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Abstract 

Non-Intrusive Load Monitoring (NILM) is a technique that determines the load 
composition of a household through a single point of measurement at the main 
power feed. Here we presented an unsupervised approach to determine the 
number of appliances in the household, their power consumption and the state of 
each one at any given moment.  

1 Introduction  

Non-Intrusive Load Monitoring (NILM) is a technique that determines the load composition of a 
household through a single point of measurement at the main power feed [1]. The current focus of 
NILM is the disaggregation of load states by means of supervised learning algorithms that use 
transition signatures. Recorded signatures of appliances are matched with real-time power readings 
for this purpose [2]. 

In this project, we attempted to identify an unsupervised learning alternative for load 
disaggregation, an example of Blind Source Separation (BSS). Given an observation dataset O 
composed of a variety of overlapping sources S, we try to decompose it into the constituent sources 
by using a weighted sum W of individual observations. Our goal is to iteratively explain O in terms 
of a ‘best-fit’ solution from an approximated Weight Matrix W and the Source Matrix S. In 
particular, the source matrix is constituted by the instantaneous power consumption of the 
appliances (these act as basis that do not have the same norm) and the weight matrix should be filled 
with binary data, since it is considered that appliances are either ON or OFF. 

2 Methods 

The power signal is mainly composed of step-up/down events corresponding to the switching on 
and off of appliances. Due to the sparse variation in the signal to be source separated, the approach 
taken was to first detect these steps in the power signal, capture their power transition (both active 
and reactive) and use it to automatic cluster the events. The clustering procedure returns the number 
of possible clusters (one for each type of appliance) and the center of the clusters, corresponding to 
the power of the appliances. The centers of the clusters are provided to the source reconstruction 
algorithm to explain, at each moment, which sources are active. 



 

2.1 Event detector   

In order to detect each event, a moving average calculates the average of the power           of 

the last   samples. When the sample     exceeds the boundaries defined by           

                       
 
 where   is a parameter, a new event is registered and the moving 

average is reinitialized. The number of samples accumulated for an event must be above      to be 
accepted, to ensure that the moving average is reliable and avoid spurious events that last only a few 
samples. All the point that were part of the same moving average window is defined as a plateau.  

2.2 Clustering procedure 

The clustering procedure should determine automatically how many clusters are in the data 
(corresponding to the number of different appliances) and the center of the clusters (corresponding 
to the power of those appliances). Two types of clustering methods were investigated: clustering 
based on genetic algorithms and hierarchical agglomerative clustering. 

 

2.2.1 Genetic and K-means Clustering Algorithm 

The genetic algorithm used in this project was based on [3] and works as follows: each chromosome 
represents a possible clustering solution, indicated by      numbers    between 0 and 1, and 
     points          in the search space (this case 2-D) representing the center of the clusters   . 
      is the maximum number of clusters that the algorithm can find. If a number    is greater 
than 0.5, then the cluster    is part of the solution. The number of chromosomes is given as a 
parameter. Initially,    and          for all              are randomly selected,   , and 
         evenly through the search space. K-means is applied to each chromosome, providing an 
optimal solution given its initial conditions. For each chromosome, an offspring chromosome is 
created by changing its clusters. That is done by randomly generating       numbers between 0 
and 1: For any of the first      below   ,    is changed to a new value between 0 and 1; for any 
of the last      below   ,          is changed to the          of the best chromosome (as 
defined by the fitness function). This way, both the number and the center of the clusters are 
changed for an offspring.    , the crossover rate, starts as 1 and decreases after each iteration in a 
linear fashion, until it stops at       . K-means is again applied to each offspring and both solutions 
(the parent and the offspring) are measured by a fitness function. The better result prevails, while the 
other is removed. The fitness function is an adaptation to the CS measure: 

   

 
 

  
    

     

             
 
   

    
   

         
 
   

 

where   is the number of clusters in the solution,    is the number of points in cluster  ,    is an 
event,    stands for         ,          is the Euclidian distance between    and   ,  and  

                             . This cycle is repeated      times and at the end the 

solution with the best fitness function is selected. 

 

2.2.2 Hierarchical Agglomerative Clustering 

Hierarchical clustering algorithms can be categorized as either top-down or bottom-up [5]. 
Bottom-up algorithms treat each data point as a singleton cluster at the outset and then successively 
merge pairs of clusters until all the clusters have been merged into a single cluster that contains all 
data points. Bottom-up hierarchical clustering is therefore called hierarchical agglomerative 
clustering or HAC. Merge operation in HAC is assumed to be monotonic, which means at each step 
the best merge available is taken. 

An important component of a clustering algorithm is the distance measure between data points. If 
the data points are all in the same physical units then, a simple Euclidean distance metric is 
sufficient to successfully group similar data points.  

