
11-755 Machine Learning for Signal Processing

Eigen representions;

Detecting faces in images

Class 5. 7 Sep 2010

Instructor: Bhiksha Raj

7 Sep 2010 111755/18797

11755/18797

Administrivia

 Homeworks were up last week

 Questions to be directed to Sourish/Sohail/Myself

 Delays are worth negative points 

 Project ideas next class

 Begin thinking about what project you will do

 You are welcome to think up your own ideas/projects

 Think workshop paper – novel problems, novel ideas can get published

 Projects will be done by teams

 2-4 people

 Begin forming teams by yourselves

 Students without teams will be assigned to teams

 Class of 28th: Intel’s open house

7 Sep 2010 2

11755/18797

Last Class: Representing Audio

 Basic DFT

 Computing a Spectrogram

 Computing additional features from a

spectrogram

7 Sep 2010 3

11755/18797

What about images?

 DCT of small segments
 8x8

 Each image becomes a matrix of DCT vectors

 DCT of the image

 Haar transform (checkerboard)

 Or data-driven representations..

DCT

Npixels / 64 columns

7 Sep 2010 4

11755/18797

Returning to Eigen Computation

 A collection of faces

 All normalized to 100x100 pixels

 What is common among all of them?

 Do we have a common descriptor?

7 Sep 2010 5

11755/18797

A least squares typical face

 Can we do better than a blank screen to find the most common portion of faces?

 The first checkerboard; the zeroth frequency component..

 Assumption: There is a “typical” face that captures most of what is common to

all faces

 Every face can be represented by a scaled version of a typical face

 Approximate every face f as f = wf V

 Estimate V to minimize the squared error over all faces

 How?

 What is V?

The typical face

7 Sep 2010 6

11755/18797

A collection of least squares typical faces

 Assumption: There are a set of K “typical” faces that captures most of all faces

 Approximate every face f as f = wf,1 V1+ wf,2 V2 + wf,3 V3 +.. + wf,k Vk

 V2 is used to “correct” errors resulting from using only V1

 So the total energy in wf,2 must be lesser than the total energy in wf,1

 S wf,2
2 >S wf,1

2

 V3 corrects errors remaining after correction with V2

 The total energy in wf,3 must be lesser than that even in wf,2

 And so on..

 V = [V1 V2 V3]

 Estimate V to minimize the squared error

 How?

 What is V?7 Sep 2010 7

11755/18797

A recollection

M =

W =

V=PINV(W)*M

?U =

7 Sep 2010 8

11755/18797

How about the other way?

 W = M * Pinv(V)

M =

W = ??

V =

U =

7 Sep 2010 9

11755/18797

How about the other way?



M =

W = ??

V =

U =

?

MWV 
7 Sep 2010 10

11755/18797

The Correlation and Covariance Matrices
M MT

=
C

(1/N)Sim1,i
2

N
(1/N)Simk,imk,j

 Consider a set of column vectors represented as a DxN

matrix M

 The correlation matrix is

 C = (1/N) MMT = (1/N)Si MiMi
T

 Diagonal elements represent average of the squared value of

each dimension

 Off diagonal elements represent how two components are related

 How much knowing one lets us guess the value of the other

7 Sep 2010 11

11755/18797

The Correlation and Covariance Matrices
M MT

=
C

(1/N)Sim1,i
2

N
(1/N)Simk,imk,j

 If we “center” the data first, we get the covariance matrix

 Mean = 1/N Si Mi

 Mi is the ith column of M

 The centered data are obtained by subtracting the mean from every

column of M

 Mcentered = M – Mean*1

 1 is a 1xN row matrix

 The Covariance matrix is

 Cov = (1/N) Mcentered Mcentered
T

7 Sep 2010 12

Correlation / Covariance matrix

 Covariance and correlation matrices are

symmetric

 Cij = Cji

 Properties of symmetric matrices:

