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Abstract 6 

The main goal of this project was to take advantage of the spatial 7 
structure inherent within a set of HRTFs in order to provide a 8 
mechanism by which an entire set of individualized HRTFs could 9 
be estimated from a small set of measurement locations.  Several 10 
methods were investigated for this purpose including missing 11 
feature techniques such as latent variable model decomposition and 12 
k-Nearest Neighbor averaging, as well as naïve methods such as 13 
spherical harmonic decomposition and linear interpolation.  The 14 
most successful method investigated was a Linear Minimum Mean 15 
Square Error (LMMSE) estimation procedure which showed near 16 
complete reconstruction of the 232 HRTFs from a subset of less 17 
than 30 randomly distributed locations and promising results for as 18 
few as 20 locations. More practical measurement schemes like 19 
measurements only taken on the horizontal plane proved to be less 20 
successful than even distributions; however they still provided 21 
benefit over other rapid HRTF personalization techniques such as 22 
derivation from anthropometric measurements. 23 

 24 

1 Introduction  25 
Human listeners have the ability to determine the location of a sound source in three 26 

dimensions. This ability is largely due to robust cues based on the spatial separation of the two 27 
ears which causes a sound originating off to one side of the head to arrive at the near ear sooner 28 
and with greater amplitude then at the far ear.  Thus creating an inter-aural time difference (ITD) 29 
and an inter-aural level difference (ILD).  While the ITD and ILD dominate sound localization in 30 
most regards, these two cues alone fail to distinguish sound source positions which lie on contours 31 
of constant relative distance from the two ears; for instance a source directly in front of the listener 32 
and one directly above.  In reality, these equal distance contours occur at every location in space 33 
and are referred to as cones of confusion.  Sound source localization within one of these cones of 34 
confusion is accomplished using less robust spectral cues caused by the acoustic filtering 35 
properties of the listeners head, shoulders, and outer ear.   36 



The concepts needed to accurately recreate this complete set of cues have been known for 37 
some time, and involve the characterization of the acoustic filtering effects of the listeners’ 38 
anatomy. This characterization is accomplished by playing a known source from many locations in 39 
space and making recordings at the entrance of the listeners’ two ear canals. For a given location 40 
in space the complex ratio of the Fourier transform of the recorded signal to that of the original 41 
signal is called the Head Related Transfer Function (HRTF), and can be used to recreate the entire 42 
set of cues needed for sound source localization. To adequately generate a 3-D representation 43 
anywhere in space however, HRTFs for more than 250 locations in space must be collected, and 44 
are generally only applicable for the person they were measured on. These two limitations make 45 
attaining high fidelity spatial audio difficult. 46 

Several authors have shown that once an HRTF set is collected, individual filters can be 47 
represented well by weighted sums of a limited set of spectral basis vectors, and similarly that a 48 
single frequency value can be represented anywhere in space with a weighted sum of spatial basis 49 
vectors.  These results prove that more compact and efficient representations of entire HRTF 50 
databases are feasible, but currently these studies provide no advantage over traditional techniques 51 
for acquiring the HRTF representation due to the fact that they are derived from HRTF sets 52 
acquired using traditional methods.  The goal of the current project is to use the knowledge gained 53 
concerning low order representations of HRTF sets along with signal processing and machine 54 
learning techniques to investigate methods for generating adequate representations of an entire set 55 
of HRTFs from a limited set of easily attainable acoustic measurements. 56 

 57 
2 Init ial  Method Evaluations  58 

The HRTFs used in this study were gathered from the publically available CIPIC 59 
database [1] which consists of 200 sample Head Related Impulse Responses (HRIRs) 60 
captured at a sampling frequency of 44.1 kHz from 45 subjects at 1250 azimuth and 61 
elevation locations.  A 200 point DTF was taken of each HRIR and the magnitude was kept 62 
as the reference HRTF signal. HRTF magnitudes for a small subset of 232 locations were 63 
kept from the available 1250 which corresponded to roughly 15 degrees of angular 64 
resolution in both azimuth and elevation. 65 

 For all of the techniques below a “one-out” training and testing procedure was used 66 
and results were averaged over the same five subjects for each condition.  Relative 67 
performance was based on an Average Spectral Distortion(SD) measure presented in [3] as 68 
defined below in equation 1. 69 

                            (1) 70 

Above, H and Ĥ are the reference and modeled HRTFs at each of L locations respectively, all 71 
consisting of N frequency bins. It represents the mean RMS error of the log-magnitude 72 
spectra over an entire set of HRTFs. 73 

 74 
2 .1  Na ïv e  M etho ds  75 

In this context the term naïve is chosen to represent methods which do not require 76 
training data. Their predictions are based entirely on the available HRTF measurements for 77 
the test subject and can be thought of as a form of interpolation.  78 