Agglomerative clustering algorithms that were tested for this work are: 



1) Single Link [6] – two clusters having minimum distance between their closest datapoints are 
merged together. 
 

2) Complete Link [6] – At each step, two clusters having minimum distances between the two 
farthest points are merged together. 

     

Agglomerative clustering results are represented in the form of a dendrogram. Dendrogram is a tree 
structure, that is formed by decomposing datapoints into several levels of nested partitions. The final 
clustering of datapoints are obtained by cutting the dendrogram at the desired level (threshold), 
which gives clusters formed by each the connected component. Setting the threshold level defines 
the termination condition for the agglomerative clustering.       

 

2.3 Coincidence detection  

Some events detected might be the sum of two coincident events and the transition is the 
combination of the power of both appliances. To detect this type of situations, a post-processing was 
done to the result of the clustering. Figure 1 depicts this procedure. For each cluster  , it was 
assumed that it has a 2-dimensional gaussian distribution and the mean          and standard 
deviation (SD) of each cluster was extracted. Additionally, each cluster has an asymmetry factor 
defined by                                        , where        and         are the 

number of ON and OFF events, respectively. 

For each cluster  , with its events ordered by time, the time spans between two consecutive ON or 
OFF events were found (cluster with a possible missing event 1 in Figure 1). Within each time span, 
the algorithm tries to find an event that could be mixing the missing OFF or ON with other 
coincident event. To do that, the intra-cluster probabilities (probability of an event belonging to its 
cluster, given the mean and SD of the 2-D Gaussian defined for the cluster) of the events    from all 

the other clusters, within each time span, is defined as   . The other coincident event should be 

found in the cluster whose center is closest to                (missing event 2 in Figure 1). 

The probability that such point belongs to cluster   is defined as      . A metric that measures 
how probable    is a mixing event is defined as  

           
               

  
 

,i.e., the value increases as the mixing event gets further away 
from the center of the cluster it belongs (indicative that it does 
not belong there), the asymmetry factor of the cluster of the first 
missing event increases (there should be missing events in the 
cluster), the asymmetry factor of the cluster of the second 
missing event increases, and when the estimated missing event 
is closest to the center of some cluster (the relation between 
missing and mixing events match). Values of   higher than 
     are considered as mixing/missing events and the mixing 
event is split into the corresponding missing events. 

        Figure 1 Coincidence detector 

2.4 Source reconstruction 

2.4.1. Matching pursuit 

This greedy algorithm is based on a ‘match the most in least components’ approach of an 
observation, when unfolded into individual sources [4]. At each iteration of the algorithm, an 
observation point will be matched against the closest source, in terms of Euclidian distance, then it 
will have that value subtracted, in a vector form, and the remaining vector will be matched, in a 
subsequent iteration, against all other sources (the ones plotted in Figure 2) . For the algorithm to 
converge, a ‘drain’ source located at the origin (0,0) was introduced. Put differently, the algorithm 
stops when a residual vector is closer to ‘noise’ (the drain) than to any sources present. 
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Figure 2 Recovered sources plotted on a PQ plane 

There are three main considerations to be made here, representing adaptations made to the original 
matching pursuit algorithm: 
i) the matching is performed in terms of Euclidian distance ([Pobs,Qobs]-[Pclosest,Qclosest]) and not 
using a dot product between observation/residual and sources 
ii) by performing the operation above, a weight of 1 is assigned by default to each source 
encountered in an observation, as opposed to a real value that would be the return by a dot product 
iii) this operation is performed only on the first element of a plateau, on the assumption that the 
result obtained on the very first point will always apply to the following ones, throughout the rest of 
the current plateau (this assumption was made to ease the computational load of the algorithm but 
nevertheless proves its validity almost intuitively). 

 

2.4.2. Integer programming 

In comparison to the iterative greedy approach used in matching pursuit, integer programming tries 
to solve the following optimization problem: 

   
 

     subject to                            

where   is the weight of each source, S is the dictionary (matrix with power of appliances) and      
the signal value at time instance i. Furthermore we set the tolerance       proportional to the 
standard deviation of the cluster closest in absolute power to s(i). The proportionality constant can 
be used to tune the algorithm, a higher value will make it more likely that less number of sources can 
be used to construct the signal, too small values mean that noise would be approximated with a small 
value power source. Best results were found for a value of 2-4. 
 