 Eigenvalues and Eigenvectors are real

 Can be expressed as

 C = VLVT

 V is the matrix of Eigenvectors

 L is a diagonal matrix of Eigenvalues

 VT = V-1

11755/187977 Sep 2010 13

11755/18797

Correlation / Covariance Matrix

 The square root of a correlation or covariance matrix is easily

derived from the eigen vectors and eigen values

 The eigen values of the square root of the correlation matrix are

the square roots of the eigen values of the correlation matrix

 These are also the “singular values” of the data set

CVLVVLSqrtLSqrtV

VLSqrtVVLSqrtVCSqrtCSqrt

VLSqrtVCSqrt

VLVC

TT

TT

T

T









)().(.

).(.).(.)().(

).(.)(

7 Sep 2010 14

11755/18797

Square root of the Covariance Matrix

 The square root of the covariance matrix

represents the elliptical scatter of the data

 The eigenvectors of the matrix represent the

major and minor axes

C

7 Sep 2010 15

11755/18797

PCA: The Covariance Matrix

 Projections along the N eigenvectors with the largest

eigenvalues represent the N most informative

components of the matrix

 N directions along which variance is maximum

 These represent the N principal components

Any vector V = aV,1 * eigenvec1 + aV,2 *eigenvec2 + ..

SV aV,i = eigenvalue(i)

7 Sep 2010 16

11755/18797

An audio example

 The spectrogram has 974 vectors of

dimension 1025

 The covariance matrix is size 1025 x 1025

 There are 1025 eigenvectors

7 Sep 2010 17

11755/18797

Eigen Reduction

 Compute the Covariance

 Compute Eigen vectors and values

 Create matrix from the 25 Eigen vectors corresponding to 25 highest

Eigen values

 Compute the weights of the 25 eigenvectors

 To reconstruct the spectrogram – compute the projection on the 25

eigen vectors

dim

dim

251

)(

]..[

)(],[

.

lowreducedtedreconstruc

reducedlow

reduced

T

centeredcentered

MVM

MVPinvM

VVV

CeigLV

MMC

mspectrograM











 1025x1000

1025x1025

1025x25

25x1000

1025x1000

V = 1025x1025

7 Sep 2010 18

11755/18797

Eigenvalues and Eigenvectors

 Left panel: Matrix with 1025 eigen vectors

 Right panel: Corresponding eigen values

 Most eigen values are close to zero

 The corresponding eigenvectors are “unimportant”

7 Sep 2010 19

11755/18797

Eigenvalues and Eigenvectors

 The vectors in the spectrogram are linear combinations of all

1025 eigen vectors

 The eigen vectors with low eigen values contribute very little

 The average value of ai is proportional to the square root of the

eigenvalue

 Ignoring these will not affect the composition of the spectrogram

Vec = a1 *eigenvec1 + a2 * eigenvec2 + a3 * eigenvec3 …

7 Sep 2010 20

11755/18797

An audio example

 The same spectrogram projected down to the 25

principal eigenvectors with the highest eigenvalues

 Only the 25-dimensional weights are shown

 The weights with which the 25 eigen vectors must be added to

compose a least squares approximation to the spectrogram

MVPinvM

VVV

reducedlow

reduced

)(

]..[

dim

251





7 Sep 2010 21

11755/18797

An audio example

 The same spectrogram constructed from only the 25 eigen
vectors with the highest eigen values

 Looks similar

 With 100 eigenvectors, it would be indistinguishable from the original

 Sounds pretty close

 But now sufficient to store 25 numbers per vector (instead of
1024)

dimlowreducedtedreconstruc MVM 

7 Sep 2010 22

11755/18797

With only 5 eigenvectors

 The same spectrogram constructed from only

the 5 eigen vectors with the highest eigen

values

 Highly recognizable

7 Sep 2010 23

11755/18797

Covariance vs. Correlation

 If Eigenvectors are computed from the correlation

matrix, they represent the most energy carrying

bases

 As opposed to the most informative bases obtained

from the covariance

 If the data are centered, the two are the same, but not

otherwise

 Eigen decomposition of Correlations:

