
11-755 Machine Learning for Signal Processing

Boosting face detectionBoosting, face detection

Class 7. 14 Sep 2010

Instructor: Bhiksha Raj

14 Sep 2010 111755/18797

Administrivia: Projectsj
 Only 1 group so far

 Plus one individual Plus one individual

 Notify us about your teams ASAP Notify us about your teams ASAP
 Or at least that you are *trying* to form a team
 Otherwise, on 1st we will assign teams by lots

 Inform us about the project you will be working on

11755/1879714 Sep 2010 2

Administrivia: Homeworks

 Trick question: When is the homework due?

 Second homework: up next week.

11755/1879714 Sep 2010 3

Lecture by Raffay Hamid on Thursday
ACTIVITY
RECOGNITION

 In this lecture, we will learn how to apply machine learning techniques
to temporal processes. For instance, we might be interested in "beating p p , g g
the casino", by figuring out how are a pair of dice loaded by analyzing
the sequence of their outcomes (this would help us hedge our bets
more intelligently). Or, we could be interested in finding out the general
t i f ti l b l i ll (t t th ttopic of an article, by analyzing a small (say two to three sentences
long) sequence of words taken from that article. Finally, we might be
interested in predicting what's the most likely work one would speak,
given a sequence of words one has just spoken (this might be useful for

11755/18797

given a sequence of words one has just spoken (this might be useful for
designing more intelligent automatic phone response systems).

14 Sep 2010 4

Lecture by Raffay Hamid on Thursday
ACTIVITY
RECOGNITION

 The particular method we'll discuss consists of what are called the
Markov Models. We will briefly go over the mathematical background of y g g
the Markov Models, making our segue into their slightly more elaborate
cousins called the Hidden Markov Models (HMMs). We will attempt to
cover the three basic questions of HMMs: (i) Evaluation, (ii) Decoding,

d (iii) L i (th i f th t ld h f ll band (iii) Learning (the meaning of these terms would hopefully become
more clear at the end of our discussion).

 We will also attempt to cover some of the practical applications of
HMMs with emphasis on their application on Human action recognition

11755/18797

HMMs, with emphasis on their application on Human action recognition
observed through video.

14 Sep 2010 5

Lecture by Raffay Hamid on Thursday
ACTIVITY
RECOGNITION

 Must Read references:

 Please read the following before the class:
 http://www.stanford.edu/class/cs229/section/cs229-http://www.stanford.edu/class/cs229/section/cs229

hmm.pdf
 http://ai.stanford.edu/~serafim/CS262_2009/index.php

l k f th l t HMM

11755/18797

 look for the lectures on HMMs

14 Sep 2010 6

Project Idea 1: Mario Bergesj
 marioberges@cmu.edu
 Sparse coding and disaggregation of low-resolution Sparse coding and disaggregation of low-resolution

aggregate power data for a house

W h l t t (We have low-res aggregate power measurements (e.g.,
1Hz whole-house measurements) for a couple of homes for
some months.

 Explore unsupervised approaches to decompose that data
into individual appliances (or individual activities) pp ()
 Using sparse representations and finding the best projection of

the data into it.

11755/1879714 Sep 2010 7

Project Idea 2: Mario Bergesj
 Multi-resolution event detection for appliance state-transitions.

 We have aggregate and appliance-level datasets of power gg g pp p
measurements in which many appliance state-transitions take
place.

 Each appliance state-transition may have a different "time
constant", that determines how long it takes for the load to reach
steady-state.

 Detecting the transitions is challenging due to these differences.
 Use a multi-resolution approach that looks at changes in various time-

scalesscales

 Explore supervised algorithms to detect these changes
 Or if there are invariant representations that are not affected by the time- Or if there are invariant representations that are not affected by the time

scale.

11755/1879714 Sep 2010 8

A Quick Intro to Boosting

11755/1879714 Sep 2010 9

Introduction to Boosting
 An ensemble method that sequentially combines many simple

BINARY classifiers to construct a final complex classifier
 Simple classifiers are often called “weak” learners Simple classifiers are often called weak learners
 The complex classifiers are called “strong” learners

 Each weak learner focuses on instances where the previous Each weak learner focuses on instances where the previous
classifier failed
 Give greater weight to instances that have been incorrectly

classified by previous learnersclassified by previous learners

 Restrictions for weak learners
 Better than 50% correct

 Final classifier is weighted sum of weak classifiers

11755/1879714 Sep 2010 10

Boosting and the Chimpanzee Problem

Arm length?
armlength

Height?
height

Lives in house?
house

Lives in zoo?
zoo

 The total confidence in all classifiers that classify the entity as a chimpanzee is

human human chimp chimp

 The total confidence in all classifiers that classify it as a human is

chimpanzeefavorsclassifier

chimpScore

classifier

 If Scorechimpanzee > Scorehuman then the our belief that we have a chimpanzee is

humanfavorsclassifier

humanScore

classifier

11755/18797

chimpanzee human
greater than the belief that we have a human

14 Sep 2010 11

Boosting: A very simple idea
 One can come up with many rules to classify

 E.g. Chimpanzee vs. Human classifier:
If arms == long entity is chimpanzee If arms == long, entity is chimpanzee

 If height > 5’6” entity is human
 If lives in house == entity is human
 If lives in zoo == entity is chimpanzee

 Each of them is a reasonable rule, but makes many mistakes
 Each rule has an intrinsic error rate

 Combine the predictions of these rulesCo b e t e p ed ct o s o t ese u es
 But not equally
 Rules that are less accurate should be given lesser weight

11755/1879714 Sep 2010 12

Formalizing the Boosting Concept
 Given a set of instances (x1, y1), (x2, y2),… (xN, yN)

 xi is the set of attributes of the ith instance
y is the class for the ith instance y1 is the class for the ith instance
 y1 can be +1 or -1 (binary classification only)

 Given a set of classifiers h1, h2, … , hT1 2 T

 hi classifies an instance with attributes x as hi(x)
 hi(x) is either -1 or +1 (for a binary classifier)

 y*h(x) is 1 for all correctly classified points and -1 for incorrectly
classified points

 Devise a function f (h1(x), h2(x),…, hT(x)) such that classification
based on f () is superior to classification by any hi(x)
 The function is succinctly represented as f (x)

