11-755 Machine Learning for Signal Processing

Expectation Maximization

Mixture Models
HMMs

Class 9. 21 Sep 2010
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Learning Distributions for Data

Problem: Given a collection of examples from some data,
estimate its distribution

o Basic ideas of Maximum Likelihood and MAP estimation can be
found In Aarti/Paris’ slides
Pointed to in a previous class

Solution: Assign a model to the distribution
o Learn parameters of model from data

Models can be arbitrarily complex
o Mixture densities, Hierarchical models.

Learning must be done using Expectation Maximization

Following slides: An intuitive explanation using a simple
example of multinomials
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A Thought Experiment

63154124 .

A person shoots a loaded dice repeatedly
You observe the series of outcomes

You can form a good idea of how the dice is loaded

o Figure out what the probabilities of the various numbers are for dice
P(number) = count(number)/sum(rolls)

This is a maximum likelihood estimate

o Estimate that makes the observed sequence of numbers most probable
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The Multinomial Distribution

A probabillity distribution over a discrete
collection of items Is a Multinomial

P(X : X belongs to a discreteset) = P(X)

E.qg. the roll of dice
n X:Xin(1,2,3,4,5,6)

Or the toss of a coin
o X : Xin (head, talls)
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Maximum Likelihood Estimation
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= Basic principle: Assign a form to the distribution
o E.g. a multinomial
o Or a Gaussian

= Find the distribution that best fits the histogram
of the data
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Detining “Best Fit”

The data are generated by draws from the
distribution

o l.e. the generating process draws from the distribution

Assumption: The distribution has a high probability
of generating the observed data
o Not necessatrily true

Select the distribution that has the highest
probability of generating the data

o Should assign lower probability to less frequent
observations and vice versa
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Maximum lLikelihood Estimation: Multinomial

Probability of generating (ny, n,, N3, Ny, Nz, Ng)

P(nl’ n21 n31 n41 n5, n6) — COnStH pini

Find p,,p,.P3,P4,P5,Pg SO that the above is maximized
Alternately maximize

log(P(n,,n,,ny,n,,ng,ng))=log(Const) + > n; log(p;)

o Log() is a monotonic function
argmax, f(x) = argmax, log(f(x))

. Ll EVENTUALLY
Solving for the probabilities gives us D = N, ITS JUST
. . .. . |
o Requires constrained optimization to Z nj COUNTING!

ensure probabilities sum to 1 i
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Segue: (Gaussians

0.1}

e ; = exp(-0.5(X — 1) © (X )
T

P(X)=N(X;x,0)=

Parameters of a Gaussian:
o Mean pu, Covariance ©®
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Maximum Likelihood: Gaussian

Given a collection of observations (X, X,...),
estimate mean p and covariance ®

1
P X]_sxz"-- — _05 Xi - T®_1 Xi -
( =11 Tooe exp(-0.5(X; - 4)" @ (X, — 1))

10g(P(X;, X)) =C =0.5) (log( @)+ (X; - )T ©7(X; - 1))

Maximizing w.r.t u and ® gives us

1 1 ITS STILL
ﬂ:ﬁzxi ®ZNZ(Xi_ﬂ)(Xi_ﬂ)T JUST

' COUNTING!
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Laplacian

n=0b=1 —
05 F p=0,b=2
n=0b=4 —
n=-5b=4 ——
04 F
03
02 F
) %
0 i L L L 'l

-10 -8 -6 -4 -2 0 2 4 6 8 10

P(x) = L(X: 1,b) :%exp(— | X;”'j

Parameters: Mean p, scale b (b > 0)
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Maximum Likelihood: Laplacian

Given a collection of observations (Xy, X,...

estimate mean p and scale b

log(P (%, X,,...))=C — N log(b) _Z%

Maximizing w.r.t u and b gives us

ﬂ:%ZXi bz%zinxi_ﬁ”
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(from wikipedia)

0.4 0.4 41
x2 02 0.2

log of the density as we change a from
a=(0.3,0.3,0.3) to (2.0, 2.0, 2.0),
keeping all the individual ai's equal o
each other.