 Direct computation using Singular Value Decomposition

7 Sep 2010 24

Covariance vs. correlation

 Data are Gaussian, mean at [3,3]

 Left: Eigen vectors from covariance

 Aligned to the direction of scatter

 But not aligned to data

 Right: Eigen vectors from correlation (SVD)

 Aligned to average direction of data

 But not the scatter
11755/187977 Sep 2010 25

11755/18797

Singular Value Decomposition
 A matrix decomposition method

 Breaks up the input into a product of three matrices, two

orthogonal and one diagonal

 The right matrix are Eigenvectors in row space

 The diagonal will represent how much spread is in each

direction and contains the singular values
 Also the square root of the eigen value matrix of the correlations

 The left matrix are the Eigen vectors of column space
 Also Eigenvectors of correlation

diagonal is IVV IUU

VUM

S

S

,, TT

T

S
. .

=

M U VT

DxN

DxD DxN NxN

7 Sep 2010 26

11755/18797

SVD vs. Eigen decomposition

 Singluar value decomposition is analogous to the

eigen decomposition of the correlation matrix of the

data

 The “left” singular vectors are the eigenvectors of

the correlation matrix

 Show the directions of greatest importance

 The corresponding singular values are the square

roots of the eigenvalues of the correlation matrix

 Show the importance of the eigenvector

7 Sep 2010 27

11755/18797

Thin SVD, compact SVD, reduced SVD

 Thin SVD: Only compute the first N columns of U

 All that is required if N < M

 Compact SVD: Only the left and right eigen vectors

corresponding to non-zero singular values are computed

 Reduced SVD: Only compute the columns of U corresponding to

the K highest singular values

. .

=

A U VT
DxN DxK

KxK

KxN

7 Sep 2010 28

11755/18797

Eigen Faces!

 Here W, V and U are ALL unknown and must be determined

 Such that the squared error between U and M is minimum

 Eigen analysis allows you to find W and V such that U = WV has the least squared

error with respect to the original data M

 If the original data are a collection of faces, the columns of W are eigen faces

 Should the data be centered?

M = Data Matrix

U = Approximation

V

W

7 Sep 2010 29

11755/18797

Eigen faces

 Lay all faces side by side in vector form to form a
matrix
 In my example: 300 faces. So the matrix is 10000 x 300

 Multiply the matrix by its transpose
 The correlation matrix is 10000x10000

M = Data Matrix

M
T

=
 T

ra
n
s
p
o

s
e
d

D
a
ta

 M
a
tr

ix

Correlation/Covariance=

10000x300

300x10000

10000x10000

7 Sep 2010 30

11755/18797

Eigen faces

 Compute the eigen vectors
 Only 300 of the 10000 eigen values are non-zero

 Why?

 Retain eigen vectors with high eigen values (>0)
 Could use a higher threshold

[U,S] = eig(correlation)

























10000

2

1

.0.0

.....

.....

0.00

0.0.







S





















U

e
ig

e
n
fa

c
e
1

e
ig

e
n
fa

c
e
2

7 Sep 2010 31

11755/18797

Eigen Faces

 The eigen vector with the highest eigen value is the first typical

face

 The vector with the second highest eigen value is the second

typical face.

 Etc.





















U

e
ig

e
n
fa

c
e
1

e
ig

e
n

fa
c
e

2

eigenface1
eigenface2

eigenface3

7 Sep 2010 32

11755/18797

Representing a face

 The weights with which the eigen faces must

be combined to compose the face are used

to represent the face!

= w1 + w2 + w3

Representation = [w1 w2 w3 ….]T





















7 Sep 2010 33

11755/18797

SVD instead of Eigen

 Do we need to compute a 10000 x 10000 correlation matrix and then

perform Eigen analysis?

 Will take a very long time on your laptop

 SVD

 Only need to perform “Thin” SVD. Very fast

 U = 10000 x 300

 The columns of U are the eigen faces!

