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Learning Distributions for Data
 Problem: Given a collection of examples from some data, 

estimate its distributionestimate its distribution
 Basic ideas of Maximum Likelihood and MAP estimation can be 

found in Aarti/Paris’ slides
 Pointed to in a previous class Pointed to in a previous class

 Solution: Assign a model to the distribution
 Learn parameters of model from data

 Models can be arbitrarily complex
 Mixture densities, Hierarchical models.

 Learning must be done using Expectation Maximization
 Following slides: An intuitive explanation using a simple 

example of multinomialsexample of multinomials
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A Thought Experiment

 A person shoots a loaded dice repeatedly

6 3 1 5 4 1 2 4 …

 You observe the series of outcomes
 You can form a good idea of how the dice is loaded

 Figure out what the probabilities of the various numbers are for dice
 P(number) = count(number)/sum(rolls)
 This is a maximum likelihood estimate

 Estimate that makes the observed sequence of numbers most probable
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The Multinomial Distribution

 A probability distribution over a discrete 
ll ti f it i M lti i lcollection of items is a Multinomial

)()set discrete a  tobelongs :( XPXXP 

 E.g. the roll of diceg
 X : X in (1,2,3,4,5,6)

 Or the toss of a coin
 X : X in (head, tails)
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Maximum Likelihood Estimation
n1

n2 n4

n5
n6n3
n6

p1
p3 p4

p6
p pp1 p2

p4
p5 p1

p2

p3

p4

p5 p6

 Basic principle: Assign a form to the distribution
 E.g. a multinomial E.g. a multinomial
 Or a Gaussian

 Find the distribution that best fits the histogram g
of the data
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Defining “Best Fit”
 The data are generated by draws from the 

distribution
 I.e. the generating process draws from the distribution

Ass mption The distrib tion has a high probabilit Assumption: The distribution has a high probability 
of generating the observed data
 Not necessarily true Not necessarily true

 Select the distribution that has the highest 
b bilit f ti th d tprobability of generating the data

 Should assign lower probability to less frequent 
observations and vice versa
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Maximum Likelihood Estimation: Multinomial

 Probability of generating (n1, n2, n3, n4, n5, n6)

 nipConstnnnnnnP )(

 Find p1 p2 p3 p4 p5 p6 so that the above is maximized


i

i
ipConstnnnnnnP ),,,,,( 654321

 Find p1,p2,p3,p4,p5,p6 so that the above is maximized

 Alternately maximize

    l)l ()(l

 Log() is a monotonic function

   
i

ii pnConstnnnnnnP log)log(),,,,,(log 654321

 argmaxx f(x) =  argmaxx log(f(x))

 Solving for the probabilities gives us
 Requires constrained optimization to 

 i
i n

np
EVENTUALLY
ITS JUST
COUNTING! Requires constrained optimization to 

ensure probabilities sum to 1
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Segue:  Gaussians

 )()(5.0exp
||)2(

1),;()( 1 


 


  XXXNXP T

d

 Parameters of a Gaussian: 
 Mean , Covariance ,
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Maximum Likelihood: Gaussian
 Given a collection of observations (X1, X2,…), 

estimate mean  and covariance 

  


 

i
i
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XXXXP )()(5.0exp
||)2(

1,...),( 1
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i
i

T
i XXCXXP )()(||log5.0,...),(log
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 Maximizing w.r.t  and  gives us

   T11 ITS STILL   
i

T
ii

i
i XX

N
X

N
 11          ITS STILL

JUST
COUNTING!

11755/1879721 Sep 2010 9



Laplacian





 


xbxLxP ||exp1);()( 

 Parameters: Mean , scale b (b > 0)
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Maximum Likelihood: Laplacian
 Given a collection of observations (x1, x2,…), 

estimate mean  and scale bestimate mean  and scale b

   


i

i

b
xbNCxxP ||)log(,...),(log 21



 Maximizing w.r.t  and b gives us

i b

 Maximizing w.r.t  and b gives us

  ii xbx ||11           
i

i
i

i NN
|| 

11755/1879721 Sep 2010 11



Dirichlet
(f iki di )(from wikipedia)

K 3  Cl k i  f  t  l ft

log of the density as we change α from
α=(0.3, 0.3, 0.3) to (2.0, 2.0, 2.0), 
keeping all the individual αi's equal to 
each other.

