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Abstract

In the field of structural health monitoring, researchers focus on the design of
systems and techniques capable of detecting damage in structures. However, it is
difficult to develop robust detection schemes that are invariant to environmental
and operational conditions. In this report, we investigate several signal processing
and machine learning techniques for developing such robust systems.
From experimental data of a pressurized pipe, we extract 212 different data fea-
tures and implement three different classification algorithms for detecting and lo-
calizing damage: adaptive boosting, support vector machines, and a combination
of the two. The third algorithm shows the best overall performance in terms of
accuracy, ranging from 81% to 100% in detection tests and 70% to 100% in local-
ization tests. Through feature selection, we also demonstrate the effectiveness of
features related to the Mellin transform and curve length.

1 Introduction and background

The fields of nondestructive testing and structural health monitoring (SHM) focus on the develop-
ment of systems for testing the integrity in solid structures [1]. Such structures include, among other
things, pipes, bridges, buildings, airplanes, and ships. These tests can be accomplished in many
ways. Systems have been developed which, among other ways, evaluate structures by means of
electromagnetic [2], vibration [3], and ultrasonic [4] testing.

We will focus on the use of ultrasonic guided waves produced by piezoelectric transducers. Ul-
trasonic guided waves travel through the thickness of the structure and are sensitive to structural
changes caused by cracks, corrosion, or other forms of damage [5]. However, these waves are also
sensitive to benign effects, such as changes in temperature [6,7] or air pressure. As a result, most tra-
ditional detection techniques fail under variable environmental conditions. In this report, we apply
machine learning classification techniques to distinguish damage from more benign effects, primar-
ily due to changes in pressure, in a steel pipe. We also reveal several informative and robust features
for this application, such as Mellin transform descriptors and curve length features.

2 Experimental Setup

For our experiment, we use a synchronized pair of lead zirconate titanate (PZT) ultrasonic sensors
to generate guided waves inside of a pressurized, steel pipe. Our pipe specimen is shown in figure
1a. We use a National Instruments PXI data acquisition device to excite a sinc pulse from one PZT
and measure the resulting ultrasonic waves from the other PZT.

Data was taken in two collections, thirty-five days apart, denoted as ”Collection 1” and ”Collection
2”. Each collection consists of several sets, each with approximately 20 records of data. Each
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(a) Pressurized pipe specimen (b) Examples of a complex ultrasonic guided waves with and without a mass
on the pipe surface

Figure 1: Experimental setup and raw data.

record of data consists of 10, 000 samples of measurements, sampled at 1 MHz. In total, Collection
1 consists of 240 data records and Collection 2 consists of 360 data records.

2.1 Methodology

Before measuring each collection of data, the air in the pipe was pressurized to 100 PSI. Over each
sets’s 20 records, the pressure in the pipe was continuously discharged. This added uncertainty to
the measurements so that no two records should be the same. Temperature may have also varied
slightly between measurements. The first set of data is named ”U1” (undamaged).

After measuring the U1 data, a grease-coupled mass is placed onto the pipe to simulate damage. The
second set of data is taken with the mass on the pipe and recorded as ”M1” (mass). The mass is then
removed and another set of undamaged data is taken. This is done to accommodate for any changes
due to the grease coupling used. This process of placing and removing the mass is repeated for six
locations in Collection 1 and nine locations in Collection 2. All of the data sets may be clustered into
three groups according to the location of the mass. Those locations are is near the PZT transmitter
(Zone 1), at the center region of the pipe (Zone 2), or close to the PZT receiver (Zone 3). The data
sets and the associated zones are shown in figure 2.

Figure 1b shows examples of two received signals, one from an undamaged data record in Collection
1, and one from a damaged record in Collection 1. From the figure, we can conclude at least two
challenges in detecting damage in a pipe: first, the damage (mass) only causes very subtle changes
in the signals and is difficult to distinguish; second, harmless environmental conditions may produce
more changes over time and may masquerade as damage in the signal characteristics.

3 Feature extraction

For our analysis, we extracted 212 different features from each of our sets of data. These features
were extracted using the concepts and tools such as the Mellin transform, the Fourier transform,
correlation, principal component analysis, and the analysis of local maxima. In this section, we will
briefly detail the features we extracted. In section 4.1, we will discuss which of these features are
informative with respect to our problem.