The simplest of these methods is a k-nearest neighbor linear interpolation, where k-79 
nearest neighbors refer to the k measured HRTFs whose locations are closest in absolute 80 
angular distance to the location of the HRTF being predicted. The k HRTFs are then scaled 81 
and summed to produce the predicted HRTF where the scaling factors are defined as the 82 
ratio of the angular distance from that particular measurement location to the location being 83 
predicted divided by the sum of all k angular distances as seen in equation 2. 84 

     where                       (2) 85 

 The second naïve method which was investigated was spherical harmonic 86 



decomposition. While the k-NN interpolation relied exclusively on local information, 87 
spherical harmonic decomposition uses information from all known measurement locations 88 
to determine the predicted HRTF. Spherical harmonics are continuous basis functions of 89 
angular position, and can be used to estimate the underlying function at positions other than 90 
those that were sampled. The HRTFs at the L measured locations are used to estimate 91 
spherical harmonic coefficients, Cpm, which represent the underlying continuous HRTF 92 
function in spherical harmonics as shown in equation 3[2]. 93 

                                         (3) 94 

The spherical harmonic coefficients are then used to estimate the continuous HRTF 95 
representation which can then be sampled at the missing locations as seen in equation 4. 96 

                           (4) 97 

In this context P is the order of the spherical harmonic expansion and can be thought of as a 98 
measure of spatial variation (i.e. a higher order is capable of capturing more rapid spatial 99 
changes in the underlying function)[2]. 100 

 101 
2 .2  M iss ing  Fea ture  M etho ds  102 

In general, the term missing feature applies to any problem where portions of the 103 
data are unknown or corrupted and need to be filled with predicted or average values. In this 104 
way, an HRTF set lacking measurements at certain locations can be thought of as a missing 105 
feature problem.  106 

A basic solution for a missing feature problem is the standard k-Nearest Neighbor 107 
(kNN) approach. As in the above naïve approach k of the “closest” known samples are 108 
averaged to predict the unknown values, however in this implementation the HRTFs 109 
available in the training set are evaluated and the k training HRTFs with the lowest spectral 110 
distortion at a certain location are averaged to obtain the prediction. In this way equation 2 111 
holds for this formulation as well with all di’s equal to 1/k and the Hi’s are training HRTFs 112 
for that location. One possible outcome of this method if k is chosen to be one and the same 113 
training HRTF is chosen at every frequency and location corresponds to the scenario where a 114 
complete HRTF from a single training subject is used for the missing locations. This 115 
condition is reported as the “BestFit” training subject for use as a baseline performance  116 
condition since it represents the best non-individualized HRTF set available. 117 

A more recent approach to a missing feature problem was proposed by Smaragdis et 118 
al. [4] who showed that a time sample of a spectrogram can be treated as a histogram 119 
generated by repeatedly drawing from a mixture multinomial distribution with time 120 
dependant mixture weights and source specific frequency multinomial bases.  Since under 121 
previous assumptions an HRTF is essentially a space indexed spectrogram, the HRTF of a 122 
certain subject s at a given frequency f can be modeled as a histogram of Nd repeated draws 123 
from a mixture multinomial distribution with subject dependant mixture weights and a set of 124 
spatial multinomial bases as shown in equations 5 and 6. 125 

                                     (5) 126 

                                                       (6) 127 

The subject independent spatial bases can be trained using the EM algorithm from sample 128 
HRTFs. The expectation step at each location consisted of computing the a posteriori 129 
probability of the bases as in equation 7. 130 

                                       (7) 131 

The maximization step then consists of updating the bases and mixture weights as in 132 
equations 8 & 9. 133 



                                     (8) 134 

                                  (9) 135 

The unknown HRTFs for the test subject can then be estimated via the above EM algorithm 136 
where equation 9 is skipped and the bases used are those obtained from the previous 137 
training. In this instance the L locations being used for the update will only consist of the 138 
measured HRTF locations.                                        139 

 140 

2 .3  M in i mu m M ea n Squa re  Erro r L inea r Est i ma t io n  141 

While both forms of kNN described earlier are technically also linear estimations, a 142 
more common way of determining the scaling coefficients is to derive a closed form solution 143 
for them which minimizes some objective function. A frequent choice is the minimum mean 144 
square error solution which minimizes the average square difference between the actual and 145 
predicted values of the function being estimated. For known locations k, and missing 146 
locations m, the linear minimum mean square error solution is given in equation 10.  147 

                                      (10) 148 

Here Cmk is the cross covariance of the training HRTFs at a given frequency at missing and 149 
those at known locations; Ckk is the auto covariance at the known locations, and µ (.) represent 150 
the corresponding means. 151 

