REHEARSAL AUDIO STREAM SEGMENTATION
AND CLUSTERING

Dawen Liang Guangyu Xia Mark Harvilla
dawenl @ndr ew. cnu. edu gxi a@s. cnu. edu mharvi | | @s. cnu. edu

Abstract

Rehearsal recordings are valuable for music ensemblespmima their perfor-
mance. However, since rehearsal recordings are typicallyshong and contain
disordered, disrupted, and unclassified musical contexeghwith different sec-
tions of different music pieces, conductor’s talk, all kinof noise between re-
hearsal intervals and so on), they’re hard to use directly.eikample, recordings
for a particular song are not easily found. This paper prssarvariety of ap-
proaches to extract all the musical segments from the digaedrrehearsal audio
stream and then cluster the segments belonging to the saue @i music to-
gether. The procedures discussed herein have the potertialpplied in a large
scale music database to accomplish the music informattaeval (MIR) tasks.

1 Introduction

The rehearsal audio stream segmentation and clusterikgaasbe divided into two subproblems.
The first one is to extract the musical sections from the nedaéaudio stream. That is, an algorithm
that automatically and effectively discriminates betwearsical and non-musical segments of au-
dio must be employed. The second step is to cluster the @ifferegments belonging to the same
music piece together. Multiple complementary approacbdsmth subproblems were considered.
For example, we show that the first subproblem is solvableppyying principal component anal-
ysis (PCA) to music, leading to the basic but novel concemigénmusic Similarly, we obtained
successful discrimination results using support vectartime (SVM). For the second task, the fea-
ture used to represent the music segments is critical. Foedtlly, grouping together segments of
music belonging to the same song is a clustering problemyeitvith a perceptual basis. Finally,
given a useful representation of the audio stream’s mus&ginents, the actual clustering task is
achievable using any number of typical clustering techesqsuch as correlation or k-means, with
varying rates of success.

2 Discrimination of Music and Noise

In this system, discrimination of music and noise is framea@ &inary decision problem: A given
segment of audio is either music, or it is not. We contenddhagh quality binary classifier should
be able to capture as music those clips that a human judgehatsd likely regard as music, despite
a reasonable presence of noise.

2.1 Eigenmusicin thetime-domain

The concept okigenmusids derived from the well-known representation of imageseimis of
eigerfaces The process of generating eigenmusic can be performethierée time- or frequency-
domains, and in either case, simply refers to the resulteatiplication of PCA to audio data. The
PCA results in a set of uncorrelated principal componenishwére able to well-represent data sim-
ilar to that from which they were derived. The functionalifyPCA is rooted in the symmetry of the



covariance matrix of a set of random variables. FormaltyXe= [X1, X5, ..., X,,]7 be a random
vector with covariance matrik'x . It can be shown that iP is the matrix of eigenvectors 6fx in its
columns andy’ = PTX, thenY is an uncorrelated random vector. That is, the covariantexud

Y is diagonal. The vectdY contains the principal components of the elemeniX ¢f]. Assuming

n dimensional observation vectors amdotal observations, the covariance matrix can be estimated
as in [2]. From a conceptual standpoint, PCA tries to redbeedimensionality of a data set rep-
resentation by expressing the data in terms ofkthergest eigenvectors (that is, theeigenvectors
associated with thé largest eigenvalues of the data’s empirical covarianceix)atEigenmusic
refers to the eigenvectors of an empirical covariance massociated with an array of music data.
If it's performed in the time-domain, the array of music dhterally contains segments of audio
from sequential time intervals. In the frequency domaie,diray of music data is structured as a
spectrogram and hence contains the spectral informatitreaiudio in those time intervals. When
expressing noise data in terms of eigenmusic, the resudniemglly expected to be outlying based on
the fundamentally different characteristics of music aoid@; this fact is exploited in classification.