11755/18797

 The function is succinctly represented as f (x)

14 Sep 2010 13

The Boosting Concept
 A simple combiner function: Voting

 f (x) = i hi(x)
 Classifier H(x) = sign(f (x)) = sign(i hi(x))
 Simple majority classifier

 A simple voting scheme A simple voting scheme

 A better combiner function: Boosting
 f (x) = i i hi(x)

 Can be any real number
 Classifier H(x) = sign(f (x)) = sign(i i hi(x)) Classifier H(x) sign(f (x)) sign(i i hi(x))
 A weighted majority classifier

 The weight i for any hi(x) is a measure of our trust in hi(x)

11755/1879714 Sep 2010 14

The ADABoost Algorithm
Adaboost is ADAPTIVE boosting

The combined classifier is a sequence of
weighted classifiers

We learn classifier weights in an adaptive
manner

Each classifier’s weight optimizes
f d t h i ht iperformance on data whose weights are in

turn adapted to the accuracy with which they
have been classified

11755/18797

have been classified
14 Sep 2010 15

The ADABoost Algorithm
 Initialize D1(xi) = 1/N
For t = 1, …, T, ,

 Train a weak classifier ht using distribution Dt
 Compute total error on training data

 t = Sum {Dt (xi) ½(1 – yi ht(xi))}
 Set t = ½ ln ((1 – t) / t)
 For i = 1 N For i = 1… N

 set Dt+1(xi) = Dt(xi) exp(- t yi ht(xi))
 Normalize Dt+1 to make it a distributiont+1

The final classifier is
 H(x) = sign(t t ht(x))

11755/1879714 Sep 2010 16

First, some example data

E

= 0.3 E1 - 0.6 E2

= 0.5 E1 - 0.5 E2

= 0.2 E1 + 0.4 E2

= -0.8 E1 - 0.1 E2
E1

= 0.7 E1 - 0.1 E2

= 0.6 E1 - 0.4 E2

= 0.4 E1 - 0.9 E2

= 0.2 E1 + 0.5 E2

E2Image = a*E1 + b*E2 a = Image.E1/|Image|

 Face detection with multiple Eigen faces
 Step 0: Derived top 2 Eigen faces from eigen face training data

St 1 O (diff t) t f l h i Step 1: On a (different) set of examples, express each image as a
linear combination of Eigen faces
 Examples include both faces and non faces
 Even the non face images will are explained in terms of the eigen faces

11755/18797

 Even the non-face images will are explained in terms of the eigen faces

14 Sep 2010 17

Training Data
= 0.3 E1 - 0.6 E2

= 0.5 E1 - 0.5 E2

= 0.2 E1 + 0.4 E2

= -0.8 E1 - 0.1 E2

= 0.7 E1 - 0.1 E2

= 0.6 E1 - 0.4 E2

= 0.4 E1 - 0.9 E2

= 0.2 E1 + 0.5 E2

ID E1 E2. Class
A 0 3 -0 6 +1 1A 0.3 -0.6 +1
B 0.5 -0.5 +1
C 0.7 -0.1 +1
D 0.6 -0.4 +1
E 0.2 0.4 -1

Face = +1
Non-face = -1

F -0.8 -0.1 -1
G 0.4 -0.9 -1
H 0.2 0.5 -1

11755/1879714 Sep 2010 18

The ADABoost Algorithm
 Initialize D1(xi) = 1/N
For t = 1, …, T, ,

 Train a weak classifier ht using distribution Dt
 Compute total error on training data

 t = Sum {Dt (xi) ½(1 – yi ht(xi))}
 Set t = ½ ln ((1 – t) / t)
 For i = 1 N For i = 1… N

 set Dt+1(xi) = Dt(xi) exp(- t yi ht(xi))
 Normalize Dt+1 to make it a distributiont+1

The final classifier is
 H(x) = sign(t t ht(x))

11755/1879714 Sep 2010 19

Training Data
= 0.3 E1 - 0.6 E2

= 0.5 E1 - 0.5 E2

= 0.2 E1 + 0.4 E2

= -0.8 E1 - 0.1 E2

= 0.7 E1 - 0.1 E2

= 0.6 E1 - 0.4 E2

= 0.4 E1 - 0.9 E2

= 0.2 E1 + 0.5 E2

ID E1 E2. Class Weight
A 0 3 -0 6 +1 1/8A 0.3 -0.6 +1 1/8
B 0.5 -0.5 +1 1/8
C 0.7 -0.1 +1 1/8
D 0.6 -0.4 +1 1/8
E 0.2 0.4 -1 1/8
F -0.8 -0.1 -1 1/8
G 0.4 -0.9 -1 1/8
H 0.2 0.5 -1 1/8

11755/1879714 Sep 2010 20

The ADABoost Algorithm
 Initialize D1(xi) = 1/N
For t = 1, …, T, ,

 Train a weak classifier ht using distribution Dt
 Compute total error on training data

 t = Sum {Dt (xi) ½(1 – yi ht(xi))}
 Set t = ½ ln (t /(1 – t))
 For i = 1 N For i = 1… N

 set Dt+1(xi) = Dt(xi) exp(- t yi ht(xi))
 Normalize Dt+1 to make it a distributiont+1

The final classifier is
 H(x) = sign(t t ht(x))

11755/1879714 Sep 2010 21

The E1“Stump”
Classifier based on E1:

0.3 0.5 0.6 0.70.2-0.8 0.40.2
F E H A G B C D

1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8

if (sign*wt(E1) > thresh) > 0)
face = true

sign = +1 or -11/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 sign = +1 or -1

Sign = +1, error = 3/8
threshold

ID E1 E2. Class Weight
A 0 3 -0 6 +1 1/8

g ,
Sign = -1, error = 5/8

A 0.3 -0.6 +1 1/8
B 0.5 -0.5 +1 1/8
C 0.7 -0.1 +1 1/8
D 0.6 -0.4 +1 1/8
E 0.2 0.4 -1 1/8
F -0.8 -0.1 -1 1/8
G 0.4 -0.9 -1 1/8
H 0.2 0.5 -1 1/8

11755/1879714 Sep 2010 22

The E1 “Stump”
Classifier based on E1:

0.3 0.5 0.6 0.70.2-0.8 0.40.2
F E H A G B C D

1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8

if (sign*wt(E1) > thresh) > 0)
face = true

sign = +1 or -11/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 sign = +1 or -1

Sign = +1, error = 2/8
threshold

ID E1 E2. Class Weight
A 0 3 -0 6 +1 1/8

g ,
Sign = -1, error = 6/8

A 0.3 -0.6 +1 1/8
B 0.5 -0.5 +1 1/8
C 0.7 -0.1 +1 1/8
D 0.6 -0.4 +1 1/8
E 0.2 0.4 -1 1/8
F -0.8 -0.1 -1 1/8
G 0.4 -0.9 -1 1/8
H 0.2 0.5 -1 1/8

11755/1879714 Sep 2010 23

The E1 “Stump”
Classifier based on E1:

0.3 0.5 0.6 0.70.2-0.8 0.40.2
F E H A G B C D

1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8

if (sign*wt(E1) > thresh) > 0)
face = true

sign = +1 or -11/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 sign = +1 or -1

Sign = +1, error = 1/8
threshold

ID E1 E2. Class Weight
A 0 3 -0 6 +1 1/8

g ,
Sign = -1, error = 7/8

A 0.3 -0.6 +1 1/8
B 0.5 -0.5 +1 1/8
C 0.7 -0.1 +1 1/8
D 0.6 -0.4 +1 1/8
E 0.2 0.4 -1 1/8
F -0.8 -0.1 -1 1/8
G 0.4 -0.9 -1 1/8
H 0.2 0.5 -1 1/8

11755/1879714 Sep 2010 24

The E1 “Stump”
Classifier based on E1:

0.3 0.5 0.6 0.70.2-0.8 0.40.2
F E H A G B C D

1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8

if (sign*wt(E1) > thresh) > 0)
face = true

sign = +1 or -11/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 sign = +1 or -1

Sign = +1, error = 2/8
threshold

ID E1 E2. Class Weight
A 0 3 -0 6 +1 1/8

g ,
Sign = -1, error = 6/8

A 0.3 -0.6 +1 1/8
B 0.5 -0.5 +1 1/8
C 0.7 -0.1 +1 1/8
D 0.6 -0.4 +1 1/8
E 0.2 0.4 -1 1/8
F -0.8 -0.1 -1 1/8
G 0.4 -0.9 -1 1/8
H 0.2 0.5 -1 1/8

11755/1879714 Sep 2010 25

The E1 “Stump”
Classifier based on E1:

0.3 0.5 0.6 0.70.2-0.8 0.40.2
F E H A G B C D

1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8

if (sign*wt(E1) > thresh) > 0)
face = true

sign = +1 or -11/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 sign = +1 or -1

Sign = +1, error = 1/8
threshold

ID E1 E2. Class Weight
A 0 3 -0 6 +1 1/8

g ,
Sign = -1, error = 7/8

A 0.3 -0.6 +1 1/8
B 0.5 -0.5 +1 1/8
C 0.7 -0.1 +1 1/8
D 0.6 -0.4 +1 1/8
E 0.2 0.4 -1 1/8
F -0.8 -0.1 -1 1/8
G 0.4 -0.9 -1 1/8
H 0.2 0.5 -1 1/8

11755/1879714 Sep 2010 26

The E1 “Stump”
Classifier based on E1:

0.3 0.5 0.6 0.70.2-0.8 0.40.2
F E H A G B C D

1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8

if (sign*wt(E1) > thresh) > 0)
face = true

sign = +1 or -11/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 sign = +1 or -1

Sign = +1, error = 2/8
threshold

ID E1 E2. Class Weight
A 0 3 -0 6 +1 1/8

g ,
Sign = -1, error = 6/8

A 0.3 -0.6 +1 1/8
B 0.5 -0.5 +1 1/8
C 0.7 -0.1 +1 1/8
D 0.6 -0.4 +1 1/8
E 0.2 0.4 -1 1/8
F -0.8 -0.1 -1 1/8
G 0.4 -0.9 -1 1/8
H 0.2 0.5 -1 1/8

11755/1879714 Sep 2010 27

The Best E1 “Stump”

0.3 0.5 0.6 0.70.2-0.8 0.40.2
F E H A G B C D

1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8

Classifier based on E1:
if (sign*wt(E1) > thresh) > 0)

face = true1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 face = true

Sign = +1
Threshold = 0.45Sign = +1, error = 1/8

threshold

ID E1 E2. Class Weight
A 0 3 -0 6 +1 1/8

g ,

A 0.3 -0.6 +1 1/8
B 0.5 -0.5 +1 1/8
C 0.7 -0.1 +1 1/8
D 0.6 -0.4 +1 1/8
E 0.2 0.4 -1 1/8
F -0.8 -0.1 -1 1/8
G 0.4 -0.9 -1 1/8
H 0.2 0.5 -1 1/8

11755/1879714 Sep 2010 28

The E2“Stump”
Classifier based on E2:

-0.4 -0.1 0.4 0.5-0.6-0.9 -0.1-0.5
G A B D C F E H

1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8

if (sign*wt(E2) > thresh) > 0)
face = true

sign = +1 or -1

Note order

1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 sign = +1 or -1

Sign = +1, error = 3/8
threshold

ID E1 E2. Class Weight
A 0 3 -0 6 +1 1/8

g ,
Sign = -1, error = 5/8

A 0.3 -0.6 +1 1/8
B 0.5 -0.5 +1 1/8
C 0.7 -0.1 +1 1/8
D 0.6 -0.4 +1 1/8
E 0.2 0.4 -1 1/8
F -0.8 -0.1 -1 1/8
G 0.4 -0.9 -1 1/8
H 0.2 0.5 -1 1/8

11755/1879714 Sep 2010 29

The Best E2“Stump”
Classifier based on E2:

-0.4 -0.1 0.4 0.5-0.6-0.9 -0.1-0.5
1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8

if (sign*wt(E2) > thresh) > 0)
face = true

sign = -1

G A B D C F E H

1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 sign = -1
Threshold = 0.15

