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Abstract

Rehearsal recordings are valuable for music ensembles to improve their perfor-
mance. However, since rehearsal recordings are typically hours long and contain
disordered, disrupted, and unclassified musical content (mixed with different sec-
tions of different music pieces, conductor’s talk, all kinds of noise between re-
hearsal intervals and so on), they’re hard to use directly. For example, recordings
for a particular song are not easily found. This paper presents a variety of ap-
proaches to extract all the musical segments from the disarrayed rehearsal audio
stream and then cluster the segments belonging to the same piece of music to-
gether. The procedures discussed herein have the potentialto be applied in a large
scale music database to accomplish the music information retrieval (MIR) tasks.

1 Introduction

The rehearsal audio stream segmentation and clustering task can be divided into two subproblems.
The first one is to extract the musical sections from the rehearsal audio stream. That is, an algorithm
that automatically and effectively discriminates betweenmusical and non-musical segments of au-
dio must be employed. The second step is to cluster the different segments belonging to the same
music piece together. Multiple complementary approaches to both subproblems were considered.
For example, we show that the first subproblem is solvable by applying principal component anal-
ysis (PCA) to music, leading to the basic but novel concept ofeigenmusic. Similarly, we obtained
successful discrimination results using support vector machine (SVM). For the second task, the fea-
ture used to represent the music segments is critical. Fundamentally, grouping together segments of
music belonging to the same song is a clustering problem, butone with a perceptual basis. Finally,
given a useful representation of the audio stream’s musicalsegments, the actual clustering task is
achievable using any number of typical clustering techniques, such as correlation or k-means, with
varying rates of success.

2 Discrimination of Music and Noise

In this system, discrimination of music and noise is framed as a binary decision problem: A given
segment of audio is either music, or it is not. We contend thata high quality binary classifier should
be able to capture as music those clips that a human judge would also likely regard as music, despite
a reasonable presence of noise.

2.1 Eigenmusic in the time-domain

The concept ofeigenmusicis derived from the well-known representation of images in terms of
eigenfaces. The process of generating eigenmusic can be performed in either the time- or frequency-
domains, and in either case, simply refers to the result of the application of PCA to audio data. The
PCA results in a set of uncorrelated principal components which are able to well-represent data sim-
ilar to that from which they were derived. The functionalityof PCA is rooted in the symmetry of the
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covariance matrix of a set of random variables. Formally, let X = [X1, X2, ..., Xn]
T be a random

vector with covariance matrixCX. It can be shown that ifP is the matrix of eigenvectors ofCX in its
columns andY = PT

X, thenY is an uncorrelated random vector. That is, the covariance matrix of
Y is diagonal. The vectorY contains the principal components of the elements ofX [1]. Assuming
n dimensional observation vectors andm total observations, the covariance matrix can be estimated
as in [2]. From a conceptual standpoint, PCA tries to reduce the dimensionality of a data set rep-
resentation by expressing the data in terms of thek largest eigenvectors (that is, thek eigenvectors
associated with thek largest eigenvalues of the data’s empirical covariance matrix). Eigenmusic
refers to the eigenvectors of an empirical covariance matrix associated with an array of music data.
If it’s performed in the time-domain, the array of music dataliterally contains segments of audio
from sequential time intervals. In the frequency domain, the array of music data is structured as a
spectrogram and hence contains the spectral information ofthe audio in those time intervals. When
expressing noise data in terms of eigenmusic, the result is generally expected to be outlying based on
the fundamentally different characteristics of music and noise; this fact is exploited in classification.

2.2 Eigenmusic in the frequency-domain

PCA is applied to the audio’s magnitude spectrum after the STFT. First, all the audio is resampled
to 16kHz. An FFT window size of 4000 samples (0.25 second) with no overlap is used. Every
frame of the magnitude spectrum is normalized to minimize volume differences between music
and non-music. Finally, features are averaged every 5 windows (1.25 seconds) since the musical
characteristic are better reflected within a longer period of time and empirically it has been shown
that 1.25 seconds is a good choice. Similar to 2.1,X would be the matrix in which each column
represents the average magnitude at different frequencieswithin 1.25 seconds. PCA is performed
to reduce the dimensions ofX by representing it in terms of eigenvectors. The topk eigenvectors
(k = 10) are used as bases to represent the audio stream. Each frame of audio stream (1.25 seconds)
is represented as a liner combination of these 10 eigenmusicbases, as inPY = X. The features in
Ŷ are the weights of the linear combination.