K=3. Clockwise f xHT left: .;
622,375 (6 2.6 23,4 [ [T(e)
P(X)=D(X;a)=— [T

ze)’

= Parameters are os
o Determine mode and curvature

= Defined only of probability vectors
o X=X X . X, Zi i, =1, x;,>=0for all i
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Maximum likelihood: Dirichlet

Given a collection of observations (X;, X,,...),
estimate o

log(P(X,, X,,...)) = ;Z(ai ~1)log(X ;) +N Z log(I'(er, ))— N |og[r(z a, D

No closed form solution for as.
o Needs gradient ascent

Several distributions have this property: the ML
estimate of their parameters have no closed

form solution
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Continuing the Thought Experiment

63154124 . 44163212 ..

Two persons shoot loaded dice repeatedly
o The dice are differently loaded for the two of them
We observe the series of outcomes for both persons

How to determine the probability distributions of the two dice?
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Estimating Probabilities

Observation: The sequence of
numbers from the two dice

o As indicated by the colors, we
know who rolled what number

645123452214346216...
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Estimating Probabilities

645123452214346216...
Observation: The sequence of

numbers from the two dice

o As indicated by the colors, we
know who rolled what number

652421361..||413524426..

Segregation: Separate the

blue observations from the red Collection of “blue”  Collection of “red

numbers numbers
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Estimating Probabilities

Observation: The sequence of
numbers from the two dice

o As indicated by the colors, we
know who rolled what number

Segregation: Separate the blue
observations from the red

From each set compute
probabillities for each of the 6
possible outcomes

no. of times number was rolled
P(number) =

645123452214346216...

652421361..

413524426..

03
0.25
0.2 7
0.15
0.1
0.05 T
04

1 2 3 4 5 6

total number of observed rolls

!

!

0.3
0.25
0.2 7
0.15
0.1
0.05 1

04

1 2 3 4 5 6
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A Thought Experiment

63154124 .. 44163212..
Now imagine that you cannot observe the dice yourself

Instead there is a “caller” who randomly calls out the outcomes

o 40% of the time he calls out the number from the left shooter, and 60% of the
time, the one from the right (and you know this)

At any time, you do not know which of the two he is calling out

How do you determine the probability distributions for the two dice?
21 Sep 2010 18



‘ A Thought Experiment

63154124 .. 44163212 ..

= How do you now determine the probability
distributions for the two sets of dice ...
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A Mixture Multinomial

The caller will call out a number X in any given callout IF

o He selects “RED”, and the Red die rolls the number X
o OR

o He selects “BLUE” and the Blue die rolls the number X

P(X) = P(Red)P(X|Red) + P(Blue)P(X|Blue)
o E.g. P(6) = P(Red)P(6]|Red) + P(Blue)P(6|Blue)

A distribution that combines (or mixes) multiple
multinomials Is a mixture multinomial

P(X)= P Z)P(X |Z)
2rmre

Mixture weights Component multinomials
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Mixture Distributions

Mixture Gaussian

P(X)= > P(Z)P(X|Z)  P(X)=2 P(ZIN(X;4,0,)
Z \ Z
Mixture{igh'ts Component distributions

Mixture of Gaussians and Laplacians

Mixture distributions mix several component distributions
o Component distributions may be of varied type

Mixing weights must sum to 1.0
Component distributions integrate to 1.0
Mixture distribution integrates to 1.0
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Maximum Likelihood Estimation
For our problem: P(X) =2 P(Z)P(X|Z)

o Z = color of dice

P(n,,n,,ny,n,,ng,ng) = Const] [ P(X)™ =ConstH(z P(Z)P(X |Z)) X
Maximum likelihood solution: Maximize

log(P(n,,n,,ny,n,,Nng,ng)) = log(Const) + > ny Iog(Z P(Z)P(X | Z))

No closed form solution (summation inside log)!

o In general ML estimates for mixtures do not have a
closed form

o USE EM!