Sign = -1, error = 2/8
threshold

ID E1 E2. Class Weight
A 0 3 -0 6 +1 1/8

g ,

A 0.3 -0.6 +1 1/8
B 0.5 -0.5 +1 1/8
C 0.7 -0.1 +1 1/8
D 0.6 -0.4 +1 1/8
E 0.2 0.4 -1 1/8
F -0.8 -0.1 -1 1/8
G 0.4 -0.9 -1 1/8
H 0.2 0.5 -1 1/8

11755/1879714 Sep 2010 30

The Best “Stump”

0.3 0.5 0.6 0.70.2-0.8 0.40.2
F E H A G B C D

1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8

The Best overall classifier
based on a single feature is
based on E11/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 based on E1

If (wt(E1) > 0.45) Face
Sign = +1, error = 1/8

threshold

ID E1 E2. Class Weight
A 0 3 -0 6 +1 1/8

g ,

A 0.3 -0.6 +1 1/8
B 0.5 -0.5 +1 1/8
C 0.7 -0.1 +1 1/8
D 0.6 -0.4 +1 1/8
E 0.2 0.4 -1 1/8
F -0.8 0.1 -1 1/8
G 0.4 -0.9 -1 1/8
H 0.2 0.5 -1 1/8

11755/1879714 Sep 2010 31

The ADABoost Algorithm
 Initialize D1(xi) = 1/N
For t = 1, …, T, ,

 Train a weak classifier ht using distribution Dt
 Compute total error on training data

 t = Sum {Dt (xi) ½(1 – yi ht(xi))}
 Set t = ½ ln (t /(1 – t))
 For i = 1 N For i = 1… N

 set Dt+1(xi) = Dt(xi) exp(- t yi ht(xi))
 Normalize Dt+1 to make it a distributiont+1

The final classifier is
 H(x) = sign(t t ht(x))

11755/1879714 Sep 2010 32

The Best Error

0.3 0.5 0.6 0.70.2-0.8 0.40.2
F E H A G B C D

1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8

The Error of the classifier
is the sum of the weights of
the misclassified instances1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 the misclassified instances

Sign = +1, error = 1/8
threshold

ID E1 E2. Class Weight
A 0 3 -0 6 +1 1/8

g ,

A 0.3 -0.6 +1 1/8
B 0.5 -0.5 +1 1/8
C 0.7 -0.1 +1 1/8
D 0.6 -0.4 +1 1/8
E 0.2 0.4 -1 1/8
F -0.8 0.1 -1 1/8
G 0.4 -0.9 -1 1/8
H 0.2 0.5 -1 1/8

11755/18797

NOTE: THE ERROR IS THE SUM OF THE WEIGHTS OF MISCLASSIFIED
INSTANCES
14 Sep 2010 33

The ADABoost Algorithm
 Initialize D1(xi) = 1/N
For t = 1, …, T, ,

 Train a weak classifier ht using distribution Dt
 Compute total error on training data

 t = Sum {Dt (xi) ½(1 – yi ht(xi))}
 Set t = ½ ln ((1 – t) / t)
 For i = 1 N For i = 1… N

 set Dt+1(xi) = Dt(xi) exp(- t yi ht(xi))
 Normalize Dt+1 to make it a distributiont+1

The final classifier is
 H(x) = sign(t t ht(x))

11755/1879714 Sep 2010 34

Computing Alpha

0.3 0.5 0.6 0.70.2-0.8 0.40.2
F E H A G B C D

1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8

Alpha = 0.5ln((1-1/8) / (1/8))

= 0 5 ln(7) = 0 97 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 = 0.5 ln(7) = 0.97

Sign = +1, error = 1/8
threshold

g ,

11755/1879714 Sep 2010 35

The Boosted Classifier Thus Far

0.3 0.5 0.6 0.70.2-0.8 0.40.2
F E H A G B C D

1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8

Alpha = 0.5ln((1-1/8) / (1/8))

= 0 5 ln(7) = 0 97 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 = 0.5 ln(7) = 0.97

Sign = +1, error = 1/8
threshold

g ,

h1(X) = wt(E1) > 0.45 ? +1 : -1

H(X) = sign(0.97 * h1(X))

It’s the same as h1(x)

11755/1879714 Sep 2010 36

The ADABoost Algorithm
 Initialize D1(xi) = 1/N
For t = 1, …, T, ,

 Train a weak classifier ht using distribution Dt
 Compute total error on training data

 t = Average {½ (1 – yi ht(xi))}
 Set t = ½ ln ((1 – t) / t)
 For i = 1 N For i = 1… N

 set Dt+1(xi) = Dt(xi) exp(- t yi ht(xi))
 Normalize Dt+1 to make it a distributiont+1

The final classifier is
 H(x) = sign(t t ht(x))

11755/1879714 Sep 2010 37

The Best Error

0.3 0.5 0.6 0.70.2-0.8 0.40.2
F E H A G B C D

1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8

Dt+1(xi) = Dt(xi) exp(- t yi ht (xi))

ID E1 E2 Class Weight Weight

1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8

threshold
exp(t) = exp(0.97) = 2.63
exp(-t) = exp(-0.97) = 0.38

ID E1 E2. Class Weight Weight
A 0.3 -0.6 +1 1/8 * 2.63 0.33
B 0.5 -0.5 +1 1/8 * 0.38 0.05
C 0.7 -0.1 +1 1/8 * 0.38 0.05
D 0.6 -0.4 +1 1/8 * 0.38 0.05
E 0.2 0.4 -1 1/8 * 0.38 0.05
F -0.8 0.1 -1 1/8 * 0.38 0.05
G 0.4 -0.9 -1 1/8 * 0.38 0.05
H 0.2 0.5 -1 1/8 * 0.38 0.05

Multiply the correctly classified instances by 0.38
Multiply incorrectly classified instances by 2.63

11755/1879714 Sep 2010 38

The ADABoost Algorithm
 Initialize D1(xi) = 1/N
For t = 1, …, T, ,

 Train a weak classifier ht using distribution Dt
 Compute total error on training data

 t = Average {½ (1 – yi ht(xi))}
 Set t = ½ ln ((1 – t) / t)
 For i = 1 N For i = 1… N

 set Dt+1(xi) = Dt(xi) exp(- t yi ht(xi))
 Normalize Dt+1 to make it a distributiont+1

The final classifier is
 H(x) = sign(t t ht(x))

