it would be indistinguishable from the original
o Sounds pretty close

o But now sufficient to store 25 numbers per vector (instead of
1024)
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With only 5 eigenvectors

The same spectrogram constructed from only
the 5 eigen vectors with the highest eigen
values

o Highly recognizable
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Covariance vs. Correlation

If Eigenvectors are computed from the correlation
matrix, they represent the most energy carrying
bases

o As opposed to the most informative bases obtained
from the covariance

If the data are centered, the two are the same, but not
otherwise

Eigen decomposition of Correlations:
o Direct computation using Singular Value Decomposition

7 Sep 2010 11755/18797 2
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‘ Covariance vs. correlation

= Data are Gaussian, mean at [3,3]

= Left: Eigen vectors from covariance
o Aligned to the direction of scatter
= But not aligned to data
= Right: Eigen vectors from correlation (SVD)
o Aligned to average direction of data

= But not the scatter
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‘ SVD vs. Eigen decomposition

= Singluar value decomposition is analogous to the
eigen decomposition of the correlation matrix of the
data

= The “left” singular vectors are the eigenvectors of
the correlation matrix
o Show the directions of greatest importance

= The corresponding singular values are the square
roots of the eigenvalues of the correlation matrix
a Show the importance of the eigenvector
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‘ Eigen Faces! @

| v |

= Here W, Vand U are ALL unknown and must be determined
o Such that the squared error between U and M is minimum

= Eigen analysis allows you to find W and V such that U = WV has the least squared
error with respect to the original data M

= If the original data are a collection of faces, the columns of W are eigen faces
o Should the data be centered?
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‘ Singular Value Decomposition

A matrix decomposition method

M=U-5-V"

U-U" =1, V-V =1, Sisdiagonal
Breaks up the input into a product of three matrices, two
orthogonal and one diagonal

M U \d
=
DxN _ INIE
DxD DxN NxN

The right matrix are Eigenvectors in row space

The diagonal will represent how much spread is in each
direction and contains the singular values

o Also the square root of the eigen value matrix of the correlations
The left matrix are the Eigen vectors of column space

o Also Eigenvectors of correlation
7 Sep 2010 11755/18797 2

Thin SVD, compact SVD, reduced SVD
N

DxN DxK Kx
A U \a

KxK
- =N E]

= Thin SVD: Only compute the first N columns of U

o All that is required if N <M

Compact SVD: Only the left and right eigen vectors
corresponding to non-zero singular values are computed
Reduced SVD: Only compute the columns of U corresponding to
the K highest singular values
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‘ Eigen faces

300x10000
10000x10000

= Correl.riance

= Lay all faces side by side in vector form to form a
matrix
o In my example: 300 faces. So the matrix is 10000 x 300
= Multiply the matrix by its transpose
o The correlation matrix is 10000x10000
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‘ Eigen faces %

[U,S] = eig(correlation)

Mo 0. 0 -~
Q ©
0 A 0. 0 _|e o
S= v-=1gg...
N ' . L O
o9
Lo 3B
0. 0 . Agooo N

= Compute the eigen vectors
o Only 300 of the 10000 eigen values are non-zero
= Why?

= Retain eigen vectors with high eigen values (>0)
a Could use a higher threshold
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‘ Representing a face %

Representation = [wwywy el T

= The weights with which the eigen faces must
be combined to compose the face are used
to represent the face!

7 Sep 2010 11755/18797 3

NORMALIZING OUT
VARIATIONS
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‘ Eigen Faces %

eigenface1 cigenface2

% E
=)

eigenface3

<
n
eigenface1
eigenface2
H
.

= The eigen vector with the highest eigen value is the first typical
face

= The vector with the second highest eigen value is the second

typical face.
= Etc.
‘ SVD instead of Eigen iE

<
I

— S=300x300| [V=300x300
~ | U=10000x300

eigenface1
eigenface2
.
.

= Do we need to compute a 10000 x 10000 correlation matrix and then
perform Eigen analysis?
o Will take a very long time on your laptop

= SVD

o Only need to perform “Thin” SVD. Very fast
= U=10000 x 300

2 The columns of U are the eigen faces!

a  The Us corresponding to the “zero” eigen values are not computed

S =300 x 300

V =300 x 300
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‘ Images: Accounting for variations

2 @
W YN E

= What are the obvious differences in the
above images

= How can we capture these differences
o Hint —image histograms..

o] e

7 Sep 2010 11755/18797
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Images -- Variations

Pixel histograms: what are the differences
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Normalizing Image Characteristics

Normalize the pictures

o Eliminate lighting/contrast variations

o All pictures must have “similar” lighting
How?