3 Results 

 

3.1 EVENT DETECTOR  

The data is a 6-day long power reading (active and 
reactive) with a 0.3s period. With      , 
       , and a moving average of 20 samples, 
the event detector found 1156 events, giving 192 
events/day. The power readings are shown in 
Figure 3, together with the events detected. Due to 
the lack of ground truth, any manual labeling 
would still be ambiguous, since many transitions 
in the power readings are not clear if they are 
steps. Manual inspection shows that most of the 
noticeable events are detected, although some 
false positives and false negatives exist. 

3.2 Clustering  

The events were clustered according to two 
different clustering methods. 

Figure 3 Power readings and events detected 



The first method, based on genetic algorithms, has a stochastic component and does not produce 
always the same result. Thus, for 50 trials, the average   standard deviation number of clusters was 
           and one example with 16 clusters is plotted in Figure 4. The parameters were set to 
                           and 20 chromosomes. 

The hierarchical clustering algorithms use Euclidean distance as the clustering criteria. Since all the 

data points are successively merged into a single cluster by the algorithm, we need to split this 
cluster in order to get the final number of clusters. As explained before, we essentially cut the 
dendrogram at a certain threshold to get the clusters formed by each connected component. We use 
a threshold of 0.07*max(d), where d is a vector of distances between all the clusters.  

 

1) Single Link                                          2) Complete Link 

Figure 5 Single Link vs. Complete Link 

We can see from the plots above that clusters formed by single link tend to have a chaining effect as 
compared to complete link clustering that shows circular clusters. There are 13 clusters formed as a 
result of the threshold set on the distances between the datapoints.  

 

3.3 Coincidence detection  

It is known for a fact that a particular cluster in the results is made of mixing events, because it was 
found consistently through visual inspection. The coincidence detector is able to detect and split all 
the events in that cluster. The improved clustering is shown in Figure 6. Some other points were 
considered mixing events, but visual inspection leaves doubts if they are or not. 

   
 a)     b) 

Figure 6 Coincidence detection a) circles: missing events created, stars: mixing events removed b) 
Clustering after coincidence detection 

 

Figure 4. Genetic/K-means clustering example results 

Cluster 

removed 



 

3.4 Source reconstruction  

3.4.1. Matching Pursuit 
Based on the sources provided from the clustering (13 individual appliances), the reconstruction 

(Figure 7) was performed in two steps: 

i) explain each first element of a plateau as a sum of appliances, while altering their states;  

ii) recompose the signal using these ‘presence’ values and the (P, Q) value of each source. 

 

Figure 7. Signal reconstruction (left – reconstructed against observed signal; right – one appliance 
matched against the observed signal VS. up – a good match; bottom –a bad match) 

 

3.4.2. Integer programming 

For computational tractability, we used the binary programming algorithm, as this would give us 
equally valid results (Except for appliances that have more than one instance running at any point in 
time, here duplications in the dictionary can help). Results are shown in Figure 8. 

 

 

Figure 8. Original and Reconstructed Signal with Integer (Binary) Programming 



 

4 Discussion  

This work can be divided in three parts: detection of events, detection of appliances and detection of 
the states of appliances. 

Detection of events was the easiest part and it can be seen by visual inspection that most events were 
detected correctly. The missing of some events is not relevant for clustering, unless the occurrence 
of such events is sparse. 

Clustering had some challenges, mainly due to the overlap of points in different clusters (especially 
in low power appliances) and difference in scatter between appliances (high-power appliances had 
more scatter). Agglomerative algorithms had difficulty in dealing with these properties, while the 
genetic algorithm, although being more precise on average, had some deviation between solutions. 

The source reconstruction algorithms used did a good job in reconstructing signal. However, the real 
objective was to find the change of states of the sources. Taking the example of the most noticeable 
and frequent appliance (we believe it to be a refrigerator), it can be seen that sometimes it toggles 
very frequently, because a change in power may be best explained (in terms of sparsity) by turning it 
ON or OFF, although it may not be the case. These considerations apply to both methods studied. 

 

5 Conclusion  

We distinguish between ON/OFF states of the household appliances, and form clusters based on the 
active (P) and reactive power (Q) readings of the appliances. 

We have tested various clustering techniques based on agglomeration and genetic algorithms for 
this purpose. We attach a power consumption weight to each of these appliance clusters to 
ultimately reconstruct the individual energy consumption of each appliance. 

We explored the use of a simple Matching Pursuit algorithm and classical integer programming for 
this purpose. These algorithms try to minimize the signal reconstruction error, while our objective is 
to find the real profile of the states of each appliance. 

We conclude that although they accurately reconstruct the signal, the profiles found are apparently 
different from the reality. This could have been more frequent for smaller appliances, as they are 
comparable in magnitude to the noise level, and the matching pursuit algorithm would indubitably 
go through them. 

The lack of ground truth of the data makes it difficult to use meaningful metrics for evaluation of our 
solution. 
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