21 Sep 2010 11755/18797
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Expectation Maximization

It is possible to estimate all parameters in this setup
using the Expectation Maximization (or EM) algorithm

First described in a landmark paper by Dempster, Laird
and Rubin

o Maximum Likelihood Estimation from incomplete data,
via the EM Algorithm, Journal of the Royal Statistical
Society, Series B, 1977

Much work on the algorithm since then

The principles behind the algorithm existed for several
years prior to the landmark paper, however.
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Expectation Maximization

Iterative solution

Get some Initial estimates for all parameters

o Dice shooter example: This includes probability
distributions for dice AND the probability with which
the caller selects the dice

Two steps that are iterated:

o Expectation Step: Estimate statistically, the values
of unseen variables

o Maximization Step: Using the estimated values of
the unseen variables as truth, estimates of the
model parameters
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EM: The auxiliary function

EM iteratively optimizes the following
auxiliary function

Q(6, 8') = 2, P(Z|X,0”) log(P(Z,X | 8))

o Z are the unseen variables
o Assuming Z is discrete (may not be)

0’ are the parameter estimates from the
previous iteration

0 are the estimates to be obtained In the
current iteration

21 Sep 2010 11755/18797
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Expectation Maximization as counting

Instance from blue dice Instance from red dice Dice unknown

G, ® &
SN 5

G .. e .. |
Collection of “blue” Collection of “red” Collection of “blue” Collection of “red” Collection of “blue” Collection of “red”
numbers numbers numbers numbers numbers numbers

Hidden variable: Z
o Dice: The identity of the dice whose number has been called out

If we knew Z for every observation, we could estimate all terms
o By adding the observation to the right bin

Unfortunately, we do not know Z — it is hidden from us!

Solution: FRAGMENT THE OBSERVATION
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Fragmenting the Observation

EM is an iterative algorithm

o At each time there is a current estimate of parameters

The “size” of the fragments is proportional to the a
posteriori probability of the component distributions

o The a posteriori probabilities of the various values of Z are
computed using Bayes' rule:

P(X12)P(Z2)
P(X)

P(Z|X)= =CP(X |Z2)P(2)

Every dice gets a fragment of size P(dice | number)
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Expectation Maximization

Hypothetical Dice Shooter Example:

We obtain an initial estimate for the probability distribution of the
two sets of dice (somehow):

0.45
0.4 1

O 0.3 7
0.35 1
0.3 1
0.25 1
0.2 1
0.15
0.1 1
0.05 1
0 -4

1 2 3 401 5 6 1 2

P(X | red)

0.05
We obtain an initial estimate for the probability with which the
caller calls out the two shooters (somehow)

i B
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Expectation Maximization

Hypothetical Dice Shooter Example:

Initial estimate:
o P(blue) =P(red) = 0.5
o P(4 | blue) =0.1, for P(4 | red) = 0.05

Caller has just called out 4
Posterior probability of colors:

P(red | X =4)=CP(X =4|Z =red)P(Z =red) =C x0.05x0.5=C0.025
P(blue| X =4)=CP(X =4|Z =blue)P(Z =blue) =C x0.1x0.5=C0.05

Normalizing: P(red | X =4)=0.33; P(blue| X =4)=0.67

21 Sep 2010 11755/18797
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Expectation Maximization

21 Sep 2010

7\
645123452214346216
Nl

/

4 (0.33) 4 (0.67)

11755/18797
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Expectation Maximization

Every observed roll of the dice
contributes to both “Red” and

“Blue”

21 Sep 2010

645123452214346216

11755/18797
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Expectation Maximization

Every observed roll of the dice

[

45123452214346216

contributes to both “Red” and

“Blue”

21 Sep 2010

—~—

/

6 (0.8) 6 (0.2)

11755/18797
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Expectation Maximization

6(45123452214346216

contributes to both “Red” and

Every observed roll of the dice S /
“Blue”

6(0.8), 4(0.33) |[6(0.2), 4 (0.67)
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Expectation Maximization

645123452214346216

N—

Every observed roll of the dice /

contributes to both “Red” and
“Blue”

6 (0.8),4 (0.33), |[6(0.2),4 (0.67),
5 (0.33), 5 (0.67),
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Expectation Maximization

645123452214346216

= Every observed roll of the dice
contributes to both “Red” and

HBIue”