Lighting and contrast are represented in the pixel value
histograms:

7 Sep 2010 11755/18797 3

Histogram Equalization

Normalize histograms of images
o Maximize the contrast
Contrast is defined as the “flatness” of the histogram

For maximal contrast, every greyscale must happen as frequently as every other
greyscale

255

Maximizing the contrast: Flattening the histogram

o Doing it for every image ensures that every image has the same constrast
l.e. exactly the same histogram of pixel values
0 Which should be flat
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Histogram Equalization

Fs U‘M@-

Modify pixel values such that histogram becomes
“flat”.

For each pixel
o New pixel value = f(old pixel value)
o Whatis f()?

Easy way to compute this function: map cumulative
counts
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Cumulative Count Function

The histogram (count) of a pixel value X is the

number of pixels in the image that have value X

u E.g. in the above image, the count of pixel value 180 is
about 110

The cumulative count at pixel value X is the total

number of pixels that have values in the range

O0<=x<=X

o CCF(X) = H(1) + H(2) + .. H(X)
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Cumulative Count Function

The cumulative count function of a uniform
histogram is a line

-

We must modify the pixel values of the image
so that its cumulative count is a line

7 Sep 2010 11755/18797 2
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Mapping CCFs

-

Move x axis levels around until the plot to the left
looks like the plot to the right

CCF(f(x)) -> a*f(x) [of a*(f(x)+1) if pixels can take
value 0]
a x = pixel value
a f() is the function that converts the old pixel value to a new
(normalized) pixel value
o a = (total no. of pixels in image) / (total no. of pixel levels)
The no. of pixel levels is 256 in our examples
Total no. of pixels is 10000 in a 100x100 image
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Mapping CCFs

1000,

For each pixel value x:

o Find the location on the red line that has the closet Y value
to the observed CCF at x
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Mapping CCFs

o f(x1)=x2
“0 f(x3) = x4
Ete.

200,

1000

9

For each pixel value x:

o Find the location on the red line that has the closet Y value
to the observed CCF at x

7 Sep 2010 11755/18797 4

Mapping CCFs

DAL IVaN - -

Move x axis levels around until the plot to the left

looks like the plot to the right
For each pixel in the image to the left
o The pixel has a value x
o Find the CCF at that pixel value CCF(x)
o Find x’ such that CCF(x’) in the plot to the right equals

CCF(x)
X’ such that CCF_flat(x’) = CCF(x)

o Modify the pixel value to x’
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Doing it Formulaically

-

CCF(x) = CClyy Max pixelvalue

= round| == = ©C min.
S (@) = roun (Npixels— CCFyy

CCF_,, is the smallest non-zero value of CCF(x)

o The value of the CCF at the smallest observed pixel value
Npixels is the total no. of pixels in the image

o 10000 for a 100x100 image

Max.pixel.value is the highest pixel value

o 255 for 8-bit pixel representations
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Or even simpler

Matlab:

0 Newimage = histeg(oldimage)
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‘ Histogram Equalization

-G
314 EIE
ﬂ@%g

= Left column: Original image
= Right column: Equalized image
= Allimages now have similar contrast levels
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| Eigenfaces after Equalization

= Left panel : Without HEQ

= Right panel: With HEQ
o Eigen faces are more face like..
= Need not always be the case
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Detecting Faces in Images
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Detecting Faces in Images
T i

I L=

4

= Finding face like patterns
o How do we find if a picture has faces in it
o Where are the faces?

= A simple solution:
o Define a “typical face”
o Find the “typical face” in the image
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‘ Finding faces in an image

il b
= Picture is larger than the “typical face”
o E.g. typical face is 100x100, picture is 600x800
= First convert to greyscale
ot R+G+B
o Not very useful to work in color
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‘ Finding faces in an image

W

= Goal .. To find out if and where images that
look like the “typical” face occur in the picture
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| Finding faces in an image

/g y)
= Try to “match” the typical face to each
location in the picture
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| Finding faces in an image

= Try to “match” the typical face to each
location in the picture
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| Finding faces in an image

N )
= Try to “match” the typical face to each
location in the picture
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‘ Finding faces in an image

N )
= Try to “match” the typical face to each
location in the picture
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‘ Finding faces in an image

VSl d b))
= Try to “match” the typical face to each
location in the picture
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‘ Finding faces in an image

4 vy)
= Try to “match” the typical face to each
location in the picture
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Finding faces in an image

VA7 L)
Try to “match” the typical face to each
location in the picture
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Finding faces in an image

N )
Try to “match” the typical face to each
location in the picture
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Finding faces in an image

N )
Try to “match” the typical face to each
location in the picture
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Finding faces in an image

' il
Try to “match” the typical face to each
location in the picture
The “typical face” will explain some spots on
the image much better than others

o These are the spots at which we probably have a
face!
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How to “match”

e L @ry)

What exactly is the “match”
o What is the match “score”
The DOT Product
o Express the typical face as a vector
o Express the region of the image being evaluated as a vector

But first histogram equalize the region

0 Just the section being evaluated, without considering the rest of the image
o Compute the dot product of the typical face vector and the

“region” vector

7 Sep 2010 11755/18797 65

What do we get

[~

i
The right panel shows the dot product at
various locations

o Redder is higher
The locations of peaks indicate locations of faces!