2.2 Eigenmusic in the frequency-domain

PCA is applied to the audio’s magnitude spectrum after theTSTFirst, all the audio is resampled
to 16kHz. An FFT window size of 4000 samples (0.25 secondh wi overlap is used. Every
frame of the magnitude spectrum is normalized to minimizkiwe differences between music
and non-music. Finally, features are averaged every 5 wind@.25 seconds) since the musical
characteristic are better reflected within a longer perioiihoe and empirically it has been shown
that 1.25 seconds is a good choice. Similar to X1would be the matrix in which each column
represents the average magnitude at different frequendtle 1.25 seconds. PCA is performed
to reduce the dimensions of by representing it in terms of eigenvectors. The topigenvectors
(k = 10) are used as bases to represent the audio stream. Each frantBamstream (1.25 seconds)
is represented as a liner combination of these 10 eigenrhases, as iPY = X. The features in

Y are the weights of the linear combination.

2.3 ADABoost

ADABoost is adopted as the classifier learning algorithm [3]

During training, more than 40 hours of Western music retedansdio is used as matriX to com-
pute the eigenmusi®. Then matrixY, used as training data for ADABoost, is computed as dis-
cussed in 2.2. 100 weak learners are trained to build thagtlassifier.

An approximately 5 hours audio stream of labeled music (Métistern and Chinese) and noise is
used for testing. From the result, we found that 100 weakkaroverfit the data. After trying out
different numbers of weak learners, we finally chose 30 weaknlers to build the strong classifier
for evaluation. The test results will be discussed in 2.5

Since the classifier may make mistakes and we know that thie atréam will not change from
music to noise (and vice-versa) so abruptly and frequeatlgimple sliding window method is
adopted to smooth the results for post-processing. Here ale resome reasonable assumptions:
there will not be any music segments less than 30 secondy owése segments less than 5 seconds
(Even if such segments exist, they are nearly meaninglesaifesystem):

1. Cut the segments longer than 5 seconds, in which each isaotessified as noise by the
strong classifier;

2. Retain the segments longer than 30 seconds, in which 75%tedifames are classified
as music; at the same time, any music segments which arehssltminute should be
classified as at least 90% music. Otherwise discard it.

3. Any segments between 2 music segments with the lengthnedst 5 seconds will also be
classified as music.



2.4 Support Vector Machineusing Mar syas

Marsyas [4] is an open source software framework for audicg@ssing with specific emphasis on
Music Information Retrieval applications. Our main purpas to compare the results using the
most commonly used features and classifier with the resudtget from eigenmusic. Here we use
the Marsyas commanukext r act to extract the typical timbral features to distinguish neufsbm
non-music. After normalizing the sampling frequency to0BkHz, the features are extracted using
512-sample analysis windows with no overlap. Then, featare averaged within roughly one
second. The classifier we choose here is SVM with SequeniighMl Optimization (SMO) [5]
algorithm implemented by Weka [6]. The results will be dissed in 2.5.

25 Experimental Results

Experimental results obtained using ADABoost in combmatvith eigenmusic in the time-domain

were subpar. The overall classification error rate was detexd to be 31.26% with the system
trained on a subset of labelled rehearsal audio contairotiy tmusic and noise. The error rate for
music was 33.64% and the error rate for noise was 9.8%. THisdtes a higher false negative rate
and generally poor performance. In contrast, normalizgdrenusic in the frequency-domain was
found to be the most effective method of discriminating st music and noise, with around 6%
classification error on both music and noise versus 2.7%ifilzetion error on music and 41.3%
classification error on noise using SVM. Relatively, thef@enance of eigenmusic classification in
the time-domain is poor and emphasizes that the time-doregiresentation of audio is not con-
ducive to the identification of the distinguishing charaistécs of music and noise. As intuition

would suggest, eigenmusic in the frequency-domain prevadenuch more robust ability to dis-

criminate between the classes.

3 Clustering of Musical Segments

Assuming perfect classification results from the previdap,she clustering task is a distinct prob-
lem. Note that any classification errors initially made witlintentionally degrade the performance
of the clustering algorithm employed here. This undersstite importance of highly accurate clas-
sification results, and on a broader scale, instantiatedg¢hendence of each system component on
the others.