11755/1879714 Sep 2010 39

The Best Error

0.3 0.5 0.6 0.70.2-0.8 0.40.2
F E H A G B C D

1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8

D’ = D / sum(D)

ID E1 E2 Class Weight Weight Weight

1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8

threshold

ID E1 E2. Class Weight Weight Weight
A 0.3 -0.6 +1 1/8 * 2.63 0.33 0.48
B 0.5 -0.5 +1 1/8 * 0.38 0.05 0.074
C 0.7 -0.1 +1 1/8 * 0.38 0.05 0.074
D 0.6 -0.4 +1 1/8 * 0.38 0.05 0.074
E 0.2 0.4 -1 1/8 * 0.38 0.05 0.074
F -0.8 0.1 -1 1/8 * 0.38 0.05 0.074
G 0.4 -0.9 -1 1/8 * 0.38 0.05 0.074
H 0.2 0.5 -1 1/8 * 0.38 0.05 0.074

Multiply the correctly classified instances by 0.38
Multiply incorrectly classified instances by 2.63
Normalize to sum to 1 0

11755/18797

Normalize to sum to 1.0

14 Sep 2010 40

The Best Error

0.3 0.5 0.6 0.70.2-0.8 0.40.2
F E H A G B C D

1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8

D’ = D / sum(D)

ID E1 E2 Class Weight

1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8

threshold

ID E1 E2. Class Weight
A 0.3 -0.6 +1 0.48
B 0.5 -0.5 +1 0.074
C 0.7 -0.1 +1 0.074
D 0.6 -0.4 +1 0.074
E 0.2 0.4 -1 0.074
F -0.8 0.1 -1 0.074
G 0.4 -0.9 -1 0.074
H 0.2 0.5 -1 0.074

Multiply the correctly classified instances by 0.38
Multiply incorrectly classified instances by 2.63
Normalize to sum to 1 0

11755/18797

Normalize to sum to 1.0

14 Sep 2010 41

The ADABoost Algorithm
 Initialize D1(xi) = 1/N
For t = 1, …, T, ,

 Train a weak classifier ht using distribution Dt
 Compute total error on training data

 t = Average {½ (1 – yi ht(xi))}
 Set t = ½ ln (t /(1 – t))
 For i = 1 N For i = 1… N

 set Dt+1(xi) = Dt(xi) exp(- t yi ht(xi))
 Normalize Dt+1 to make it a distributiont+1

The final classifier is
 H(x) = sign(t t ht(x))

11755/1879714 Sep 2010 42

E1 classifier
Classifier based on E1:

0.3 0.5 0.6 0.70.2-0.8 0.40.2
F E H A G B C D

074 074 074 48 074 074 074 074

if (sign*wt(E1) > thresh) > 0)
face = true

sign = +1 or -1.074 .074 .074 .48 .074 .074 .074 .074

threshold

sign = +1 or -1

Sign = +1 error = 0 222

ID E1 E2 Class Weight

Sign = +1, error = 0.222
Sign = -1, error = 0.778

ID E1 E2. Class Weight
A 0.3 -0.6 +1 0.48
B 0.5 -0.5 +1 0.074
C 0.7 -0.1 +1 0.074
D 0.6 -0.4 +1 0.074
E 0.2 0.4 -1 0.074
F -0.8 0.1 -1 0.074
G 0.4 -0.9 -1 0.074
H 0.2 0.5 -1 0.074

11755/1879714 Sep 2010 43

E1 classifier
Classifier based on E1:

0.3 0.5 0.6 0.70.2-0.8 0.40.2
F E H A G B C D

074 074 074 074 074 074

if (sign*wt(E1) > thresh) > 0)
face = true

sign = +1 or -148 074.074 .074 .074 .074 .074 .074

threshold

sign = +1 or -1

Sign = +1 error = 0 148

.48 .074

ID E1 E2 Class Weight

Sign = +1, error = 0.148
Sign = -1, error = 0.852

ID E1 E2. Class Weight
A 0.3 -0.6 +1 0.48
B 0.5 -0.5 +1 0.074
C 0.7 -0.1 +1 0.074
D 0.6 -0.4 +1 0.074
E 0.2 0.4 -1 0.074
F -0.8 0.1 -1 0.074
G 0.4 -0.9 -1 0.074
H 0.2 0.5 -1 0.074

11755/1879714 Sep 2010 44

The Best E1 classifier
Classifier based on E1:

0.3 0.5 0.6 0.70.2-0.8 0.40.2
F E H A G B C D

074 074 074 074 074 074

if (sign*wt(E1) > thresh) > 0)
face = true

sign = +1 or -148 074.074 .074 .074 .074 .074 .074

threshold

sign = +1 or -1

Sign = +1 error = 0 074

.48 .074

ID E1 E2 Class Weight

Sign = +1, error = 0.074

ID E1 E2. Class Weight
A 0.3 -0.6 +1 0.48
B 0.5 -0.5 +1 0.074
C 0.7 -0.1 +1 0.074
D 0.6 -0.4 +1 0.074
E 0.2 0.4 -1 0.074
F -0.8 0.1 -1 0.074
G 0.4 -0.9 -1 0.074
H 0.2 0.5 -1 0.074

11755/1879714 Sep 2010 45

The Best E2 classifier
Classifier based on E2:

-0.4 -0.1 0.4 0.5-0.6-0.9 -0.1-0.5
G A B D C F E H

074 48 074 074 074 074 074 074

if (sign*wt(E2) > thresh) > 0)
face = true

sign = +1 or -1.074 .48 .074 .074 .074 .074 .074 .074

threshold

sign = +1 or -1

Si 1 0 148

ID E1 E2 Class Weight

Sign = -1, error = 0.148

ID E1 E2. Class Weight
A 0.3 -0.6 +1 0.48
B 0.5 -0.5 +1 0.074
C 0.7 -0.1 +1 0.074
D 0.6 -0.4 +1 0.074
E 0.2 0.4 -1 0.074
F -0.8 -0.1 -1 0.074
G 0.4 -0.9 -1 0.074
H 0.2 0.5 -1 0.074