This is a Matched Filter

7 Sep 2010 11755/18797 %3
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The right panel shows the dot product a various
loctions
o Redder is higher
The locations of peaks indicate locations of faces!
Correctly detects all three faces
o Likes George’s face most
He looks most like the typical face
Also finds a face where there is none!
o A false alarm

7 Sep 2010 11755/18797 6

Scaling and Rotation Problems

Scaling

o Not all faces are the same size

o Some people have bigger faces
o The size of the face on the image
changes with perspective

Our “typical face” only represents
one of these sizes

o

Rotation
o The head need not always be
upright!
Our typical face image was
upright

7 Sep 2010 11755/18797

SRR R e ey

Create many “typical faces”
a One for each scaling factor
o One for each rotation

How will we do this?

Match them all

Does this work ~
o Kind of .. Not well enough at all 'y
o We need more sophisticated models
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Face Detection: A Quick Historical Perspecti

Figure 1: The basic algorithm used for face detection

Many more complex methods
o Use edge detectors and search for face like patterns

ve

o Find “feature” detectors (noses, ears..) and employ them in complex

neural networks..

The Viola Jones method
o Boosted cascaded classifiers

But first, what is boosting

7 Sep 2010 11755/18797

And even before that — what is classification?

Given “features” describing an entity, determine the
category it belongs to
o Walks on two legs, has no hair. Is this
A Chimpanizee
A Human
o Has long hair, is 5’4" tall, is this
A man
A woman
o Matches “eye” pattern with score 0.5, “mouth pattern” with
score 0.25, “nose” pattern with score 0.1. Are we looking at
A face
Not a face?

7 Sep 2010 11755/18797 7

Classification

Multi-class classification
o Many possible categories
E.g. Sounds “AH, IY, UW, EY..”
E.g. Images “Tree, dog, house, person..”

Binary classification

o Only two categories
Man vs. Woman
Face vs. not a face..

Face detection: Recast as binary face classification
o For each little square of the image, determine if the square
represents a face or not

7 Sep 2010 11755/18797
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Face Detection as Classification

For each square, run a
classifier to find out if it
is a face or not

Faces can be many sizes

They can happen anywhere in the image
For each face size

o For each location

Classify a rectangular region of the face size, at that location, as a
face or not a face

This is a series of binary classification problems
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Introduction to Boosting

An ensemble method that sequentially combines many simple
BINARY classifiers to construct a final complex classifier

o Simple classifiers are often called “weak” learners

o The complex classifiers are called “strong” learners

Each weak learner focuses on instances where the previous
classifier failed

o Give greater weight to instances that have been incorrectly
classified by previous learners

Restrictions for weak learners
o Better than 50% correct

Final classifier is weighted sum of weak classifiers
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Boosting: A very simple idea

One can come up with many rules to classify
o E.g. Chimpanzee vs. Human classifier:

a If arms == long, entity is chimpanzee

o If height > 5'6” entity is human

o Iflives in house == entity is human

o If lives in zoo == entity is chimpanzee

Each of them is a reasonable rule, but makes many mistakes
o Each rule has an intrinsic error rate

Combine the predictions of these rules
o But not equally
o Rules that are less accurate should be given lesser weight
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Boosting and the Chimpanzee Problem

2

Arm length? Height? Lives in house? Lives in zoo?
Qyrmiength Opeight Qpouse Oy
human human chimp chimp

The total confidence in all classifiers that classify the entity as a chimpanzee is
Score pimp = 2 Qclssifier
classif ierf dvorschimpanzee

The total confidence in all classifiers that classify it as a human is

Scorepuman = Aclagsifier
classif ierfavors human

If Scoreyimpanzes > SCOrEp,ma, then the our belief that we have a chimpanzee is
greater than the belief that we have a human
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Boosting as defined by Freund

A gambler wants to write a program to predict winning horses. His
program must encode the expertise of his brilliant winner friend