21 Sep 2010

6 (0.8), 4 (0.33),

6 (0.8), 2 (0.14),
1(0.57), 6 (0.8)

5 (0.33), 1 (0.57),
2 (0.14), 3 (0.33),
4 (0.33), 5 (0.33),
2 (0.14), 2 (0.14),
1(0.57), 4 (0.33),
3(0.33), 4 (0.33),

6 (0.2), 4 (0.67),
5 (0.67), 1 (0.43),
2 (0.86), 3 (0.67),
4 (0.67), 5 (0.67),
2 (0.86), 2 (0.86),
1(0.43), 4 (0.67),
3 (0.67), 4 (0.67),
6 (0.2), 2 (0.86),
1(0.43), 6 (0.2)

11755/18797
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Expectation Maximization

Every observed roll of the dice
contributes to both “Red” and “Blue”

Total count for “Red” is the sum of
all the posterior probabilities in the
red column

o 7.31

Total count for “Blue” is the sum of
all the posterior probabilities in the
blue column

o 10.69

o Note: 10.69 + 7.31 = 18 = the total
number of instances

21 Sep 2010 11755/18797

Called | P(red|X) | P(blue|X)
6 .8 2

4 .33 .67

5 .33 .67

1 57 43

2 14 .86

3 .33 .67

4 .33 .67

5 .33 .67

2 14 .86

2 14 .86

1 57 43

4 .33 .67

3 .33 .67

4 .33 .67

6 .8 2

2 14 .86

1 57 43

6 .8 2

/.31 10.69 s




Expectation Maximization

Total count for “Red” : 7.31

Red:
o Total countfor 1; 1.71
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Called | P(red|X) | P(blue|X)
6 .8 2

4 .33 .67

5 .33 .67

1 57 43

2 14 .86

3 .33 .67

4 .33 .67

5 .33 .67

2 14 .86

2 14 .86

1 57 43

4 .33 .67

3 .33 .67

4 .33 .67

6 .8 2

2 14 .86

1 57 43

6 .8 2

/.31 10.69




Expectation Maximization

Called | P(red|X) | P(blue|X)
Total count for “Red” : 7.31 6 .8 2
o Total count for 1: 1.71 S .59 .67
_ 1 57 43
o Total count for 2: 0.56 5 14 36
3 .33 .67
4 .33 .67
5 .33 .67
2 14 .86
2 14 .86
1 57 43
4 .33 .67
3 .33 .67
4 .33 .67
6 .8 2
2 14 .86
1 57 43
6 .8 2
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Expectation Maximization

Called | P(red|X) | P(blue|X)
Total count for “Red” : 7.31 6 .8 2
o Total count for 1: 1.71 S .59 .67
_ 1 57 43
o Total count for 2: 0.56 5 14 36
o Total count for 3: 0.66 3 33 67
4 .33 .67
5 .33 .67
2 14 .86
2 14 .86
1 57 43
4 .33 .67
3 .33 .67
4 .33 .67
6 .8 2
2 14 .86
1 57 43
6 .8 2
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Expectation Maximization

Called | P(red|X) | P(blue|X)
Total count for “Red” : 7.31 6 .8 2
Red: 4 .33 .67
o Total count for 1: 1.71 2 S ol
_ 1 57 43
o Total count for 2: 0.56 5 14 36
o Total count for 3: 0.66 3 33 67
o Total count for 4: 1.32 4 .33 .67
5 .33 .67
2 14 .86
2 14 .86
1 57 43
4 .33 .67
3 .33 .67
4 .33 .67
6 .8 2
2 14 .86
1 57 43
6 .8 2
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Expectation Maximization

Called | P(red|X) | P(blue|X)
Total count for “Red” : 7.31 6 .8 2
o Total count for 1: 1.71 > .59 .67
_ 1 57 43
o Total count for 2: 0.56 5 14 36
o Total count for 3: 0.66 3 33 67
o Total count for 4: 1.32 4 .33 .67
o Total count for 5: 0.66 5 .33 .67
2 14 .86
2 14 .86
1 57 43
4 .33 .67
3 .33 .67
4 .33 .67
6 .8 2
2 14 .86
1 57 43
6 .8 2
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Expectation Maximization