 The Us corresponding to the “zero” eigen values are not computed

 S = 300 x 300

 V = 300 x 300

M = Data Matrix

10000x300

U=10000x300
S=300x300 V=300x300

=




















U

e
ig

e
n
fa

c
e
1

e
ig

e
n
fa

c
e
2

7 Sep 2010 34

11755/18797

NORMALIZING OUT

VARIATIONS

7 Sep 2010 35

11755/18797

Images: Accounting for variations

 What are the obvious differences in the

above images

 How can we capture these differences

 Hint – image histograms..

7 Sep 2010 36

11755/18797

Images -- Variations

 Pixel histograms: what are the differences

7 Sep 2010 37

11755/18797

Normalizing Image Characteristics

 Normalize the pictures

 Eliminate lighting/contrast variations

 All pictures must have “similar” lighting

 How?

 Lighting and contrast are represented in the pixel value

histograms:

7 Sep 2010 38

11755/18797

Histogram Equalization

 Normalize histograms of images

 Maximize the contrast

 Contrast is defined as the “flatness” of the histogram

 For maximal contrast, every greyscale must happen as frequently as every other

greyscale

 Maximizing the contrast: Flattening the histogram

 Doing it for every image ensures that every image has the same constrast

 I.e. exactly the same histogram of pixel values

 Which should be flat

0 255

7 Sep 2010 39

11755/18797

Histogram Equalization

 Modify pixel values such that histogram becomes
“flat”.

 For each pixel
 New pixel value = f(old pixel value)

 What is f()?

 Easy way to compute this function: map cumulative
counts

7 Sep 2010 40

11755/18797

Cumulative Count Function

 The histogram (count) of a pixel value X is the
number of pixels in the image that have value X
 E.g. in the above image, the count of pixel value 180 is

about 110

 The cumulative count at pixel value X is the total
number of pixels that have values in the range
0 <= x <= X
 CCF(X) = H(1) + H(2) + .. H(X)

7 Sep 2010 41

11755/18797

Cumulative Count Function

 The cumulative count function of a uniform
histogram is a line

 We must modify the pixel values of the image
so that its cumulative count is a line

7 Sep 2010 42

11755/18797

Mapping CCFs

 CCF(f(x)) -> a*f(x) [of a*(f(x)+1) if pixels can take
value 0]
 x = pixel value

 f() is the function that converts the old pixel value to a new
(normalized) pixel value

 a = (total no. of pixels in image) / (total no. of pixel levels)

 The no. of pixel levels is 256 in our examples

 Total no. of pixels is 10000 in a 100x100 image

Move x axis levels around until the plot to the left

looks like the plot to the right

7 Sep 2010 43

11755/18797

Mapping CCFs

 For each pixel value x:
 Find the location on the red line that has the closet Y value

to the observed CCF at x

7 Sep 2010 44

11755/18797

Mapping CCFs

 For each pixel value x:
 Find the location on the red line that has the closet Y value

to the observed CCF at x

x1

x2

f(x1) = x2

x3

x4

f(x3) = x4

Etc.

7 Sep 2010 45

11755/18797

Mapping CCFs

 For each pixel in the image to the left

 The pixel has a value x

 Find the CCF at that pixel value CCF(x)

 Find x’ such that CCF(x’) in the plot to the right equals

CCF(x)

 x’ such that CCF_flat(x’) = CCF(x)

 Modify the pixel value to x’

Move x axis levels around until the plot to the left

looks like the plot to the right

7 Sep 2010 46

11755/18797

Doing it Formulaically

 CCFmin is the smallest non-zero value of CCF(x)

 The value of the CCF at the smallest observed pixel value

 Npixels is the total no. of pixels in the image

 10000 for a 100x100 image

 Max.pixel.value is the highest pixel value

 255 for 8-bit pixel representations


















 valuepixelMax

CCFNpixels

CCFxCCF
roundxf ..