 152 
3 Init ial  Method Comparison  153 

To save space, results for the variations of individual methods such as the various values of k in 154 
the k-NN approach are left out of the figures and discussions, and their best representative 155 
variation are used in all cross method comparisons.  The final values for relevant methods and 156 
parameters are summarized in Table I. 157 

 158 
TABLE I 

FINAL PARAMETER VALUES 

Method Parameter Value 

Naïve k-NN k 4 

Sph. Harm.  P 7 

k-NN k 3 

LVM Z 30 

  159 
 The average spectral distortions over all of the predicted HRTFs for 5 subjects are plotted 160 

in Figure 1 versus the number of measure locations used. Spherical harmonic decomposition 161 
(SHD) is the only method which failed to reach the baseline best fit training subject condition.  162 
This large amount of error is likely due to the fact that SHD has an inherent tradeoff between 163 
reconstruction accuracy and necessary spatial sampling rate. In other words higher order modeling 164 
(larger P parameter) will yield better overall reconstruction of a function, however, the higher the 165 
order of the model the more spatial samples are needed to accurately calculate the spherical 166 
harmonic coefficients.   167 



 
Fig. 1.  Comparison of average spectral distortion for tested prediction 

methods as a function of the number of measurement locations. 

K-NN proved to be one of the best performing methods for a low number of measurement 168 
locations, but failed to improve for high numbers of measurements. LVM and Naïve kNN also 169 
showed minimal improvement as the number of locations was increased, but Naïve kNN provided 170 
fairly strong results for when greater than 100 measurement locations were used. Linear minimum 171 
mean squared error estimation provided a clear improvement over all other methods and 172 
approached zero spectral distortion when around 50 measurements were used.   173 

 174 
4 LMMSE Model  Tuning  175 

While LMMSE seemed to outperform other methods, it still suffered from discontinuities 176 
in resulting spectra for low numbers of sources as can be seen in the top row of Figure 2 and some 177 
degree of over fitting when more than 75 locations were used as shown by the small bump in 178 
Figure 1. 179 

To help avoid over fitting of the training HRTFs in the LMMSE model, a Forward Model 180 
Selection algorithm was implemented based on the Akaike Information Criterion (AIC). AIC is a 181 
cost function which seeks to find the minimize model error while simultaneously penalizing 182 
models of increasing order (i.e. AIC will be lower for a model with less parameters if the two have 183 
similar amounts of error). AIC is calculated as in Equation 11 and indicates a better model with 184 
lower AIC scores [5]. 185 

                                              (11) 186 
Above, RSS refers to the sum of squared residuals (errors) , k is the number of measured locations, 187 
and n is the number of training samples.  188 
 The Forward Model Selection Algorithm is a technique used to find approximate best 189 
models. Finding the best model with N measurement locations becomes intractable by brute force 190 
methods after N is greater than 3 or 4, so the Forward Model Selection Algorithm approximates 191 
this by finding the best N location model which includes the N-1 locations from the best N-1 192 
location model.  Using this strategy a good solution can be found in a far less number of 193 
computations. 194 
 When the Forward Model Selection Algorithm was implemented using AIC as its 195 
objective function for determining which of the k possible known locations should be used for 196 
prediction, the large spectral discontinuities for low measurement numbers went away as can be 197 
seen in the median plane plots in Figure 2. With this additional step, adequate prediction fell from 198 
around 50 measurement locations to below 30. 199 



 
Fig. 2.  Predicted HRTFs from the median plane  using the LMMSE technique 

(TOP ROW) and LMMSE technique with forward model selection (BOTTOM 

ROW). 

5 Practical  Measurement Locations  200 
While a general decrease in the number of measurement locations needed to accurately predict 201 

an individualized HRTF is useful, the most useful reductions in measurement locations would be 202 
ones which restricted measurement locations to those on single directional planes, such as the 203 
horizontal plane, or hemi-planes, such as the front half of the horizontal and median planes. 204 
Results for the LMMSE method for several of these setups are displayed in Figure 3. It can be 205 
seen that in general roughly equally distributed measurement locations out perform the same 206 
number of locations restricted plane locations, however the two conditions which feature sources 207 
on the median plain fair better than their equally distributed counterparts. 208 

 
Fig. 3.  Average spectral distortion for LMMSE method for practical 

measurement locations along principle planes and hemi-planes, 

number of measurement locations indicated in parentheses.  

6 Conclusion 209 
Several of the techniques developed show promise for providing personalization of a set of 210 

HRTFs. More so then the rest, Linear Minimum Mean Square Error estimation proved to be very 211 
reliable for setups including as little as 12% of the original measurement locations. Locations on 212 
the median plane also show a higher than average performance versus more distributed locations, 213 
which indicates highly practical implementations with low numbers of measurement locations are 214 
also feasible.  215 
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