2.3 ADABoost

ADABoost is adopted as the classifier learning algorithm [3].

During training, more than 40 hours of Western music rehearsal audio is used as matrixX to com-
pute the eigenmusicP . Then matrixY, used as training data for ADABoost, is computed as dis-
cussed in 2.2. 100 weak learners are trained to build the strong classifier.

An approximately 5 hours audio stream of labeled music (bothWestern and Chinese) and noise is
used for testing. From the result, we found that 100 weak learners overfit the data. After trying out
different numbers of weak learners, we finally chose 30 weak learners to build the strong classifier
for evaluation. The test results will be discussed in 2.5

Since the classifier may make mistakes and we know that the audio stream will not change from
music to noise (and vice-versa) so abruptly and frequently,a simple sliding window method is
adopted to smooth the results for post-processing. Here we make some reasonable assumptions:
there will not be any music segments less than 30 seconds or any noise segments less than 5 seconds
(Even if such segments exist, they are nearly meaningless for our system):

1. Cut the segments longer than 5 seconds, in which each frameis classified as noise by the
strong classifier;

2. Retain the segments longer than 30 seconds, in which 75% ofthe frames are classified
as music; at the same time, any music segments which are less than 1 minute should be
classified as at least 90% music. Otherwise discard it.

3. Any segments between 2 music segments with the length of atmost 5 seconds will also be
classified as music.
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2.4 Support Vector Machine using Marsyas

Marsyas [4] is an open source software framework for audio processing with specific emphasis on
Music Information Retrieval applications. Our main purpose is to compare the results using the
most commonly used features and classifier with the results we get from eigenmusic. Here we use
the Marsyas commandbextract to extract the typical timbral features to distinguish music from
non-music. After normalizing the sampling frequency to 22.05kHz, the features are extracted using
512-sample analysis windows with no overlap. Then, features are averaged within roughly one
second. The classifier we choose here is SVM with Sequential Minimal Optimization (SMO) [5]
algorithm implemented by Weka [6]. The results will be discussed in 2.5.

2.5 Experimental Results

Experimental results obtained using ADABoost in combination with eigenmusic in the time-domain
were subpar. The overall classification error rate was determined to be 31.26% with the system
trained on a subset of labelled rehearsal audio containing both music and noise. The error rate for
music was 33.64% and the error rate for noise was 9.8%. This indicates a higher false negative rate
and generally poor performance. In contrast, normalized eigenmusic in the frequency-domain was
found to be the most effective method of discriminating between music and noise, with around 6%
classification error on both music and noise versus 2.7% classification error on music and 41.3%
classification error on noise using SVM. Relatively, the performance of eigenmusic classification in
the time-domain is poor and emphasizes that the time-domainrepresentation of audio is not con-
ducive to the identification of the distinguishing characteristics of music and noise. As intuition
would suggest, eigenmusic in the frequency-domain provides a much more robust ability to dis-
criminate between the classes.

3 Clustering of Musical Segments

Assuming perfect classification results from the previous step, the clustering task is a distinct prob-
lem. Note that any classification errors initially made willunintentionally degrade the performance
of the clustering algorithm employed here. This underscores the importance of highly accurate clas-
sification results, and on a broader scale, instantiates thedependence of each system component on
the others.

3.1 Feature Representation

As noted in the introduction, the preeminent qualifying characteristic of the feature chosen to rep-
resent the musical segments should be the measure of its ability to capture visceral qualities of the
input data. As evidenced by the use of frequency-domain approaches employed in Section 2.2,
heeding these perceptual attributes can be expected to result in marked performance improvements.
The features considered for this task are chosen with these facts in mind, and attempt to strike a
compromise between efficiency and effectiveness.