3.1 FeatureRepresentation

As noted in the introduction, the preeminent qualifyingrattéeristic of the feature chosen to rep-
resent the musical segments should be the measure of ity &bitapture visceral qualities of the
input data. As evidenced by the use of frequency-domaincamies employed in Section 2.2,
heeding these perceptual attributes can be expected toiresarked performance improvements.
The features considered for this task are chosen with treede iin mind, and attempt to strike a
compromise between efficiency and effectiveness.

3.1.1 Audio Fingerprinting

Theaudio fingerprintis an audio feature extraction method proposed by [7] areshahed to be used
for such things as searching an audio database for a cefeagivien only a possibly distorted and
partial example. Distortion might include things like bgottund noise, nonlinear rate differences,
and mismatched file formats. The audio fingerprint is a pbsgileal feature to set the stage for
successfully clustering the musical portions of the authieasn. The audio fingerprint was imple-
mented as described below and is availablaw@adi o_f i nger pri nt . m this script also relies on
a few other related routines that were all included in th@regubmission.

3.1.2 TheFingerprint Extraction Algorithm

As more thoroughly outlined in [7], the algorithm consistdiee primary steps. The first of these
steps is signal decimation followed by division of the indngaudio stream into segments. A 32-bit
binary sub-fingerprints derived for each. The signal is decimated to a samplirguacy around



Bark frequency banks with DFT overlay Energy in each filter bank
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Figure 1: 1(a): The 33 non-overlapping bandpass filtersejbncapsulating an example DFT

(black) for processing. The energy under each specific filkessband is cumulated as the output
of that band. 1(b): The cumulated energy in the signal witdnh filter bank passband with refer-

ence to 1(a). The time and frequency variations in theseggnealues are used to characterize the
audio data. 1(c): Comparison of bit error rate (BER) for audigerprints of the same music data

encoded in different formats.

5kHz, for reasons explained later. The sequence contaiméniginimum number of sub-fingerprints
such that the data is identifiable by it is a so-cafiederprint block Based on the strategy of [7],
256 subsequent sub-fingerprints equal a fingerprint blockekch segment of music tagged by the
classifier in the first step, only these fingerprint blockschieebe retained. The frames have a fixed
length of 0.37 seconds and overlap one another by a fac@'. of

The discrete Fourier transform is applied to each framdtiegun a spectrogram of approximately
3.4 seconds in duration. The phase is discarded. A filter athen applied to the spectrogram.
The philosophy of the use of the filter bank is to replicatevlas in which audio is perceived by
humans, based on the tonotopic functionality of the basilambrane, which can be modeled as
an array of overlapping band-pass filters [8]. Motivation tite choice of the filters’ bandwidths
is based on experimental results such as [9] which suggatstitl perceptual relation of pitches to
one another is approximately logarithmic. In our implenagion of this algorithm, the applied filter
bank consists of 33 non-overlapping bandpass filters, ebwhase passbands are constarnamk
frequency[10]. Haitsma and Kalker suggest that the “most relevanttspkrange for the human
auditory system” is 300Hz to 2kHz—this is the range proatésethe bark filter bank. Within this
relevant frequency range, the formula used for conversam frequencyf in Hertz to f;, in bark is

fo= f&giff —0.53 based on [11]. An example of such a filter bank and its cornesipg output are

shown in Figure 1. Haitsma and Kalker indicate that the siggnergy differences across time and
frequency is a robust property that is very useful for sigsharacterization. In accordance with their
scheme, 32-bit sub-fingerprints are extracted from the &8 filank outputs for each time frame of
the signal within an arbitrarily positioned interval of apgimately 3.4 seconds (our implementation
uses the first 3.4 seconds of the input clip). SuppoBe m] is them!” bit of then!” time frame
of the input,E[n, m] is the cumulated energy in the'” filter bank of then" time frame, is the
number of time frames in the signal, add= E[n, m]|—E[n, m+1]—(E[n—1,m]—E[n—1, m+1]),
then

1 ifA>0
F[n,m]—{ 0 ifA<0 m=20,1,...,32;n=0,1,2,.... N (1)

In the above,E[—1,m]| is taken to be zero. One can considérto be the change in energy-
differences-with-respect-to-frequency over time. As gangple of the functionality of our imple-
mentation, Figure 1(c) compares two audio fingerprints efséime audio snippet and displays their
bit errors. This image is visually comparable to Figure 2@fhich reinforces the veracity of our
realization.