)(
)(

min

min

7 Sep 2010 47

11755/18797

Or even simpler

 Matlab:

 Newimage = histeq(oldimage)

7 Sep 2010 48

11755/18797

Histogram Equalization

 Left column: Original image

 Right column: Equalized image

 All images now have similar contrast levels

7 Sep 2010 49

11755/18797

Eigenfaces after Equalization

 Left panel : Without HEQ

 Right panel: With HEQ

 Eigen faces are more face like..

 Need not always be the case

7 Sep 2010 50

11755/18797

Detecting Faces in Images

7 Sep 2010 51

11755/18797

Detecting Faces in Images

 Finding face like patterns
 How do we find if a picture has faces in it

 Where are the faces?

 A simple solution:
 Define a “typical face”

 Find the “typical face” in the image
7 Sep 2010 52

11755/18797

Finding faces in an image

 Picture is larger than the “typical face”

 E.g. typical face is 100x100, picture is 600x800

 First convert to greyscale

 R + G + B

 Not very useful to work in color

7 Sep 2010 53

11755/18797

Finding faces in an image

 Goal .. To find out if and where images that

look like the “typical” face occur in the picture

7 Sep 2010 54

11755/18797

Finding faces in an image

 Try to “match” the typical face to each

location in the picture

7 Sep 2010 55

11755/18797

Finding faces in an image

 Try to “match” the typical face to each

location in the picture

7 Sep 2010 56

11755/18797

Finding faces in an image

 Try to “match” the typical face to each

location in the picture

7 Sep 2010 57

11755/18797

Finding faces in an image

 Try to “match” the typical face to each

location in the picture

7 Sep 2010 58

11755/18797

Finding faces in an image

 Try to “match” the typical face to each

location in the picture

7 Sep 2010 59

11755/18797

Finding faces in an image

 Try to “match” the typical face to each

location in the picture

7 Sep 2010 60

11755/18797

Finding faces in an image

 Try to “match” the typical face to each

location in the picture

7 Sep 2010 61

11755/18797

Finding faces in an image

 Try to “match” the typical face to each

location in the picture

7 Sep 2010 62

11755/18797

Finding faces in an image

 Try to “match” the typical face to each

location in the picture

7 Sep 2010 63

11755/18797

Finding faces in an image

 Try to “match” the typical face to each

location in the picture

 The “typical face” will explain some spots on

the image much better than others

 These are the spots at which we probably have a

face!

7 Sep 2010 64

11755/18797

How to “match”

 What exactly is the “match”

 What is the match “score”

 The DOT Product

 Express the typical face as a vector

 Express the region of the image being evaluated as a vector

 But first histogram equalize the region

 Just the section being evaluated, without considering the rest of the image

 Compute the dot product of the typical face vector and the
“region” vector

7 Sep 2010 65

11755/18797

What do we get

 The right panel shows the dot product at

various locations

 Redder is higher

 The locations of peaks indicate locations of faces!

 This is a Matched Filter

7 Sep 2010 66

11755/18797

What do we get

 The right panel shows the dot product a various
loctions
 Redder is higher

 The locations of peaks indicate locations of faces!

 Correctly detects all three faces
 Likes George’s face most

 He looks most like the typical face

 Also finds a face where there is none!
 A false alarm

7 Sep 2010 67

11755/18797

Scaling and Rotation Problems

 Scaling
 Not all faces are the same size

 Some people have bigger faces

 The size of the face on the image
changes with perspective

 Our “typical face” only represents
one of these sizes

 Rotation
 The head need not always be

upright!

 Our typical face image was
upright

7 Sep 2010 68

11755/18797

Solution

 Create many “typical faces”
 One for each scaling factor

 One for each rotation
 How will we do this?

 Match them all

 Does this work
 Kind of .. Not well enough at all

 We need more sophisticated models

7 Sep 2010 69

11755/18797

Face Detection: A Quick Historical Perspective

 Many more complex methods

 Use edge detectors and search for face like patterns

 Find “feature” detectors (noses, ears..) and employ them in complex
neural networks..