P t

K=3. Clockwise from top left:
α=(6, 2, 2), (3, 7, 5), (6, 2, 6), (2, 3, 4)




















i
i

i

i
i

ixXDXP 1
)(

);()( 






 Parameters are s
 Determine mode and curvature

 Defined only of probability vectors


 i

i

Defined only of probability vectors
 X = [x1 x2 .. xK], i xi = 1,  xi >= 0 for all i
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Maximum Likelihood: Dirichlet
 Given a collection of observations (X1, X2,…), 

estimate estimate 

     















 

i
i

i
iij

j i
i NNXXXP  loglog)log()1(,...),(log ,21

 No closed form solution for s.
 Needs gradient ascent

  iij i

 Needs gradient ascent

 Several distributions have this property: the ML p p y
estimate of their parameters have no closed 
form solution
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Continuing the Thought Experiment

6 3 1 5 4 1 2 4 … 4 4 1 6 3 2 1 2 …

 Two persons shoot loaded dice repeatedly
 The dice are differently loaded for the two of them

 We observe the series of outcomes for both personsp

 How to determine the probability distributions of the two dice?
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Estimating Probabilities

 Observation: The sequence of 
numbers from the two dice

6 4 5 1 2 3 4 5 2 2 1 4 3 4 6 2 1 6… 

 As indicated by the colors, we 
know who rolled what number

11755/1879721 Sep 2010 15



Estimating Probabilities

 Observation: The sequence of 
numbers from the two dice

6 4 5 1 2 3 4 5 2 2 1 4 3 4 6 2 1 6… 

 As indicated by the colors, we 
know who rolled what number

 Segregation: Separate the 
blue observations from the red

6 5 2 4 2 1 3 6 1.. 4 1 3 5 2 4 4 2 6..
Collection of “blue”
numbers

Collection of “red”
numbers
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Estimating Probabilities
 Observation: The sequence of 

numbers from the two dice
 As indicated by the colors we

6 4 5 1 2 3 4 5 2 2 1 4 3 4 6 2 1 6… 

 As indicated by the colors, we 
know who rolled what number

 Segregation: Separate the blue Segregation: Separate the blue 
observations from the red

F h t t

6 5 2 4 2 1 3 6 1.. 4 1 3 5 2 4 4 2 6..

 From each set compute 
probabilities for each of the 6 
possible outcomes

0.15

0.2

0.25

0.3

0.15

0.2

0.25

0.3

rolls observed ofnumber  total
rolled number was  timesof no.)( numberP 0

0.05

0.1

1 2 3 4 5 6
0

0.05

0.1

1 2 3 4 5 6
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A Thought Experiment
6 4 1 5 3 2 2 2 …

6 3 1 5 4 1 2 4 4 4 1 6 3 2 1 2
 Now imagine that you cannot observe the dice yourself
 Instead there is a “caller” who randomly calls out the outcomes

6 3 1 5 4 1 2 4 … 4 4 1 6 3 2 1 2 …

 40% of the time he calls out the number from the left shooter, and 60% of the 
time, the one from the right (and you know this)

At ti d t k hi h f th t h i lli t

11755/18797

 At any time, you do not know which of the two he is calling out
 How do you determine the probability distributions for the two dice?
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A Thought Experiment
6 4 1 5 3 2 2 2 …

6 3 1 5 4 1 2 4 4 4 1 6 3 2 1 2

 How do you now determine the probability 
distributions for the two sets of dice

6 3 1 5 4 1 2 4 … 4 4 1 6 3 2 1 2 …

distributions for the two sets of dice …

 .. If you do not even know what fraction of time the 

11755/18797

blue numbers are called, and what fraction are red? 
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A Mixture Multinomial
 The caller will call out a number X in any given callout IF

 He selects “RED”, and the Red die rolls the number X
OR OR

 He selects “BLUE” and the Blue die rolls the number X

P(X) P(Red)P(X|Red) + P(Blue)P(X|Blue) P(X) = P(Red)P(X|Red) + P(Blue)P(X|Blue)
 E.g. P(6) = P(Red)P(6|Red) + P(Blue)P(6|Blue)

 A distribution that combines (or mixes) multiple A distribution that combines (or mixes) multiple 
multinomials is a mixture multinomial

 ZXPZPXP )|()()( 
Z

ZXPZPXP )|()()(

Mixture weights Component multinomials
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Mixture Distributions

 ZXPZPXP )|()()(  
Z

zzXNZPXP ),;()()( 
Mixture Gaussian

Z

Mixture weights Component distributions

Z

  
Z i

izzi
Z

zz bXLZPXNZPXP ),;()(),;()()( ,
Mixture of Gaussians and Laplacians

 Mixture distributions mix several component distributions
 Component distributions may be of varied typep y yp

 Mixing weights must sum to 1.0
 Component distributions integrate to 1.0
 Mixture distribution integrates to 1.0
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Maximum Likelihood Estimation
 For our problem:

 Z = color of dice


Z

ZXPZPXP )|()()(
 Z = color of dice

  









X

n

ZX

n
X

X ZXPZPConstXPConstnnnnnnP )|()()(),,,,,( 654321

 Maximum likelihood solution: Maximize

  





 ZXPZPnConstnnnnnnP )|()(log)log())(log(

 No closed form solution (summation inside log)! 