Called | P(red|X) | P(blue|X)
Total count for “Red” : 7.31 6 .8 2
o Total countfor 1: 1.71 S .59 Ol
_ 1 57 43
o Total count for 2: 0.56 5 14 36
o Total count for 3: 0.66 3 33 67
o Total count for 4: 1.32 4 .33 .67
o Total count for 5: 0.66 5 .33 .67
o Total count for 6: 2.4 2 .14 .86
2 14 .86
1 57 43
4 .33 .67
3 .33 .67
4 .33 .67
6 .8 2
2 14 .86
1 57 43
6 .8 2
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Expectation Maximization

Total count for “Red” : 7.31 Called | P(red|X) | P(blue[X)
_ 6 8 2
Red: 4 33 67
o Total count for 1: 1.71 5 .33 .67
o Total count for 2: 0.56 1 57 43
o Total count for 3: 0.66 2 14 .86
o Total count for 4: 1.32 3 .33 .67
Total count for 5: 0.66 4 £ ol
- e 5 33 67
o Total count for6: 2.4 > 14 36
2 14 .86
Updated probability of Red dice: |1 =1 43
» P(1|Red) = 1.71/7.31 = 0.234 ;‘ gg 'g;
o P(2| Red) =0.56/7.31=0.077 A 33 67
o P(3|Red) = 0.66/7.31 = 0.090 5 3 >
2 P(4|Red) = 1.32/7.31 = 0.181 2 14 .86
2 P(5|Red) = 0.66/7.31 = 0.090 1 57 43
2 P(6 | Red) = 2.40/7.31 = 0.328 6 .8 .2
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Expectation Maximization

Total count for “Blue” : 10.69

Blue:
o Total count for 1; 1.29

21 Sep 2010 11755/18797

Called | P(red|X) | P(blue|X)
6 .8 2

4 .33 .67

5 .33 .67

1 57 43

2 14 .86

3 .33 .67

4 .33 .67

5 .33 .67

2 14 .86

2 14 .86

1 57 43

4 .33 .67

3 .33 .67

4 .33 .67

6 .8 2

2 14 .86

1 57 43

6 .8 2

/.31 10.69 «




Expectation Maximization

Called | P(red|X) | P(blue|X)
Total count for “Blue” : 10.69 6 .8 2
Blue: 4 .33 .67
o Total count for 1: 1.29 S .59 Ol
_ 1 57 43
o Total count for 2: 3.44 5 14 86
3 .33 .67
4 .33 .67
5 .33 .67
2 14 .86
2 14 .86
1 57 43
4 .33 .67
3 .33 .67
4 .33 .67
6 .8 2
2 14 .86
1 57 43
6 .8 2
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Expectation Maximization

Called | P(red|X) | P(blue|X)
Total count for “Blue” : 10.69 6 .8 2
Blue: 4 .33 .67
o Total count for 1: 1.29 S .59 Ol
_ 1 57 43
o Total count for 2: 3.44 5 14 36
o Total count for 3: 1.34 3 33 67
4 .33 .67
5 .33 .67
2 14 .86
2 14 .86
1 57 43
4 .33 .67
3 .33 .67
4 .33 .67
6 .8 2
2 14 .86
1 57 43
6 .8 2
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Expectation Maximization

Total count for “Blue” : 10.69

Blue:

o Total count for 1: 1.29
o Total count for 2: 3.44
o Total count for 3: 1.34
o Total count for 4: 2.68