3.1.3 ChromaFeature

Chroma features have been widely used as a robust harmaiicden all kinds of MIR tasks. On
a piano keyboard, there are 12 chromatic notes in one oc@v€#, D ...A#, B, often refered
as pitch class). The chroma-based approach proposed bscBahd Wakefield [12] represents
the spectral energy contained in each of these 12 pitchedasuch features strongly correlate to
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Figure 2: The traditional chromagram 2(a) and CENS feat?e)s

the harmonic progression of the audio. As suggested byavi{li3], the chroma feature can be
improved to reduce the effect of timbral factors by discagdhe lower MFCCs which are generally
considered closely related to timbre.

Considering the objective that our system should be rolousbine external factors, like audience
applauding, we don’t want our feature too sensitive to thegeor variations. Therefore, in ad-
dition to calculating the 12-demensional chroma featurd w&ismall window (200 ms with 50%
overlap), we perform a second windowing which is larger énse choose a window of 41 con-
secutive chroma vectors) and normalize the vectors thrdogimsampling by factor of 10 to repre-
sent the statistics during a relatively long period of timmu@hly one second), described@ENS
features(ChromaEnergy distributionNormalizedStatistics) [14], which are elements of the set

F = {0 = (v1,v2,...,012)|v; > 0, Zzl v? = 1}. The length of the second window and the
downsampling factor can be changed in order to take the bietrpo variations into consideration.

This will be discussed later in 3.2.2. In summary, this pthoe has two advantages: First, it could
diminish the effect of short-time variance that we expegjimbe problematic; second, it signifi-

cantly reduces the size of data and therefore increasepdlee ®f our system for clustering. Figure
2 shows both the traditional chromagram and the correspgr@ENS features. We can see clearly
that compared with the chromagram, CENS has a larger blogitrearefore better contrast. CENS

is used later as features for correlation in 3.2.2.

3.2 Grouping Similar Songs

To generate the overall output of the system, accurateszlngtof the musical segments is required.
This step should yieldV groups ofk; audio clips, whereV is the number of songs present in
the decoded stream arkgl is the number of clips belonging to th& song, fori = 1,2,...,N.

In general k; is immaterial and hinges on the total length of each indigldiong, as well as the
segment sizeS.

3.21 K-means

Given an adequate representation of the musical segmethis afidio stream, it is reasonable to ex-
pect a useful result from a basic clustering algorithm kkaeang[15, 16]) to group together those
clips belonging to the same song. The k-means algorithnirsipally applicable as a component of
a vector quantization (VQ) process. The k-means algoritambe used to design the codebook for
VQ by partitioning a set of training data infd cells and associating a quantized vector (codeword)
with each cell [17]. K-means partitions a data set such treatdllowing two optimality criterion are
satisfied:q(x) = z; iff i = argmin; d(x,z;) andD; = Pr(x € C;)E[d(x,2;)|x € C;] whereg(.)

is the quantization function is an input vectorg; is the codeword representing tifé partition

of the vector spacei(x, z;) is the distance measure between the input and the codewtind &t
partition, andD; is the total average distance (or distortion) in tHepartition. Applying k-means
to the features outputted from the previous system bloclsimale iterative procedure that follows
the generic steps given in [18]. We use the Hamming as thartistfunctiond(x, z;) which is
applicable to thdinary audio fingerprint.