  






X Z

X ZXPZPnConstnnnnnnP )|()(log)log()),,,,,(log( 654321

( g)
 In general ML estimates for mixtures do not have a 

closed form
 USE EM!
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Expectation Maximization
 It is possible to estimate all parameters in this setup 

using the Expectation Maximization (or EM) algorithm

 First described in a landmark paper by Dempster, Laird 
and Rubinand Rubin
 Maximum Likelihood Estimation from incomplete data, 

via the EM Algorithm, Journal of the Royal Statistical 
Society, Series B, 1977

 Much work on the algorithm since then Much work on the algorithm since then

 The principles behind the algorithm existed for several 
years prior to the landmark paper however

11755/18797

years prior to the landmark paper, however.
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Expectation Maximization
 Iterative solution

Get some initial estimates for all parameters Get some initial estimates for all parameters
 Dice shooter example: This includes probability 

distributions for dice AND the probability with whichdistributions for dice AND the probability with which 
the caller selects the dice

Two steps that are iterated: Two steps that are iterated:
 Expectation Step: Estimate statistically, the values 

of unseen variablesof unseen variables
 Maximization Step: Using the estimated values of 

the unseen variables as truth, estimates of the 

11755/18797

,
model parameters
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EM: The auxiliary function

 EM iteratively optimizes the following 
ili f tiauxiliary function

 Q(, ’) = Z P(Z|X,’) log(P(Z,X | ))

 Z are the unseen variables
 Assuming Z is discrete (may not be) Assuming Z is discrete (may not be)

 ’ are the parameter estimates from the 
previous iterationprevious iteration

 are the estimates to be obtained in the 
current iterationcurrent iteration

11755/1879721 Sep 2010 25



Expectation Maximization as counting
Instance from blue dice Instance from red dice Dice unknown

6 6 6
Instance from blue dice Instance from red dice Dice unknown

Collection of “blue” Collection of “red”
.. ..

Collection of “blue” Collection of “red”
.. ..

Collection of “blue” Collection of “red”

6 6

6 6 6 .. 6 ..

 Hidden variable: Z
Di Th id tit f th di h b h b ll d t

Collection of blue
numbers

Collection of red
numbers

Collection of blue
numbers

Collection of red
numbers

Collection of blue
numbers

Collection of red
numbers

 Dice: The identity of the dice whose number has been called out

 If we knew Z for every observation, we could estimate all terms
 By adding the observation to the right bin By adding the observation to the right bin

 Unfortunately, we do not know Z – it is hidden from us!

 Solution: FRAGMENT THE OBSERVATION
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 Solution:  FRAGMENT THE OBSERVATION
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Fragmenting the Observation

 EM is an iterative algorithm
 At each time there is a current estimate of parameters At each time there is a current estimate of parameters

 The “size” of the fragments is proportional to the a 
posteriori probability of the component distributionsposteriori probability of the component distributions
 The a posteriori probabilities of the various values of Z are 

computed using Bayes’ rule:p g y

)()|()()|()|( ZPZXCPZPZXPXZP 

Every dice gets a fragment of size P(dice | number)

)()|(
)(

)|( C
XP
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 Every dice gets a fragment of size P(dice | number)
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Expectation Maximization

 Hypothetical Dice Shooter Example:
We obtain an initial estimate for the probability distribution of the We obtain an initial estimate for the probability distribution of the 
two sets of dice (somehow):  

0.3
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0.35

P(
X 

| b
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P(
X 

| r
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 We obtain an initial estimate for the probability with which the 

0
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1 2 3 4 5 6

0
0.05

1 2 3 4 5 60.1 0.05

P
p y

caller calls out the two shooters (somehow)
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Expectation Maximization

 Hypothetical Dice Shooter Example:
I iti l ti t Initial estimate:  
 P(blue) = P(red) = 0.5
 P(4 | blue) = 0.1, for P(4 | red) = 0.05 P(4 | blue)  0.1, for P(4 | red)   0.05

 Caller has just called out 4
 Posterior probability of colors: 

025.05.005.0)()|4()4|( CCredZPredZXCPXredP  )()|()|(
05.05.01.0)()|4()4|( CCblueZPblueZXCPXblueP 

67.0)4|(33.0)4|(  XbluePXredP   ; :gNormalizin

11755/18797
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Expectation Maximization
6 4 5 1 2 3 4 5 2 2 1 4 3 4 6 2 1 6

4 (0.33) 4 (0.67)
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Expectation Maximization