21 Sep 2010

11755/18797

Called | P(red|X) | P(blue|X)
6 .8 2

4 .33 .67

5 .33 .67

1 57 43

2 14 .86

3 .33 .67

4 .33 .67

5 .33 .67

2 14 .86

2 14 .86

1 57 43

4 .33 .67

3 .33 .67

4 .33 .67

6 .8 2

2 14 .86

1 57 43

6 .8 2

/.31 10.69 ~




Expectation Maximization

Total count for “Blue” : 10.69

Blue:

o Total count for 1: 1.29
Total count for 2: 3.44
Total count for 3: 1.34
Total count for 4: 2.68
Total count for 5: 1.34

o 0O 0 O

21 Sep 2010

11755/18797

Called | P(red|X) | P(blue|X)
6 .8 2

4 .33 .67

5 .33 .67

1 57 43

2 14 .86

3 .33 .67

4 .33 .67

5 .33 .67

2 14 .86

2 14 .86

1 57 43

4 .33 .67

3 .33 .67

4 .33 .67

6 .8 2

2 14 .86

1 57 43

6 .8 2

/.31 10.69 s




Expectation Maximization

Called | P(red|X) | P(blue|X)
Total count for “Blue” : 10.69 6 .8 2
Blue: 4 .33 .67
o Total count for 1: 1.29 S .59 Ol
_ 1 57 43
o Total count for 2: 3.44 5 14 36
o Total count for 3: 1.34 3 33 67
o Total count for 4: 2.68 4 .33 .67
o Total count for 5: 1.34 5 .33 .67
o Total count for 6: 0.6 2 .14 .86
2 14 .86
1 57 43
4 .33 .67
3 .33 .67
4 .33 .67
6 .8 2
2 14 .86
1 57 43
6 .8 2
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Expectation Maximization

Total count for “Blue” : 10.69

Blue:

Total count for 1: 1.29
Total count for 2: 3.44
Total count for 3: 1.34
Total count for 4: 2.68
Total count for 5: 1.34
Total count for 6: 0.6

0O 0O 0 0O 0O O

Updated probability of Blue dice:
P(1 | Blue) = 1.29/11.69 = 0.122
P(2 | Blue) = 0.56/11.69 = 0.322
P(3 | Blue) = 0.66/11.69 = 0.125
P(4 | Blue) = 1.32/11.69 = 0.250
P(5 | Blue) = 0.66/11.69 = 0.125
P(6 | Blue) = 2.40/11.69 = 0.056

0O 0O 0 0O O O

21 Sep 2010 11755/18797

Called | P(red|X) | P(blue|X)
6 .8 2

4 .33 .67

5 .33 .67

1 57 43

2 14 .86

3 .33 .67

4 .33 .67

5 .33 .67

2 14 .86

2 14 .86

1 57 43

4 .33 .67

3 .33 .67

4 .33 .67

6 .8 2

2 14 .86

1 57 43

6 .8 2

/.31 10.69 s




Expectation Maximization

Total count for “Red” : 7.31 Called | P(red|X) | P(blue|X)
6 8 2
Total count for “Blue” : 10.69 4 .33 67
- _ 5 33 67
Total instances = 18 . = e
o Note 7.31+10.69 =18 2 14 .86
We also revise our estimate for the j gg :2;
probability that the caller calls out 5 33 67
Red or Blue g .121 .gg
o i.e the fraction of times that he 1 57 13
calls Red and the fraction of times 4 .33 67
he calls Blue 3 .33 .67
4 33 67
6 8 2
P(Z=Red) = 7.31/18 = 0.41 f 2‘7‘ jg
P(Z=Blue) = 10.69/18 = 0.59 6 8 2
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The updated values

Probability of Red dice:

P(1|Red) =1.71/7.31 = 0.234
P(2 | Red) = 0.56/7.31 = 0.077
P(3 | Red) = 0.66/7.31 = 0.090
P(4 | Red) = 1.32/7.31 = 0.181
P(5 | Red) = 0.66/7.31 = 0.090
P(6 | Red) = 2.40/7.31 = 0.328

Probability of Blue dice:

P(1 | Blue) = 1.29/11.69 = 0.122
P(2 | Blue) = 0.56/11.69 = 0.322
P(3 | Blue) = 0.66/11.69 = 0.125
P(4 | Blue) = 1.32/11.69 = 0.250
P(5 | Blue) = 0.66/11.69 = 0.125
P(6 | Blue) = 2.40/11.69 = 0.056