11755/1879714 Sep 2010 46

The Best Classifier

0.3 0.5 0.6 0.70.2-0.8 0.40.2
F E H A G B C D

074 074 074 074 074 074

Classifier based on E1:
if (wt(E1) > 0.45) face = true

48 074.074 .074 .074 .074 .074 .074

threshold

Sign = +1 error = 0 074

.48 .074
Alpha = 0.5ln((1-0.074) / 0.074)

= 1.26

ID E1 E2 Class Weight

Sign = +1, error = 0.074

ID E1 E2. Class Weight
A 0.3 -0.6 +1 0.48
B 0.5 -0.5 +1 0.074
C 0.7 -0.1 +1 0.074
D 0.6 -0.4 +1 0.074
E 0.2 0.4 -1 0.074
F -0.8 0.1 -1 0.074
G 0.4 -0.9 -1 0.074
H 0.2 0.5 -1 0.074

11755/1879714 Sep 2010 47

The Boosted Classifier Thus Far

0.3 0.5 0.6 0.70.2-0.8 0.40.2
F E H A G B C D

074 074 074 074 074 07448 074

h1(X) = wt(E1) > 0.45 ? +1 : -1

.074 .074 .074 .074 .074 .074

threshold

.48 .074

threshold

h2(X) = wt(E1) > 0.25 ? +1 : -1

H(X) = sign(0.97 * h1(X) + 1.26 * h2(X))

11755/1879714 Sep 2010 48

Reweighting the Data

0.3 0.5 0.6 0.70.2-0.8 0.40.2
F E H A G B C D

074 074 074 074 074 07448 074.074 .074 .074 .074 .074 .074

threshold

Sign = +1 error = 0 074

.48 .074
Exp(alpha) = exp(2.36) = 10
Exp(-alpha) = exp(-2.36) = 0.1

ID E1 E2 Class Weight

Sign = +1, error = 0.074

ID E1 E2. Class Weight
A 0.3 -0.6 +1 0.48*0.1 0.06
B 0.5 -0.5 +1 0.074*0.1 0.01
C 0.7 -0.1 +1 0.074*0.1 0.01
D 0.6 -0.4 +1 0.074*0.1 0.01
E 0.2 0.4 -1 0.074*0.1 0.01
F -0.8 0.1 -1 0.074*0.1 0.01
G 0.4 -0.9 -1 0.074*10 0.86
H 0.2 0.5 -1 0.074*0.1 0.01

11755/18797
RENORMALIZE

14 Sep 2010 49

Reweighting the Data

0.3 0.5 0.6 0.70.2-0.8 0.40.2
F E H A G B C D

074 074 074 074 074 07448 074

NOTE: THE WEIGHT OF “G”
WHICH WAS MISCLASSIFIED
BY THE SECOND CLASSIFIER

.074 .074 .074 .074 .074 .074

threshold

Sign = +1 error = 0 074

.48 .074 IS NOW SUDDENLY HIGH

ID E1 E2 Class Weight

Sign = +1, error = 0.074

ID E1 E2. Class Weight
A 0.3 -0.6 +1 0.48*0.1 0.06
B 0.5 -0.5 +1 0.074*0.1 0.01
C 0.7 -0.1 +1 0.074*0.1 0.01
D 0.6 -0.4 +1 0.074*0.1 0.01
E 0.2 0.4 -1 0.074*0.1 0.01
F -0.8 0.1 -1 0.074*0.1 0.01
G 0.4 -0.9 -1 0.074*10 0.86
H 0.2 0.5 -1 0.074*0.1 0.01

11755/18797
RENORMALIZE

14 Sep 2010 50

AdaBoost
 In this example both of our first two classifiers were

based on E1based on E1
 Additional classifiers may switch to E2

 In general, the reweighting of the data will result in a ge e a , t e e e g t g o t e data esu t a
different feature being picked for each classifier

 This also automatically gives us a feature selection
strategy

I hi d h (E1) i h i f In this data the wt(E1) is the most important feature

11755/1879714 Sep 2010 51

AdaBoost
 NOT required to go with the best classifier so far

For instance for our second classifier we might use For instance, for our second classifier, we might use
the best E2 classifier, even though its worse than the
E1 classifier
 So long as its right more than 50% of the time

 We can continue to add classifiers even after we get
100% classification of the training data

Because the weights of the data keep changing Because the weights of the data keep changing
 Adding new classifiers beyond this point is often a

good thing to do

11755/18797

g g

14 Sep 2010 52

ADA Boost
= 0.4 E1 - 0.4 E2

E1 E2

 The final classifier is
 H(x) = sign(t t ht(x))

 The output is 1 if the total weight of all weak
l th t l if 1 i t thlearners that classify x as 1 is greater than
the total weight of all weak learners that
classify it as -1

11755/18797

classify it as 1

14 Sep 2010 53

Boosting and Face Detection

 Boosting forms the basis of the most
t h i f f d t ti t dcommon technique for face detection today:

The Viola-Jones algorithm.

11755/1879714 Sep 2010 54

The problem of face detection
 Defining Features

 Should we be searching for noses eyes eyebrows etc ? Should we be searching for noses, eyes, eyebrows etc.?
 Nice, but expensive

 Or something simpler

 Selecting Features
Of all the possible features we can think of which ones Of all the possible features we can think of, which ones
make sense

 Classification: Combining evidence
 How does one combine the evidence from the different

features?

11755/18797

features?

14 Sep 2010 55

Features: The Viola Jones Method

B B B B B BB1 B2 B3 B4 B5 B6

...Im 332211 BwBwBwage

 Integral Features!!
 Like the Checkerboard Like the Checkerboard

 The same principle as we used to decompose images in terms of
checkerboards:
 The image of any object has changes at various scales The image of any object has changes at various scales
 These can be represented coarsely by a checkerboard pattern

 The checkerboard patterns must however now be localized

11755/18797

 Stay within the region of the face

14 Sep 2010 56

Features
 Checkerboard Patterns to represent facial features

 The white areas are subtracted from the black ones The white areas are subtracted from the black ones.
 Each checkerboard explains a localized portion of the

image
F t f h k b d tt (l) Four types of checkerboard patterns (only)

14 Sep 2010 5711755/18797

“Integral” features

 Each checkerboard has the following characteristics Each checkerboard has the following characteristics
 Length
 Width
 Type

 Specifies the number and arrangement of bands

11755/18797

 The four checkerboards above are the four used by Viola and Jones

14 Sep 2010 58

Explaining a portion of the face with a
checker..