3.1.1 Audio Fingerprinting

Theaudio fingerprintis an audio feature extraction method proposed by [7] and intended to be used
for such things as searching an audio database for a certain file given only a possibly distorted and
partial example. Distortion might include things like background noise, nonlinear rate differences,
and mismatched file formats. The audio fingerprint is a possibly ideal feature to set the stage for
successfully clustering the musical portions of the audio stream. The audio fingerprint was imple-
mented as described below and is available asaudio fingerprint.m; this script also relies on
a few other related routines that were all included in the report submission.

3.1.2 The Fingerprint Extraction Algorithm

As more thoroughly outlined in [7], the algorithm consists of five primary steps. The first of these
steps is signal decimation followed by division of the incoming audio stream into segments. A 32-bit
binarysub-fingerprintis derived for each. The signal is decimated to a sampling frequency around
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Figure 1: 1(a): The 33 non-overlapping bandpass filters (blue) encapsulating an example DFT
(black) for processing. The energy under each specific filterpassband is cumulated as the output
of that band. 1(b): The cumulated energy in the signal withineach filter bank passband with refer-
ence to 1(a). The time and frequency variations in these energy values are used to characterize the
audio data. 1(c): Comparison of bit error rate (BER) for audio fingerprints of the same music data
encoded in different formats.

5kHz, for reasons explained later. The sequence containingthe minimum number of sub-fingerprints
such that the data is identifiable by it is a so-calledfingerprint block. Based on the strategy of [7],
256 subsequent sub-fingerprints equal a fingerprint block. For each segment of music tagged by the
classifier in the first step, only these fingerprint blocks need to be retained. The frames have a fixed
length of 0.37 seconds and overlap one another by a factor of31

32 .

The discrete Fourier transform is applied to each frame resulting in a spectrogram of approximately
3.4 seconds in duration. The phase is discarded. A filter bankis then applied to the spectrogram.
The philosophy of the use of the filter bank is to replicate theway in which audio is perceived by
humans, based on the tonotopic functionality of the basilarmembrane, which can be modeled as
an array of overlapping band-pass filters [8]. Motivation for the choice of the filters’ bandwidths
is based on experimental results such as [9] which suggest that the perceptual relation of pitches to
one another is approximately logarithmic. In our implementation of this algorithm, the applied filter
bank consists of 33 non-overlapping bandpass filters, each of whose passbands are constant inbark
frequency[10]. Haitsma and Kalker suggest that the “most relevant spectral range for the human
auditory system” is 300Hz to 2kHz–this is the range processed by the bark filter bank. Within this
relevant frequency range, the formula used for conversion from frequencyf in Hertz tofb in bark is
fb =

26.81f
1960+f

−0.53 based on [11]. An example of such a filter bank and its corresponding output are
shown in Figure 1. Haitsma and Kalker indicate that the sign of energy differences across time and
frequency is a robust property that is very useful for signalcharacterization. In accordance with their
scheme, 32-bit sub-fingerprints are extracted from the 33 filter bank outputs for each time frame of
the signal within an arbitrarily positioned interval of approximately 3.4 seconds (our implementation
uses the first 3.4 seconds of the input clip). SupposeF [n,m] is themth bit of thenth time frame
of the input,E[n,m] is the cumulated energy in themth filter bank of thenth time frame,N is the
number of time frames in the signal, andA = E[n,m]−E[n,m+1]−(E[n−1,m]−E[n−1,m+1]),
then

F [n,m] =

{

1 if A > 0
0 if A ≤ 0

m = 0, 1, ..., 32;n = 0, 1, 2, ..., N (1)

In the above,E[−1,m] is taken to be zero. One can considerA to be the change in energy-
differences-with-respect-to-frequency over time. As an example of the functionality of our imple-
mentation, Figure 1(c) compares two audio fingerprints of the same audio snippet and displays their
bit errors. This image is visually comparable to Figure 2 of [7] which reinforces the veracity of our
realization.