P(Z=Red) = 7.31/18 = 0.41
P(Z=Blue) = 10.69/18 = 0.59

O 0O 0 0O O O

O 0 0 0 0O O

Called | P(red|X) | P(blue|X)
6 .8 2
4 .33 .67
5 .33 .67
1 57 43
2 14 .86
3 .33 .67
4 .33 .67
5 .33 .67
2 14 .86
2 14 .86
1 57 43
4 .33 .67
3 .33 .67
4 .33 .67
6 .8 2
2 14 .86
1 57 43
6 .8 2

THE UPDATED VALUES CAN BE USED TO REPEAT THE
21 Sep 2010 PROCESS. ESTIMATION IS AN ITERATIVE PROCESS




The Dice Shooter Example

63154124 .. 44163212 ..

Initialize P(Z2), P(X | 2)

Estimate P(Z | X) for each Z, for each called out number
Associate X with each value of Z, with weight P(Z | X)

Re-estimate P(X | Z) for every value of X and Z

Re-estimate P(Z2)

If not converged, return to 2
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In Squiggles

Given a sequence of observations O, O,, ..
a0 Ny Is the number of observations of number X
Initialize P(Z), P(X|Z) for dice Z and numbers X

Iterate:

P(X |Z)P(Z
o For each number X;: P(Z | X)= ctziFe)

> PZ)P(X]2')
=

o Update:

2 P(Z]X) 2 NyP(Z]X)
P(X |Z):Osuchthat0::x NXP(Z | X) P(Z): X

> PZI0)  YN,PEIX) > Y NP(ZX)
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Solutions may not be unique

The EM algorithm will give us one of many solutions,
all equally valid!

o The probability of 6 being called out:
P(6) =aP(6]|red)+ SP(6|blue) = aP, + AR,

Assigns P, as the probability of 6 for the red die
Assigns P as the probability of 6 for the blue die

o The following too is a valid solution [FIX]
P(6) =1.0(aP; + AR, )+ 0.0anything

Assigns 1.0 as the a priori probability of the red die
Assigns 0.0 as the probability of the blue die

The solution is NOT unique
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A More Complex Model

P (k)

exp(-0.5(X — )" O, (X — 14,))

P(x)=ZP(|<)|\|(><;uk,®k)=Z¢(2 o
k k /A K

Gaussian mixtures are often good models for
the distribution of multivariate data

Problem: Estimating the parameters, given a
collection of data
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Gaussian Mixtures: Genegating model

6.114531.942224.905
P(X) =2 P(N(X; 1, 0,)
k

NN

The caller now has two Gaussians

o At each draw he randomly selects a Gaussian, by
the mixture weight distribution

o He then draws an observation from that Gaussian

a2 Much like the dice problem (only the outcomes are
now real numbers and can be anything)
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Estimating GMM with complete information

Observation: A collection of 6.11.4531.942224905 ...

numbers drawn from a mixture

of 2 Gaussians

o As indicated by the colors, we
know which Gaussian
generated what number

6.1 5342 49. (1419 22 05..

Segregation: Separate the blue
observations from the red

From each set compute
parameters for that Gaussian :

1 1 .
Hreqg = le ®red = N Z(XI ~ Hred )(XI ~ Hred )T

Nred iered red iered

P(red) = N oo
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Fragmenting the observation

Gaussian unknown

€
/\

2 4.2

(@2 |42 |

Collection of “blue” Collection of “red”
numbers numbers

The identity of the Gaussian is not known!
Solution: Fragment the observation
Fragment size proportional to a posteriori
probability P(X|K)P(K) _ PRIN(X:z,0,)
P(k|X) = . == .
ZP(k)P(Xlk) ZP(k)N(X;ﬂk-@k-)
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Expectation Maximization

Initialize P(k), w, and ®, for both

Gaussians

o Important how we do this

o Typical solution: Initialize means
randomly, ®, as the global covariance
of the data and P(k) uniformly

Compute fragment sizes for each

Gaussian, for each observation

Number | P(red|X) | P(blue|X)
6.1 .81 19
1.4 .33 .67
5.3 75 .25
1.9 41 .59
4.2 .64 .36
2.2 43 57
4.9 .66 .34
0.5 .05 .95