 The Viola Jones method

 Boosted cascaded classifiers

 But first, what is boosting

7 Sep 2010 70

11755/18797

And even before that – what is classification?

 Given “features” describing an entity, determine the

category it belongs to

 Walks on two legs, has no hair. Is this

 A Chimpanizee

 A Human

 Has long hair, is 5’4” tall, is this

 A man

 A woman

 Matches “eye” pattern with score 0.5, “mouth pattern” with

score 0.25, “nose” pattern with score 0.1. Are we looking at

 A face

 Not a face?

7 Sep 2010 71

11755/18797

Classification

 Multi-class classification
 Many possible categories

 E.g. Sounds “AH, IY, UW, EY..”

 E.g. Images “Tree, dog, house, person..”

 Binary classification
 Only two categories

 Man vs. Woman

 Face vs. not a face..

 Face detection: Recast as binary face classification
 For each little square of the image, determine if the square

represents a face or not

7 Sep 2010 72

11755/18797

Face Detection as Classification

 Faces can be many sizes

 They can happen anywhere in the image

 For each face size

 For each location

 Classify a rectangular region of the face size, at that location, as a
face or not a face

 This is a series of binary classification problems

For each square, run a

classifier to find out if it

is a face or not

7 Sep 2010 73

11755/18797

Introduction to Boosting
 An ensemble method that sequentially combines many simple

BINARY classifiers to construct a final complex classifier

 Simple classifiers are often called “weak” learners

 The complex classifiers are called “strong” learners

 Each weak learner focuses on instances where the previous

classifier failed

 Give greater weight to instances that have been incorrectly

classified by previous learners

 Restrictions for weak learners

 Better than 50% correct

 Final classifier is weighted sum of weak classifiers

7 Sep 2010 74

11755/18797

Boosting: A very simple idea
 One can come up with many rules to classify

 E.g. Chimpanzee vs. Human classifier:

 If arms == long, entity is chimpanzee

 If height > 5’6” entity is human

 If lives in house == entity is human

 If lives in zoo == entity is chimpanzee

 Each of them is a reasonable rule, but makes many mistakes

 Each rule has an intrinsic error rate

 Combine the predictions of these rules

 But not equally

 Rules that are less accurate should be given lesser weight

7 Sep 2010 75

11755/18797

Boosting and the Chimpanzee Problem

 The total confidence in all classifiers that classify the entity as a chimpanzee is

 The total confidence in all classifiers that classify it as a human is

 If Scorechimpanzee > Scorehuman then the our belief that we have a chimpanzee is

greater than the belief that we have a human



chimpanzeefavorsclassifier

chimpScore

classifier



humanfavorsclassifier

humanScore

classifier

Arm length?

armlength

Height?

height

Lives in house?

house

Lives in zoo?

zoo

human human chimp chimp

7 Sep 2010 76

11755/18797

Boosting as defined by Freund
 A gambler wants to write a program to predict winning horses. His

program must encode the expertise of his brilliant winner friend

 The friend has no single, encodable algorithm. Instead he has many

rules of thumb

 He uses a different rule of thumb for each set of races

 E.g. “in this set, go with races that have black horses with stars on

their foreheads”

 But cannot really enumerate what rules of thumbs go with

what sets of races: he simply “knows” when he encounters

a set

 A common problem that faces us in many situations

 Problem:

 How best to combine all of the friend’s rules of thumb

 What is the best set of races to present to the friend, to

extract the various rules of thumb
7 Sep 2010 77

11755/18797

Boosting

The basic idea: Can a “weak” learning

algorithm that performs just slightly better than

random guessing be boosted into an arbitrarily

accurate “strong” learner

 Each of the gambler’s rules may be just better

than random guessing

This is a “meta” algorithm, that poses no

constraints on the form of the weak learners

themselves

 The gambler’s rules of thumb can be anything

7 Sep 2010 78

11755/18797

Boosting: A Voting Perspective

 Boosting can be considered a form of voting

 Let a number of different classifiers classify the data

 Go with the majority

 Intuition says that as the number of classifiers increases,

the dependability of the majority vote increases

 The corresponding algorithms were called Boosting

by majority

 A (weighted) majority vote taken over all the classifiers

 How do we compute weights for the classifiers?