 Every observed roll of the dice 
contributes to both “Red” and 

6 4 5 1 2 3 4 5 2 2 1 4 3 4 6 2 1 6

“Blue”
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Expectation Maximization

 Every observed roll of the dice 
contributes to both “Red” and 

6 4 5 1 2 3 4 5 2 2 1 4 3 4 6 2 1 6

“Blue”

6 (0.8) 6 (0.2)
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Expectation Maximization

 Every observed roll of the dice 
contributes to both “Red” and 

6 4 5 1 2 3 4 5 2 2 1 4 3 4 6 2 1 6

“Blue”

6 (0.8), 6 (0.2),4 (0.33) 4 (0.67)
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Expectation Maximization

 Every observed roll of the dice 
contributes to both “Red” and 

6 4 5 1 2 3 4 5 2 2 1 4 3 4 6 2 1 6

“Blue”

6 (0.8), 6 (0.2),4 (0.33), 4 (0.67),
5 (0.33), 5 (0.67),
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Expectation Maximization

 Every observed roll of the dice 
contributes to both “Red” and 

6 4 5 1 2 3 4 5 2 2 1 4 3 4 6 2 1 6

“Blue”

6 (0.8), 4 (0.33),
5 (0.33), 1 (0.57),
2 (0.14), 3 (0.33),
4 (0 33) 5 (0 33)

6 (0.2), 4 (0.67),
5 (0.67), 1 (0.43),
2 (0.86), 3 (0.67),
4 (0 67) 5 (0 67)4 (0.33), 5 (0.33),

2 (0.14), 2 (0.14),
1 (0.57), 4 (0.33),
3 (0 33) 4 (0 33)

4 (0.67), 5 (0.67),
2 (0.86), 2 (0.86),
1 (0.43), 4 (0.67),
3 (0 67) 4 (0 67)3 (0.33), 4 (0.33),

6 (0.8), 2 (0.14),
1 (0.57), 6 (0.8)

3 (0.67), 4 (0.67),
6 (0.2), 2 (0.86),
1 (0.43), 6 (0.2)
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Expectation Maximization

 Every observed roll of the dice 
contributes to both “Red” and “Blue”

Called P(red|X) P(blue|X)
6 .8 .2
4 .33 .67
5 33 67

 Total count for “Red” is the sum of 
all the posterior probabilities in the 
red column

5 .33 .67
1 .57 .43
2 .14 .86
3 .33 .67red column

 7.31

 Total count for “Blue” is the sum of 

4 .33 .67
5 .33 .67
2 .14 .86
2 .14 .86

all the posterior probabilities in the 
blue column
 10.69

1 .57 .43
4 .33 .67
3 .33 .67
4 33 67

 Note: 10.69 + 7.31 = 18 = the total 
number of instances

4 .33 .67
6 .8 .2
2 .14 .86
1 .57 .43
6 8 2

11755/18797
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Expectation Maximization

 Total count for “Red” : 7.31
 Red:

Called P(red|X) P(blue|X)
6 .8 .2
4 .33 .67
5 33 67

 Total count for 1:  1.71 5 .33 .67
1 .57 .43
2 .14 .86
3 .33 .67
4 .33 .67
5 .33 .67
2 .14 .86
2 .14 .86
1 .57 .43
4 .33 .67
3 .33 .67
4 33 674 .33 .67
6 .8 .2
2 .14 .86
1 .57 .43
6 8 2
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Expectation Maximization

 Total count for “Red” : 7.31
 Red:

Called P(red|X) P(blue|X)
6 .8 .2
4 .33 .67
5 33 67

 Total count for 1:  1.71
 Total count for 2:  0.56

5 .33 .67
1 .57 .43
2 .14 .86
3 .33 .67
4 .33 .67
5 .33 .67
2 .14 .86
2 .14 .86
1 .57 .43
4 .33 .67
3 .33 .67
4 33 674 .33 .67
6 .8 .2
2 .14 .86
1 .57 .43
6 8 2
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6 .8 .2
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Expectation Maximization

 Total count for “Red” : 7.31
 Red:

Called P(red|X) P(blue|X)
6 .8 .2
4 .33 .67
5 33 67

 Total count for 1:  1.71
 Total count for 2:  0.56
 Total count for 3:  0.66

5 .33 .67
1 .57 .43
2 .14 .86
3 .33 .67
4 .33 .67
5 .33 .67
2 .14 .86
2 .14 .86
1 .57 .43
4 .33 .67
3 .33 .67
4 33 674 .33 .67
6 .8 .2
2 .14 .86
1 .57 .43
6 8 2
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Expectation Maximization

 Total count for “Red” : 7.31
 Red:

Called P(red|X) P(blue|X)
6 .8 .2
4 .33 .67
5 33 67

 Total count for 1:  1.71
 Total count for 2:  0.56
 Total count for 3:  0.66

5 .33 .67
1 .57 .43
2 .14 .86
3 .33 .67

 Total count for 4:  1.32 4 .33 .67
5 .33 .67
2 .14 .86
2 .14 .86
1 .57 .43
4 .33 .67
3 .33 .67
4 33 674 .33 .67
6 .8 .2
2 .14 .86
1 .57 .43
6 8 2

11755/18797

6 .8 .2

7.31 10.6921 Sep 2010 40



Expectation Maximization

 Total count for “Red” : 7.31
 Red:

Called P(red|X) P(blue|X)
6 .8 .2
4 .33 .67
5 33 67

 Total count for 1:  1.71
 Total count for 2:  0.56
 Total count for 3:  0.66

5 .33 .67
1 .57 .43
2 .14 .86
3 .33 .67

 Total count for 4:  1.32
 Total count for 5:  0.66

4 .33 .67
5 .33 .67
2 .14 .86
2 .14 .86
1 .57 .43
4 .33 .67
3 .33 .67
4 33 674 .33 .67
6 .8 .2
2 .14 .86
1 .57 .43
6 8 2
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Expectation Maximization

 Total count for “Red” : 7.31
 Red:

Called P(red|X) P(blue|X)
6 .8 .2
4 .33 .67
5 33 67

 Total count for 1:  1.71
 Total count for 2:  0.56
 Total count for 3:  0.66

5 .33 .67
1 .57 .43
2 .14 .86
3 .33 .67

 Total count for 4:  1.32
 Total count for 5:  0.66
 Total count for 6:  2.4

4 .33 .67
5 .33 .67
2 .14 .86
2 .14 .86
1 .57 .43
4 .33 .67
3 .33 .67
4 33 674 .33 .67
6 .8 .2
2 .14 .86
1 .57 .43
6 8 2
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Expectation Maximization
 Total count for “Red” : 7.31
 Red:

Total count for 1: 1 71

Called P(red|X) P(blue|X)
6 .8 .2
4 .33 .67
5 33 67 Total count for 1:  1.71

 Total count for 2:  0.56
 Total count for 3:  0.66
 Total count for 4: 1 32

5 .33 .67
1 .57 .43
2 .14 .86
3 .33 .67

 Total count for 4:  1.32
 Total count for 5:  0.66
 Total count for 6:  2.4

4 .33 .67
5 .33 .67
2 .14 .86
2 .14 .86

 Updated probability of Red dice:
 P(1 | Red) = 1.71/7.31 = 0.234
 P(2 | Red) = 0.56/7.31 = 0.077

1 .57 .43
4 .33 .67
3 .33 .67
4 33 67( | )

 P(3 | Red) = 0.66/7.31 = 0.090
 P(4 | Red) = 1.32/7.31 = 0.181
 P(5 | Red) = 0.66/7.31 = 0.090

4 .33 .67
6 .8 .2
2 .14 .86
1 .57 .43
6 8 2
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 P(6 | Red) = 2.40/7.31 = 0.328 6 .8 .2
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Expectation Maximization

 Total count for “Blue” : 10.69
 Blue:

Called P(red|X) P(blue|X)
6 .8 .2
4 .33 .67
5 33 67

 Total count for 1:  1.29 5 .33 .67
1 .57 .43
2 .14 .86
3 .33 .67
4 .33 .67
5 .33 .67
2 .14 .86
2 .14 .86
1 .57 .43
4 .33 .67
3 .33 .67
4 33 674 .33 .67
6 .8 .2
2 .14 .86
1 .57 .43
6 8 2

11755/18797

6 .8 .2

7.31 10.6921 Sep 2010 44



Expectation Maximization

 Total count for “Blue” : 10.69
 Blue:

Called P(red|X) P(blue|X)
6 .8 .2
4 .33 .67
5 33 67

 Total count for 1:  1.29
 Total count for 2:  3.44

5 .33 .67
1 .57 .43
2 .14 .86
3 .33 .67
4 .33 .67
5 .33 .67
2 .14 .86
2 .14 .86
1 .57 .43
4 .33 .67
3 .33 .67
4 33 674 .33 .67
6 .8 .2
2 .14 .86
1 .57 .43
6 8 2
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Expectation Maximization

 Total count for “Blue” : 10.69
 Blue:

Called P(red|X) P(blue|X)
6 .8 .2
4 .33 .67
5 33 67

 Total count for 1:  1.29
 Total count for 2:  3.44
 Total count for 3:  1.34

5 .33 .67
1 .57 .43
2 .14 .86
3 .33 .67
4 .33 .67
5 .33 .67
2 .14 .86
2 .14 .86
1 .57 .43
4 .33 .67
3 .33 .67
4 33 674 .33 .67
6 .8 .2
2 .14 .86
1 .57 .43
6 8 2
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Expectation Maximization