 How much is the difference in average intensity of the image in
the black and white regions
 Sum(pixel values in white region) – Sum(pixel values in black

i)region)
 This is actually the dot product of the region of the face covered

by the rectangle and the checkered pattern itself
White 1 Black 1

11755/18797

 White = 1, Black = -1

14 Sep 2010 59

Integral imagesg g
 Summed area tables

 For each pixel store the sum of ALL pixels to the left of and p p
above it.

14 Sep 2010 6011755/18797

Fast Computation of Pixel Sums

11755/1879714 Sep 2010 61

A Fast Way to Compute the Feature
A B

D

F
C

E

 Store pixel table for every pixel in the image

E

 Store pixel table for every pixel in the image
 The sum of all pixel values to the left of and above the pixel

 Let A, B, C, D, E, F be the pixel table values at the locations
shownshown
 Total pixel value of black area = D + A – B – C
 Total pixel value of white area = F + C – D – E

11755/18797

 Feature value = (F + C – D – E) – (D + A – B – C)

14 Sep 2010 62

How many features?

PxH MxNPxH

 Each checker board of width P and height H can start at g
 (0,0), (0,1),(0,2), … (0, N-P)
 (1,0), (1,1),(1,2), … (1, N-P)
 ..
 (M-H,0), (M-H,1), (M-H,2), … (M-H, N-P)

 (M-H)*(N-P) possible starting locations
 Each is a unique checker feature

11755/18797

 E.g. at one location it may measure the forehead, at another the chin

14 Sep 2010 63

How many features

 Each feature can have many sizes
 Width from (min) to (max) pixels
 Height from (min ht) to (max ht) pixels

 At each size, there can be many starting locations
 Total number of possible checkerboards of one type: Total number of possible checkerboards of one type:

No. of possible sizes x No. of possible locations
 There are four types of checkerboards

T t l f ibl h k b d VERY VERY LARGE!

11755/18797

 Total no. of possible checkerboards: VERY VERY LARGE!

14 Sep 2010 64

Learning: No. of features

 Analysis performed on images of 24x24
i l lpixels only

 Reduces the no. of possible features to about
180000180000

 Restrict checkerboard size
Minimum of 8 pixels wide Minimum of 8 pixels wide

 Minimum of 8 pixels high
 Other limits e g 4 pixels may be used too Other limits, e.g. 4 pixels may be used too

 Reduces no. of checkerboards to about 50000

11755/1879714 Sep 2010 65

No. of features

F1 F2 F3 F4 ….. F180000

7 9 2 -1 127 9 2 -1 ….. 12

-11 3 19 17 ….. 2

 Each possible checkerboard gives us one feature
 A total of up to 180000 features derived from a 24x24 image!
 Every 24x24 image is now represented by a set of 180000 Every 24x24 image is now represented by a set of 180000

numbers
 This is the set of features we will use for classifying if it is a face

or not!

11755/18797

or not!

14 Sep 2010 66

The Classifier
 The Viola-Jones algorithm uses a simple Boosting

based classifierbased classifier
 Each “weak learner” is a simple threshold
 At each stage find the best feature to classify the At each stage find the best feature to classify the

data with
 I.e the feature that gives us the best classification of all the

training data
 Training data includes many examples of faces and non-face

images
 The classification rule is of the kind

 If feature > threshold, face (or if feature < threshold, face)
 The optimal value of “threshold” must also be determined

11755/18797

 The optimal value of threshold must also be determined.

14 Sep 2010 67

The Weak Learner
 Training (for each weak learner):

 For each feature f (of all 180000 features) For each feature f (of all 180000 features)
 Find a threshold f and polarity p(f) (p(f) = -1 or p(f) = 1) such

that
(f > p(f)*f) performs the best classification of faces(p()) p
 Lowest overall error in classifying all training data

 Error counted over weighted samples
 Let the optimal overall error for f be error(f)()

 Find the feature f’ such that error(f’) is lowest
 The weak learner is the test (f’ > p(f’)*f’face

 Note that the procedure for learning weak learners
also identifies the most useful features for face

11755/18797

a so de es e os use u ea u es o ace
recognition

14 Sep 2010 68

The Viola Jones Classifier
 A boosted threshold-based classifier
 First weak learner: Find the best feature, and ,

its optimal threshold
 Second weak learner: Find the best feature, for ,

the weighted training data, and its threshold
(weighting from one weak learner)

Thi d k l Fi d th b t f t f th Third weak learner: Find the best feature for the
reweighted data and its optimal threshold (weighting
from two weak learners)
 Fourth weak learner: Find the best feature for the

reweighted data and its optimal threhsold (weighting from
three weak learners)

11755/18797

 ..

14 Sep 2010 69

To Train
 Collect a large number of histogram

equalized facial imagesequalized facial images
 Resize all of them to 24x24
 These are our “face” training set These are our face training set

 Collect a much much much larger set of
24x24 non-face images of all kinds
 Each of them is histogram equalized

Th “ f ” t i i t These are our “non-face” training set

 Train a boosted classifier

11755/18797

 Train a boosted classifier

14 Sep 2010 70

The Viola Jones Classifier

 During tests: During tests:
 Given any new 24x24 image

 H(f) = Sign(f f (f > pf (f)))
 Only a small number of features (f < 100) typically used

 Problems:
 Only classifies 24 x 24 images entirely as faces or non-faces

T i l i t h l Typical pictures are much larger
 They may contain many faces
 Faces in pictures can be much larger or smaller

 Not accurate enough

11755/18797

 Not accurate enough

14 Sep 2010 71

Multiple faces in the picture

 Scan the image
Classify each 24x24 rectangle from the photo Classify each 24x24 rectangle from the photo

 All rectangles that get classified as having a face indicate the
location of a face

 For an NxM picture we will perform (N 24)*(M 24) classifications For an NxM picture, we will perform (N-24) (M-24) classifications
 If overlapping 24x24 rectangles are found to have faces, merge

them

11755/1879714 Sep 2010 72

Multiple faces in the picture

 Scan the image
Classify each 24x24 rectangle from the photo Classify each 24x24 rectangle from the photo