The friend has no single, encodable algorithm. Instead he has many
rules of thumb

o He uses a different rule of thumb for each set of races

E.g. “in this set, go with races that have black horses with stars on
their foreheads”

o But cannot really enumerate what rules of thumbs go with
what sets of races: he simply “knows” when he encounters
a set

A common problem that faces us in many situations
Problem:

o How best to combine all of the friend’s rules of thumb

o What is the best set of races to present to the friend, to
extract the various rules of thumb

7 Sep 2010 11755/18797

Boosting

The basic idea: Can a “weak” learning
algorithm that performs just slightly better than
random guessing be boosted into an arbitrarily
accurate “strong” learner
o Each of the gambler’s rules may be just better
than random guessing

This is a “meta” algorithm, that poses no
constraints on the form of the weak learners
themselves

o The gambler’s rules of thumb can be anything
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Boosting: A Voting Perspective

Boosting can be considered a form of voting
o Let a number of different classifiers classify the data
o Go with the majority

o Intuition says that as the number of classifiers increases,
the dependability of the majority vote increases

The corresponding algorithms were called Boosting
by majority

o A (weighted) majority vote taken over all the classifiers

o How do we compute weights for the classifiers?

o How do we actually train the classifiers

7 Sep 2010 11755/18797 i

ADA Boost: Adaptive algorithm for
learning the weights

ADA Boost: Not named of ADA Lovelace

An adaptive algorithm that learns the weights
of each classifier sequentially

o Learning adapts to the current accuracy

lteratively:
o Train a simple classifier from training data
It will make errors even on training data

Train a new classifier that focuses on the training data
points that have been misclassified
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Boosting:‘An Example |

Red dots represent training data from Red class
Blue dots represent training data from Blue class
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Boosting: An Example

Red class «——— Blue class

Very simple weak learner
o Aline that is parallel to one of the two axes
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Boosting: An Example

Red class ““—— Blue class

g . . . " .
a -6 -4 -2 [ 2 4

First weak learner makes many mistakes
o Errors coloured black

7 Sep 2010 11755/18797 8

Boosting: An Example

Blue class

Second weak learner focuses on errors made by
first learner

7 Sep 2010 11755/18797 84
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‘ Boosting: An Example
- | BLUE

= Second strong learner: weighted combination of first and
second weak learners

— Decision boundary shown by black lines
7 Sep 2010 11755/18797

‘ Boosting: An Example

BLUE

! RED.

RED, ,

= The second strong learner also makes
mistakes
7S04 Errors colored black 1171577 5o

‘ Boosting: An Example

BLUE

1 RED. .

RED., ‘RED

= Third weak learner concentrates on errors
made by second strong learner

7 Sep 2010 11755/18797

‘ Boosting: An Example

Blue class

Red class «———> Blue class

= Third weak learner concentrates on errors made by
combination of previous weak learners

= Continue adding weak learners until....
755/18797
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‘ Boosting: An Example

= Voila! Final strong learner: very few errors on the
training data
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‘ Boosting: An Example

-8
%

E -4 -2 ] 2 a

= The final strong learner has learnt a complicated
decision boundary

7 Sep 2010 11755/18797 %0
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Boosting: An Example

The final strong learner has learnt a complicated
decision boundary

Decision boundaries in areas with low density of training
points assumed inconsequential

7 Sep 2010 11755/18797 91

Opverall Learning Pattern

= Strong learner increasingly accurate with increasing
number of weak learners

= Residual errors increasingly difficult to correct
Additional weak learners less and less effective

PP ET—
MA[ 1
ossl-
|r Error of n weak learner
ol
§m)
o M\‘
LA s A8 00
g 3 o = EQ =0
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ADABoost

Cannot just add new classifiers that work well only the
the previously misclassified data

Problem: The new classifier will make errors on the
points that the earlier classifiers got right
o Not good

o On test data we have no way of knowing which points were
correctly classified by the first classifier

Solution: Weight the data when training the second
classifier
o Use all the data but assign them weights
Data that are already correctly classified have less weight
Data that are currently incorrectly classified have more weight
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ADA Boost

The red and blue points (correctly classified) will have a weight a. < 1
Black points (incorrectly classified) will have a weight § (= 1/a) > 1
To compute the optimal second classifier, we minimize the total
weighted error
o Each data point contributes o or p to the total count of correctly and
incorrectly classified points
E.g. if one of the red points is misclassified by the new classifier, the total

error of the new classifier goes up by a
7 Sep 2010 11755/18797 9

ADA Boost

Each new classifier modifies the weights of the data
points based on the accuracy of the current classifier

The final classifier too is a weighted combination
of all component classifiers
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Will continue next week

Next class: Project ideas.

Today’s lecture and the next lecture are the
basis for HW 2.
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