 Total count for “Blue” : 10.69
 Blue:

Called P(red|X) P(blue|X)
6 .8 .2
4 .33 .67
5 33 67

 Total count for 1:  1.29
 Total count for 2:  3.44
 Total count for 3:  1.34

5 .33 .67
1 .57 .43
2 .14 .86
3 .33 .67

 Total count for 4:  2.68 4 .33 .67
5 .33 .67
2 .14 .86
2 .14 .86
1 .57 .43
4 .33 .67
3 .33 .67
4 33 674 .33 .67
6 .8 .2
2 .14 .86
1 .57 .43
6 8 2
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Expectation Maximization

 Total count for “Blue” : 10.69
 Blue:

Called P(red|X) P(blue|X)
6 .8 .2
4 .33 .67
5 33 67

 Total count for 1:  1.29
 Total count for 2:  3.44
 Total count for 3:  1.34

5 .33 .67
1 .57 .43
2 .14 .86
3 .33 .67

 Total count for 4:  2.68
 Total count for 5:  1.34

4 .33 .67
5 .33 .67
2 .14 .86
2 .14 .86
1 .57 .43
4 .33 .67
3 .33 .67
4 33 674 .33 .67
6 .8 .2
2 .14 .86
1 .57 .43
6 8 2
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Expectation Maximization

 Total count for “Blue” : 10.69
 Blue:

Called P(red|X) P(blue|X)
6 .8 .2
4 .33 .67
5 33 67

 Total count for 1:  1.29
 Total count for 2:  3.44
 Total count for 3:  1.34

5 .33 .67
1 .57 .43
2 .14 .86
3 .33 .67

 Total count for 4:  2.68
 Total count for 5:  1.34
 Total count for 6:  0.6

4 .33 .67
5 .33 .67
2 .14 .86
2 .14 .86
1 .57 .43
4 .33 .67
3 .33 .67
4 33 674 .33 .67
6 .8 .2
2 .14 .86
1 .57 .43
6 8 2

11755/18797

6 .8 .2
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Expectation Maximization
 Total count for “Blue” : 10.69
 Blue:

 Total count for 1: 1 29

Called P(red|X) P(blue|X)
6 .8 .2
4 .33 .67
5 33 67 Total count for 1:  1.29

 Total count for 2:  3.44
 Total count for 3:  1.34
 Total count for 4:  2.68

5 .33 .67
1 .57 .43
2 .14 .86
3 .33 .67

 Total count for 5:  1.34
 Total count for 6:  0.6

4 .33 .67
5 .33 .67
2 .14 .86
2 .14 .86

 Updated probability of Blue dice:
 P(1 | Blue) = 1.29/11.69 = 0.122
 P(2 | Blue) = 0.56/11.69 = 0.322

( | ) /

1 .57 .43
4 .33 .67
3 .33 .67
4 33 67

 P(3 | Blue) = 0.66/11.69 = 0.125
 P(4 | Blue) = 1.32/11.69 = 0.250
 P(5 | Blue) = 0.66/11.69 = 0.125
 P(6 | Blue) = 2 40/11 69 = 0 056

4 .33 .67
6 .8 .2
2 .14 .86
1 .57 .43
6 8 2
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 P(6 | Blue) = 2.40/11.69 = 0.056 6 .8 .2
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Expectation Maximization
 Total count for “Red” : 7.31
 Total count for “Blue” : 10.69

Called P(red|X) P(blue|X)
6 .8 .2
4 .33 .67
5 33 67

 Total instances = 18 
 Note 7.31+10.69 = 18

 We also revise our estimate for the

5 .33 .67
1 .57 .43
2 .14 .86
3 .33 .67

 We also revise our estimate for the 
probability that the caller calls out 
Red or Blue

i th f ti f ti th t h

4 .33 .67
5 .33 .67
2 .14 .86
2 .14 .86

 i.e the fraction of times that he 
calls Red and the fraction of times 
he calls Blue

1 .57 .43
4 .33 .67
3 .33 .67
4 33 67

 P(Z=Red) = 7.31/18 = 0.41
 P(Z=Blue) = 10 69/18 = 0 59

4 .33 .67
6 .8 .2
2 .14 .86
1 .57 .43
6 8 2

11755/18797

 P(Z=Blue) = 10.69/18 = 0.59 6 .8 .2
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The updated values
Probabilit of Red dice

Called P(red|X) P(blue|X)
6 .8 .2
4 .33 .67
5 33 67

 Probability of Red dice:
 P(1 | Red) = 1.71/7.31 = 0.234
 P(2 | Red) = 0.56/7.31 = 0.077
 P(3 | Red) = 0 66/7 31 = 0 090 5 .33 .67