P(KIN(X: 14, 0,)

P(k|X)

21 Sep 2010 11755/18797
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Expectation Maximization

Each observation contributes
only as much as its fragment
Ssize to each statistic

Mean(red) =

(6.1*0.81 + 1.4*0.33 + 5.3*0.75 +
1.9*0.41 + 4.2*0.64 + 2.2*0.43 +
4.9*0.66 + 0.5*0.05) /

(0.81 +0.33+0.75+0.41 +0.64 +
0.43 + 0.66 + 0.05)
=17.05/4.08=4.18

Number | P(red|X) | P(blue|X)

6.1 .81 19

1.4 .33 .67

5.3 75 .25

1.9 41 .59

4.2 .64 .36

2.2 43 57

4.9 .66 .34

0.5 .05 .95
408 3.92

Var(red) = ((6.1-4.18)2*0.81 + (1.4-4.18)2*0.33 +
(5.3-4.18)2*0.75 + (1.9-4.18)2*0.41 +
(4.2-4.18)2%0.64 + (2.2-4.18)2*0.43 +
(4.9-4.18)2*0.66 + (0.5-4.18)2*0.05 ) /

(0.81 + 0.33 + 0.75 + 0.41 + 0.64 + 0.43 + 0.66 + 0.05)

p(red) = 228
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EM for Gaussian Mixtures

nitialize P(k), w, and ®, for all Gaussians

—or each observation X compute a posteriori
orobabillities for all Gaussian

PION(X; 44,,0,)
> PRIN(X: 4,0,)

P(k|X)=

Update mixture weights, means and variances
for all Gaussians

Zp(kp() ZP(HX) X ZP(k X) (X = £4)°
P(k) = ~*— HTTSTRKX) O = 3 P(k|X)

If not converged, return to 2
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EM estimation of Gaussian Mixtures

An Example

1 T T T T
100
80 s
6o 1 o
o
40 o
20 g i
A
ol= oss
-4 3 2 ] [ 1 Pl 3 4

Histogram of 4000 Individual parameters Two-Gaussian mixture
instances of a randomly of a two-Gaussian estimated by EM
generated data mixture estimated by EM
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Expectation Maximization

The same principle can be extended to mixtures of other
distributions.

E.g. Mixture of Laplacians: Laplacian parameters become

1
ﬂﬁzp(k'X);P(kIX)X b, = ZP(kI )Z (K1X) [ X =24 |

In a mixture of Gaussians and Laplacians, Gaussians use the
Gaussian update rules, Laplacians use the Laplacian rule
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Expectation Maximization

The EM algorithm is used whenever proper statistical
analysis of a phenomenon requires the knowledge of a
hidden or missing variable (or a set of hidden/missing
variables)

o The hidden variable is often called a “latent” variable

Some examples:

o Estimating mixtures of distributions

Only data are observed. The individual distributions and mixing
proportions must both be learnt.

o Estimating the distribution of data, when some attributes are
missing

o Estimating the dynamics of a system, based only on observations
that may be a complex function of system state
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Solve this problem:

Caller rolls a dice and flips a coin

He calls out the number rolled if the coin
shows head

Otherwise he calls the number+1

Determine p(heads) and p(number) for the
dice from a collection of ouputs

Caller rolls two dice
He calls out the sum
Determine P(dice) from a collection of ouputs
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The dice and the coin

Heads or tail?

“Tall n
“Heads” count ails” count

/‘5 A

Unknown: Whether it was head or tails
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The two dice
(@)

31 1,3

2,2

Unknown: How to partition the number
Count, .(3) +=P(3,1 | 4)
Count, .(2) +=P(2,2 | 4)
Count, (1) +=P(1,3 | 4)
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Fragmentation can be hierarchical

P(X)=> P(k)> P(Z|k)P(X|Z,k) D
K, | > K,

E.g. mixture of mixtures

Fragments are further fragmented..
o Work this out
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More later

Wil see a couple of other instances of the
use of EM

Work out HMM training

o Assume state output distributions are multinomials
o Assume they are Gaussian
0 Assume Gaussian mixtures
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