3.2.2 Audio Matching and Clustering by Correlation

Given CENS features, audio matching can be achieved by giemirelating the querw)

(@, 42,...,vM) with the sliding subsequences of musical segménts= (!, a2, ..., 4") in
database](f > M), defined asD®) = (i@, @+, ... @t M-1) i € [1,N — M + 1]. The dis-
tance between the query and the sliding subsequené¥?) can be computed bgist(Q, D)) =

1— LS (@%@ *-1). All these distances from= 1,..., N — M + 1 together can be consid-
ered as a distance functidx between queryy) and the musical segments in datab&saNe could
find the minima of this distance functiak as our best matches. Unlike the traditional song retrieval
system which has a large database in advance, our systeno laformation about the rehearsal
audio stream beforehand. In order to solve this problem ryitconstruct the database from the

rehearsal audio dynamically. The input is all the music sagsobtained from Section 2:

1. Sort all the music segments according to their lengthttrarm into a priority queue.

2. As long as the priority queue is not empty, extract the émbtgegmens$ from the priority
queue.

(a) If the databas® is empty, putS into D as a cluster;
(b) Otherwise match segmefitwith every segmenb; in D by measuring the distance
function A.
i. If there exists aD,,, which contains segmet, clusterS with D,,,, and go back to
step 2;
ii. Otherwise makes a new segment (cluster) in databdse

Here we made an assumption: the longest segment is the kelgtthh be a whole piece or at least
the longest segment for this piece. So it is reasonable forigpresent a new cluster. On the other
hand, using a priority queue will guarantee that the segifiénto longer than any of the segments
in databasd), which means it can either be part of an existing piece in titalthse (and we will
cluster it with the segment it belongs to in 2(b)i) or it's gseent for a new piece which doesn’t
exist in the database (and we will make it a new cluster ini(b)

We also need to consider the tempo changes since the perfocare never hold the tempo abso-
lutely constant during a rehearsal. For this problem, weatstain different versions (for example,
from 20% slower to 20% faster) of CENS features for the sangensat to represent the possi-
ble tempo variations. This can be achieved by adjustingehgth of the second window and the
downsampling factor in 3.1.3. More results will be discubse3.3 about the experiments.

3.3 Experimental Results

Preliminary tests using k-means were not satisfactory ghdoa motivate application to a large test
set. While intuitively pleasing, these preliminary test®w that Haitsma and Kalker’s fingerprint
does not yield a uniform representation of music with resfeewhich portion of the same overall
audio is analyzed. Initially, using three arbitrary sorgjs,non-overlapping 10 second segments of
each song were read, resulting in 18 different 10 second.dipch 10 second clip was transformed
to a fingerprint block, and then k-means was used to clustefitiyerprints. The result of the
clustering was confusing at best. With= 3, the fingerprints belonging to the first song were
placed in the following clusterd:3, 2, 3, 2, 1, 3}. Similarly undesirable results were obtained for the
other two songs. In all cases, there was at least one clipafr song in any one of the categories.
Ultimately, it was determined that, for the particular ssihging analyzed, the intervals over which
the fingerprints are extracted cannot be offset by more tpanoaimately 150 milliseconds from
one another if they are expected to be grouped together ksingans. The implication of this is
that the fingerprint feature is unacceptably sensitive #otitme interval over which it is extracted.
Ironically, the reputed robustness to this exact situasame of the primary reasons the feature was
so ambitiously exploited in the beginning of the work.

For audio matching by correlation, the results are satisfsc We tested our approach in two dif-
ferent ways: First, we try to match a clip which is the subdetree song in the database. From
Figure 3(a) we could see that there is a notch at the best mgtpbsition round 330s. Secondly,
we try to match a clip which is 10% faster than its correspogdiluster in the database by using
different tempo versions of the feature. We could see gldanin Figure 3(b) that only the 10%
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Figure 3: Results for audio matching by correlation

slower version (the closest with the cluster in the databhae the most obvious notch, showing
that using CENS for clustering can lead to really good result

4 Summary & Conclusion

Based on experimental results, eigenmusic proves to beustrédature for distinguishing music
and noise; chroma features are a strong fit for matching atlitis efficiently. Results associated
with k-means clustering of audio fingerprints were subpanalfsis suggests that the fingerprint
representation is sensitive to time shifts and therefor@rgractical basis for grouping together
different segments of similar songs. Generally, the pttojexs successful, highly instructive, and
will serve as a pertinent foundation for related work in theife.
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