1 .57 .43
2 .14 .86
3 .33 .67

 P(3 | Red) = 0.66/7.31 = 0.090
 P(4 | Red) = 1.32/7.31 = 0.181
 P(5 | Red) = 0.66/7.31 = 0.090
 P(6 | Red) = 2.40/7.31 = 0.328

4 .33 .67
5 .33 .67
2 .14 .86
2 .14 .86

 Probability of Blue dice:
 P(1 | Blue) = 1.29/11.69 = 0.122
 P(2 | Blue) = 0.56/11.69 = 0.322

( | )

1 .57 .43
4 .33 .67
3 .33 .67
4 33 67

( | )
 P(3 | Blue) = 0.66/11.69 = 0.125
 P(4 | Blue) = 1.32/11.69 = 0.250
 P(5 | Blue) = 0.66/11.69 = 0.125

 P(Z=Red) = 7.31/18 = 0.41
 P(Z=Blue) = 10 69/18 = 0 59

4 .33 .67
6 .8 .2
2 .14 .86
1 .57 .43
6 8 2

 P(6 | Blue) = 2.40/11.69 = 0.056

11755/18797

 P(Z=Blue) = 10.69/18 = 0.59 6 .8 .2

THE UPDATED VALUES CAN BE USED TO REPEAT THE 
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The Dice Shooter Example

6 4 1 5 3 2 2 2 …

1. Initialize P(Z),  P(X | Z)
2 Estimate P(Z | X) for each Z for each called out number

6 3 1 5 4 1 2 4 … 4 4 1 6 3 2 1 2 …

2. Estimate P(Z | X) for each Z, for each called out number
• Associate X with each value of Z, with weight P(Z | X)

3. Re-estimate P(X | Z) for every value of X and Z
4 Re estimate P(Z)

11755/18797

4. Re-estimate P(Z)
5. If not converged, return to 2
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In Squiggles
 Given a sequence of observations O1, O2, ..
 N is the number of observations of number X NX is the number of observations of number X

 Initialize P(Z), P(X|Z) for dice Z and numbers X
Iterate: Iterate:
 For each number X:
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Solutions may not be unique
 The EM algorithm will give us one of many solutions, 

all equally valid!all equally valid!
 The probability of 6 being called out:

br PPbluePredPP   )|6()|6()6(

 Assigns Pr as the probability of 6 for the red die
 Assigns Pb as the probability of 6 for the blue die

 The following too is a valid solution [FIX]
  anythingPPP br 0.00.1)6(  

 Assigns 1.0 as the a priori probability of the red die
 Assigns 0.0 as the probability of the blue die

11755/18797

 The solution is NOT unique
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A More Complex Model

  


 
kk

T
kdkk XXkPXNkPXP )()(5.0exp

||)2(
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 Gaussian mixtures are often good models for 

k k
d

k ||)2( 

the distribution of multivariate data
 Problem: Estimating the parameters, given a 

collection of data
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Gaussian Mixtures: Generating model
6 1 1 4 5 3 1 9 4 2 2 2 4 9 0 5

 
k

kkXNkPXP ),;()()( 
6.1 1.4 5.3 1.9 4.2 2.2 4.9 0.5  

 The caller now has two Gaussians
At each draw he randomly selects a Gaussian by At each draw he randomly selects a Gaussian, by 
the mixture weight distribution

H th d b ti f th t G i He then draws an observation from that Gaussian

 Much like the dice problem (only the outcomes are 
now real numbers and can be anything)

21 Sep 2010 5711755/18797



Estimating GMM with complete information
 Observation: A collection of 

numbers drawn from a mixture 
of 2 Gaussians

6.1 1.4 5.3 1.9 4.2 2.2 4.9 0.5 … 

of 2 Gaussians
 As indicated by the colors, we 

know which Gaussian 
generated what numbergenerated what number

 Segregation: Separate the blue 
observations from the red

6.1  5.3  4.2  4.9 .. 1.4  1.9  2.2  0.5 ..

observations from the red

 From each set compute 
t f th t G iparameters for that Gaussian
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Fragmenting the observation
Gaussian  unknown

4.2

Gaussian  unknown

Collection of “blue” Collection of “red”

4.2 4.2

4.2 .. 4.2 ..

 The identity of the Gaussian is not known!