3.1.3 Chroma Feature

Chroma features have been widely used as a robust harmonic feature in all kinds of MIR tasks. On
a piano keyboard, there are 12 chromatic notes in one octave (C, C#, D . . . A#, B, often refered
as pitch class). The chroma-based approach proposed by Bartsch and Wakefield [12] represents
the spectral energy contained in each of these 12 pitch classes. Such features strongly correlate to

4



Chromagram

Time [Seconds]

 

 

0 20 40 60 80 100 120

C 

C#

D 

D#

E 

F 

F#

G 

G#

A 

A#

B 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a)

CENS chromagram

Time [Seconds]

 

 

0 20 40 60 80 100 120

C 

C#

D 

D#

E 

F 

F#

G 

G#

A 

A#

B 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(b)

Figure 2: The traditional chromagram 2(a) and CENS features2(b)

the harmonic progression of the audio. As suggested by Müller [13], the chroma feature can be
improved to reduce the effect of timbral factors by discarding the lower MFCCs which are generally
considered closely related to timbre.

Considering the objective that our system should be robust to some external factors, like audience
applauding, we don’t want our feature too sensitive to theseminor variations. Therefore, in ad-
dition to calculating the 12-demensional chroma feature with a small window (200 ms with 50%
overlap), we perform a second windowing which is larger (here we choose a window of 41 con-
secutive chroma vectors) and normalize the vectors throughdownsampling by factor of 10 to repre-
sent the statistics during a relatively long period of time (roughly one second), described asCENS
features(ChromaEnergy distributionNormalizedStatistics) [14], which are elements of the set
F = {~v = (v1, v2, . . . , v12)|vi ≥ 0,

∑12
i=1 v

2
i = 1}. The length of the second window and the

downsampling factor can be changed in order to take the global tempo variations into consideration.
This will be discussed later in 3.2.2. In summary, this procedure has two advantages: First, it could
diminish the effect of short-time variance that we expect might be problematic; second, it signifi-
cantly reduces the size of data and therefore increases the speed of our system for clustering. Figure
2 shows both the traditional chromagram and the corresponding CENS features. We can see clearly
that compared with the chromagram, CENS has a larger block and therefore better contrast. CENS
is used later as features for correlation in 3.2.2.

3.2 Grouping Similar Songs

To generate the overall output of the system, accurate clustering of the musical segments is required.
This step should yieldN groups ofki audio clips, whereN is the number of songs present in
the decoded stream andki is the number of clips belonging to theith song, fori = 1, 2, ..., N .
In general,ki is immaterial and hinges on the total length of each individual song, as well as the
segment size,S.

3.2.1 K-means

Given an adequate representation of the musical segments ofthe audio stream, it is reasonable to ex-
pect a useful result from a basic clustering algorithm likek-means([15, 16]) to group together those
clips belonging to the same song. The k-means algorithm is principally applicable as a component of
a vector quantization (VQ) process. The k-means algorithm can be used to design the codebook for
VQ by partitioning a set of training data intoM cells and associating a quantized vector (codeword)
with each cell [17]. K-means partitions a data set such that the following two optimality criterion are
satisfied:q(x) = zi iff i = argminj d(x, zj) andDi = Pr(x ∈ Ci)E[d(x, zi)|x ∈ Ci] whereq(.)
is the quantization function,x is an input vector,zi is the codeword representing theith partition
of the vector space,d(x, zi) is the distance measure between the input and the codeword oftheith

partition, andDi is the total average distance (or distortion) in theith partition. Applying k-means
to the features outputted from the previous system block is asimple iterative procedure that follows
the generic steps given in [18]. We use the Hamming as the distance functiond(x, zj) which is
applicable to thebinaryaudio fingerprint.
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3.2.2 Audio Matching and Clustering by Correlation

Given CENS features, audio matching can be achieved by simply correlating the queryQ =
(~v1, ~v2, . . . , ~vM ) with the sliding subsequences of musical segmentsD = (~u1, ~u2, . . . , ~uN ) in
database (N ≫ M ), defined asD (i) = (~ui, ~ui+1, . . . , ~ui+M−1), i ∈ [1, N − M + 1]. The dis-
tance between the queryQ and the sliding subsequenceD (i) can be computed bydist(Q ,D (i)) =