 How do we actually train the classifiers

7 Sep 2010 79

11755/18797

ADA Boost: Adaptive algorithm for

learning the weights

 ADA Boost: Not named of ADA Lovelace

 An adaptive algorithm that learns the weights
of each classifier sequentially

 Learning adapts to the current accuracy

 Iteratively:

 Train a simple classifier from training data
 It will make errors even on training data

 Train a new classifier that focuses on the training data
points that have been misclassified

7 Sep 2010 80

11755/18797

 Red dots represent training data from Red class

 Blue dots represent training data from Blue class

Boosting: An Example

7 Sep 2010 81

11755/18797

 Very simple weak learner

 A line that is parallel to one of the two axes

Blue classRed class

Boosting: An Example

7 Sep 2010 82

11755/18797

 First weak learner makes many mistakes

 Errors coloured black

Blue classRed class

Boosting: An Example

7 Sep 2010 83

11755/18797

Second weak learner focuses on errors made by

first learner

Boosting: An Example

Blue class

Red class

7 Sep 2010 84

11755/18797

 Second strong learner: weighted combination of first and

second weak learners

‒ Decision boundary shown by black lines

BLUE

RED

RED

RED

Boosting: An Example

7 Sep 2010 85

11755/18797

The second strong learner also makes

mistakes
 Errors colored black

BLUE

RED

RED

RED

Boosting: An Example

7 Sep 2010 86

11755/18797

Third weak learner concentrates on errors

made by second strong learner

Blue class

Red class

BLUE

RED

RED

RED

Boosting: An Example

7 Sep 2010 87

11755/18797

 Third weak learner concentrates on errors made by
combination of previous weak learners

 Continue adding weak learners until….

Blue classRed class

Blue class

Red class

Blue class

Red class

Boosting: An Example

7 Sep 2010 88

11755/18797

Boosting: An Example

 Voila! Final strong learner: very few errors on the

training data

7 Sep 2010 89

11755/18797

Boosting: An Example

 The final strong learner has learnt a complicated

decision boundary

7 Sep 2010 90

11755/18797

Boosting: An Example

 The final strong learner has learnt a complicated
decision boundary

 Decision boundaries in areas with low density of training
points assumed inconsequential

7 Sep 2010 91

11755/18797

Overall Learning Pattern
 Strong learner increasingly accurate with increasing

number of weak learners

 Residual errors increasingly difficult to correct

‒ Additional weak learners less and less effective

Error of nth weak learner

Error of nth strong learner

number of weak learners
7 Sep 2010 92

11755/18797

ADABoost

 Cannot just add new classifiers that work well only the

the previously misclassified data

 Problem: The new classifier will make errors on the

points that the earlier classifiers got right

 Not good

 On test data we have no way of knowing which points were

correctly classified by the first classifier

 Solution: Weight the data when training the second

classifier

 Use all the data but assign them weights

 Data that are already correctly classified have less weight

 Data that are currently incorrectly classified have more weight

7 Sep 2010 93

11755/18797

ADA Boost

 The red and blue points (correctly classified) will have a weight  < 1

 Black points (incorrectly classified) will have a weight b ( 1/) > 1

 To compute the optimal second classifier, we minimize the total

weighted error

 Each data point contributes  or b to the total count of correctly and

incorrectly classified points

 E.g. if one of the red points is misclassified by the new classifier, the total

error of the new classifier goes up by 
7 Sep 2010 94

11755/18797

ADA Boost

 Each new classifier modifies the weights of the data

points based on the accuracy of the current

classifier

 The final classifier too is a weighted

combination of all component classifiers

7 Sep 2010 95

Will continue next week

 Next class: Project ideas.

 Today’s lecture and the next lecture are the

basis for HW 2.

7 Sep 2010 11755/18797 96