 All rectangles that get classified as having a face indicate the
location of a face

 For an NxM picture we will perform (N 24)*(M 24) classifications For an NxM picture, we will perform (N-24) (M-24) classifications
 If overlapping 24x24 rectangles are found to have faces, merge

them

11755/1879714 Sep 2010 73

Multiple faces in the picture

 Scan the image
Classify each 24x24 rectangle from the photo Classify each 24x24 rectangle from the photo

 All rectangles that get classified as having a face indicate the
location of a face

 For an NxM picture we will perform (N 24)*(M 24) classifications For an NxM picture, we will perform (N-24) (M-24) classifications
 If overlapping 24x24 rectangles are found to have faces, merge

them

11755/1879714 Sep 2010 74

Multiple faces in the picture

 Scan the image
Classify each 24x24 rectangle from the photo Classify each 24x24 rectangle from the photo

 All rectangles that get classified as having a face indicate the
location of a face

 For an NxM picture we will perform (N 24)*(M 24) classifications For an NxM picture, we will perform (N-24) (M-24) classifications
 If overlapping 24x24 rectangles are found to have faces, merge

them

11755/1879714 Sep 2010 75

Face size solution
 We already have a

classifier
f,

classifier
 That uses weak

learners

2x

 Scale each classifier
 Every weak learner

S l it i b

f, 4

 Scale its size up by
factor . Scale the
threshold up to .p

 Do this for many
scaling factors

11755/1879714 Sep 2010 76

Overall solution

 Scan the picture with classifiers of size 24x24
 Scale the classifier to 26x26 and scan
 Scale to 28x28 and scan etc Scale to 28x28 and scan etc.

 Faces of different sizes will be found at different
scales

11755/18797

scales

14 Sep 2010 77

False Rejection vs. False detectionj
 False Rejection: There’s a face in the image, but the classifier

misses it
 Rejects the hypothesis that there’s a face

 False detection: Recognizes a face when there is none.

 Classifier:
 Standard boosted classifier: H(x) = sign(t t ht(x))
 Modified classifier H(x) = sign(t t ht(x) + Y)

 Y is a bias that we apply to the classifier.
 If Y is large, then we assume the presence of a face even when we

are not sure
By increasing Y we can reduce false rejection while increasing By increasing Y, we can reduce false rejection, while increasing
false detection
 Many instances for which t t ht(x) is negative get classified as

faces

11755/1879714 Sep 2010 78

ROC

f l d t i d b

% False detection
0 100

10
0

vsfalse neg determined by

ls
e

R
ej

ec
tin

1

As Y increases

%
Fa

l

0

 Ideally false rejection will be 0%, false detection will
also be 0%
As Y increases we reject faces less and less As Y increases, we reject faces less and less
 But accept increasing amounts of garbage as faces

 Can set Y so that we rarely miss a face

11755/18797

 Can set Y so that we rarely miss a face

14 Sep 2010 79

Problem: Not accurate enough, too slow

Cl ifi 1 Cl ifi 2Classifier 1

Not a face

Classifier 2

Not a face

 If we set Y high enough, we will never miss a
face
 But will classify a lot of junk as faces
S l ti Cl if th t t f th fi t Solution: Classify the output of the first
classifier with a second classifier
 And so on

11755/18797

 And so on.

14 Sep 2010 80

Cascaded Classifiers

 Build the first classifier to have near-zero false rejection rate
 But will reject a large number of non-face images But will reject a large number of non face images

 Filter all training data with this classifier
 Build a second classifier on the data that have been passed by the first

classifier, to have near-zero false rejection rate
 This classifier will be different from the first one

 Different data set

 Filter all training data with the cascade of the first two classifiers
 Build a third classifier on data passed by the cascade

11755/18797

 Build a third classifier on data passed by the cascade..
 And so on..

14 Sep 2010 81

Cascaded Classifiers

 Build the first classifier to have near-zero false rejection rate
 But will reject a large number of non-face images But will reject a large number of non face images

 Filter all training data with this classifier
 Build a second classifier on the data that have been passed by the first

classifier, to have near-zero false rejection rate
 This classifier will be different from the first one

 Different data set

 Filter all training data with the cascade of the first two classifiers
 Build a third classifier on data passed by the cascade

11755/18797

 Build a third classifier on data passed by the cascade..
 And so on..

14 Sep 2010 82

Cascaded Classifiers

 Build the first classifier to have near-zero false rejection rate
 But will reject a large number of non-face images But will reject a large number of non face images

 Filter all training data with this classifier
 Build a second classifier on the data that have been passed by the first

classifier, to have near-zero false rejection rate
 This classifier will be different from the first one

 Different data set

 Filter all training data with the cascade of the first two classifiers
 Build a third classifier on data passed by the cascade

11755/18797

 Build a third classifier on data passed by the cascade..
 And so on..

14 Sep 2010 83

Final Cascade of Classifiers

11755/1879714 Sep 2010 84

Useful Features Learned by Boosting

11755/1879714 Sep 2010 85

Detection in Real Images
 Basic classifier operates on 24 x 24 subwindows

 Scaling:
 Scale the detector (rather than the images)
 Features can easily be evaluated at any scale Features can easily be evaluated at any scale
 Scale by factors of 1.25

 Location: Location:
 Move detector around the image (e.g., 1 pixel increments)

 Final Detections Final Detections
 A real face may result in multiple nearby detections
 Postprocess detected subwindows to combine overlapping

detections into a single detection

11755/18797

detections into a single detection

14 Sep 2010 86

Trainingg
 In paper, 24x24 images of faces and non faces (positive and

negative examples).

14 Sep 2010 8711755/18797

Sample results using the Viola-Jones
DDetector
 Notice detection at multiple scales

14 Sep 2010 8811755/18797

More Detection Examples

11755/1879714 Sep 2010 89

Practical implementation
 Details discussed in Viola-Jones paper

 Training time = weeks (with 5k faces and 9.5k non-
faces)faces)

 Final detector has 38 layers in the cascade 6060 Final detector has 38 layers in the cascade, 6060
features

 700 Mhz processor:
 Can process a 384 x 288 image in 0.067 seconds (in 2003

h itt)

11755/18797

when paper was written)

14 Sep 2010 90