1− 1
M

∑M

k=1(~v
k ·~ui+k−1). All these distances fromi = 1, . . . , N −M +1 together can be consid-

ered as a distance function∆ between queryQ and the musical segments in databaseD . We could
find the minima of this distance function∆ as our best matches. Unlike the traditional song retrieval
system which has a large database in advance, our system has no information about the rehearsal
audio stream beforehand. In order to solve this problem, we try to construct the database from the
rehearsal audio dynamically. The input is all the music segments obtained from Section 2:

1. Sort all the music segments according to their length. Putthem into a priority queue.

2. As long as the priority queue is not empty, extract the longest segmentS from the priority
queue.

(a) If the databaseD is empty, putS intoD as a cluster;
(b) Otherwise match segmentS with every segmentDi in D by measuring the distance

function∆.
i. If there exists aDm which contains segmentS , clusterS with Dm, and go back to

step 2;
ii. Otherwise makeS a new segment (cluster) in databaseD .

Here we made an assumption: the longest segment is the most likely to be a whole piece or at least
the longest segment for this piece. So it is reasonable to letit represent a new cluster. On the other
hand, using a priority queue will guarantee that the segmentS is no longer than any of the segments
in databaseD , which means it can either be part of an existing piece in the database (and we will
cluster it with the segment it belongs to in 2(b)i) or it’s a segment for a new piece which doesn’t
exist in the database (and we will make it a new cluster in 2(b)ii).

We also need to consider the tempo changes since the performers can never hold the tempo abso-
lutely constant during a rehearsal. For this problem, we canobtain different versions (for example,
from 20% slower to 20% faster) of CENS features for the same segment to represent the possi-
ble tempo variations. This can be achieved by adjusting the length of the second window and the
downsampling factor in 3.1.3. More results will be discussed in 3.3 about the experiments.

3.3 Experimental Results

Preliminary tests using k-means were not satisfactory enough to motivate application to a large test
set. While intuitively pleasing, these preliminary tests show that Haitsma and Kalker’s fingerprint
does not yield a uniform representation of music with respect to which portion of the same overall
audio is analyzed. Initially, using three arbitrary songs,six non-overlapping 10 second segments of
each song were read, resulting in 18 different 10 second clips. Each 10 second clip was transformed
to a fingerprint block, and then k-means was used to cluster the fingerprints. The result of the
clustering was confusing at best. Withk = 3, the fingerprints belonging to the first song were
placed in the following clusters:{3, 2, 3, 2, 1, 3}. Similarly undesirable results were obtained for the
other two songs. In all cases, there was at least one clip for each song in any one of the categories.
Ultimately, it was determined that, for the particular songs being analyzed, the intervals over which
the fingerprints are extracted cannot be offset by more than approximately 150 milliseconds from
one another if they are expected to be grouped together usingk-means. The implication of this is
that the fingerprint feature is unacceptably sensitive to the time interval over which it is extracted.
Ironically, the reputed robustness to this exact situationis one of the primary reasons the feature was
so ambitiously exploited in the beginning of the work.

For audio matching by correlation, the results are satisfactory. We tested our approach in two dif-
ferent ways: First, we try to match a clip which is the subset of one song in the database. From
Figure 3(a) we could see that there is a notch at the best matching position round 330s. Secondly,
we try to match a clip which is 10% faster than its corresponding cluster in the database by using
different tempo versions of the feature. We could see clearly from Figure 3(b) that only the 10%
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Figure 3: Results for audio matching by correlation

slower version (the closest with the cluster in the database) has the most obvious notch, showing
that using CENS for clustering can lead to really good results.

4 Summary & Conclusion

Based on experimental results, eigenmusic proves to be a robust feature for distinguishing music
and noise; chroma features are a strong fit for matching audioclips efficiently. Results associated
with k-means clustering of audio fingerprints were subpar. Analysis suggests that the fingerprint
representation is sensitive to time shifts and therefore animpractical basis for grouping together
different segments of similar songs. Generally, the project was successful, highly instructive, and
will serve as a pertinent foundation for related work in the future.
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