Collection of blue
numbers

Collection of red
numbers

 Solution:  Fragment the observation
 Fragment size proportional to a posteriori

probability
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Expectation Maximization
 Initialize P(k), k and k for both 

Gaussians
Number P(red|X) P(blue|X)
6.1 .81 .19
1.4 .33 .67
5 3 75 25

 Important how we do this
 Typical solution: Initialize means 

randomly, k as the global covariance 

5.3 .75 .25
1.9 .41 .59
4.2 .64 .36
2.2 .43 .57

of the data and P(k) uniformly

 Compute fragment sizes for each 
Gaussian for each observation

4.9 .66 .34
0.5 .05 .95

Gaussian, for each observation
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Expectation Maximization
 Each observation contributes 

only as much as its fragment 
size to each statistic

Number P(red|X) P(blue|X)
6.1 .81 .19
1.4 .33 .67
5 3 75 25size to each statistic

 Mean(red) =  
(6.1*0.81 + 1.4*0.33 + 5.3*0.75 + 
1.9*0.41 + 4.2*0.64 + 2.2*0.43 +

5.3 .75 .25
1.9 .41 .59
4.2 .64 .36
2.2 .43 .571.9 0.41  4.2 0.64  2.2 0.43  

4.9*0.66 + 0.5*0.05 ) /
(0.81 + 0.33 + 0.75 + 0.41 + 0.64 + 
0.43 + 0.66 + 0.05)

4.9 .66 .34
0.5 .05 .95

4 08 3 92)
= 17.05 / 4.08 = 4.18

4.08 3.92

 Var(red) = ((6.1-4.18)2*0.81 + (1.4-4.18)2*0.33 + 
(5.3-4.18)2*0.75 + (1.9-4.18)2*0.41 + ( ) ( )
(4.2-4.18)2*0.64 + (2.2-4.18)2*0.43 + 
(4.9-4.18)2*0.66 + (0.5-4.18)2*0.05 ) /

(0.81 + 0.33 + 0.75 + 0.41 + 0.64 + 0.43 + 0.66 + 0.05)

11755/187978
08.4)( redP

21 Sep 2010 61



EM for Gaussian Mixtures
1. Initialize P(k), k and k for all Gaussians
2 For each observation X compute a posteriori2. For each observation X compute a posteriori

probabilities for all Gaussian
 );()( XNkP 
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3. Update mixture weights, means and variances 
for all Gaussians
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4. If not converged, return to 2
X X
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EM estimation of Gaussian Mixtures
 An Example

Histogram of 4000
instances of a randomly
generated data

Individual parameters
of a two-Gaussian
mixture estimated by EM

Two-Gaussian mixture
estimated by EM
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Expectation Maximization
 The same principle can be extended to mixtures of other 

distributions.

 E.g. Mixture of Laplacians:  Laplacian parameters become




x
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x
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)|(

1             

 In a mixture of Gaussians and Laplacians, Gaussians  use the 

xx

Gaussian update rules, Laplacians use the Laplacian rule
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Expectation Maximization
 The EM algorithm is used whenever proper statistical 

analysis of a phenomenon requires the knowledge of a 
( f /hidden or missing variable (or a set of hidden/missing 

variables)
 The hidden variable is often called a “latent” variable

 Some examples:
 Estimating mixtures of distributions Estimating mixtures of distributions

 Only data are observed. The individual distributions and mixing 
proportions must both be learnt.

 Estimating the distribution of data when some attributes are Estimating the distribution of data, when some attributes are 
missing

 Estimating the dynamics of a system, based only on observations 
that may be a complex function of system statethat may be a complex function of system state
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Solve this problem:
 Caller rolls a dice and flips a coin
 He calls out the number rolled if the coin He calls out the number rolled if the coin 

shows head
 Otherwise he calls the number+1 Otherwise he calls the number+1
 Determine p(heads) and p(number) for the 

dice from a collection of ouputsdice from a collection of ouputs

 Caller rolls two dice Caller rolls two dice
 He calls out the sum

Determine P(dice) from a collection of ouputs Determine P(dice) from a collection of ouputs
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The dice and the coin
Heads or tail?

4

Heads or tail?

“Heads” count “Tails” count

4 3

4. 3..

 Unknown: Whether it was head or tails Unknown: Whether it was head or tails
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The two dice
4

3,1 1,3,

2,2

U k H t titi th b Unknown: How to partition the number
 Countblue(3) += P(3,1 | 4)
 Countblue(2) += P(2,2 | 4)
 Countblue(1) += P(1,3 | 4)blue( ) ( | )
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Fragmentation can be hierarchical
 

k Z
kZXPkZPkPXP ),|()|()()(

k1 k2

 E g mixture of mixtures

Z1 Z2 Z3 Z4

 E.g. mixture of mixtures
 Fragments are further fragmented..

W k thi t Work this out
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More later

 Will see a couple of other instances of the 
f EMuse of EM

 Work out HMM training
 Assume state output distributions are multinomials
 Assume they are Gaussian

G Assume Gaussian mixtures
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