3.1 Advanced signal processing technique: Mellin transform

For several of the informative features, we use a signal processing tool known as the Mellin trans-
form. The Mellin transform is a tool that may be used for the analysis of scale behavior in a signal.
The transform is often defined by

M{x (t)} = X (c) =

∫ ∞
0

x (t) t−jc−1dt , (1)
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(a) Locations of masses on the pipe (blue crosses for Collection 1 and green crosses for Collection 2)

Figure 2: Mass locations and zone designations for localization experiments.

where j is the imaginary number and c is the dependent variable, sometimes referred to as the scale
parameter [8].

The Mellin transform treats scaling behavior just as the Fourier transform treats shifting behavior.
Due to this, we can effectively measure scale effects and generate features invariant to scale op-
erations. This can be useful in the study of waves because uniform changes in wave velocity can
be equated to a change scale of the received signal. In order to compute the Mellin transform of a
discrete time signal, we use the Fast Mellin Transform algorithm. Details about implementing the
Fast Mellin Transform can by found from reference [9].

3.2 Baseline-free features

Baseline-free detection of damage in structures is a subject of particular interest to the SHM com-
munity. A baseline is any measurement, or collection of measurements, used to remove features
unrelated to the presence of damage. A baseline is usually useful due to the complexity of SHM
signals. We consider 46 different baseline-free features.

3.2.1 Peak amplitude and location features

The peaks of a complex wave measurement are often important features of the signal. In the time
domain, peaks often indicate the arrival of a new wave mode (a wave traveling at an independent
group velocity and oscillating orthogonally to all other wave modes) or of a wave reflection. There-
fore, we would expect certain peaks to be affected differently from other peaks when damage is
introduced.

To construct features, we extract local maxima from the time domain, envelope of the time domain,
and the magnitude of the frequency domain. Our features include the number of local maxima, the
means and variances of the locations and amplitudes of the maxima, and the locations and amplitudes
of the first 3 maxima. This is computed for all three domains.

3.2.2 Fourier and Mellin distribution features

For these features, we treat the magnitudes of the Fourier and Mellin transforms as probability
distribution functions and extract the mean and variance values for those distributions. In the Fourier
domain, any shift or scale in frequency may change the distribution of energy across frequencies. In
the Mellin domain, the peak is dependent on the distribution of energy across the time domain.

3.2.3 Curve length

The curve length of a signal is useful for describing the signal complexity. A variation in curve
length may be caused by changes in waves’ modal amplitudes or locations. The curve length is also
robust to time-scale changes since the signal’s shape remains the same. Lu and Michaels [7] showed
that the differential curve length between two signals is an excellent feature for damage detection.

3.3 Baseline-dependent features

It is often advantageous to use a known baseline signal, where we know there is no damage in the
structure under test. We generate several baseline signals from the mean of 20 undamaged mea-
surement records and from the principal components of those measurements. Principal component
analysis is used to uncover certain properties of the signal that may better define the presence of
damage. The following section will define several features that take advantage of these baselines.
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3.3.1 Standard and invariant correlation coefficients

A very common metric for the similarity of two signals (a discrete-time baseline signal xb[n] and
another discrete-time measured signal x[n]) is the correlation coefficient. Although the correlation
coefficient is excellent at detecting differences in signals, it is generally not ideal for our applications.
Benign effects often decrease the correlation coefficient by a greater degree than damage.

However, we may be able to modify the correlation coefficient formula to be more robust. In partic-
ular, we can generate correlation coefficients which are invariant to shifting and invariant to scaling.
As alluded to previously, the magnitude of the Fourier transform is invariant to shifting and the
magnitude of the Mellin transform is invariant to scaling. By correlating the magnitudes of the
transforms, we can generate both shift and scale-invariant correlation coefficients.

3.3.2 Estimate of shifting or scaling

Scale-invariant or shift-invariant computations may be useful to gain robust against certain environ-
mental effects. Therefore, estimating the degree to which a signal is actually a shifted or scaled
replica of some baseline signal may also be informative. The estimate of a shift between two signals
is defined by the parameter which maximizes the cross-correlation. Similarly, the estimate of a scale
between two signals is defined by the parameter which maximizes the Mellin correlation. More
information about Mellin correlation can be found in references [10] [8].

3.3.3 Differential curve length

Lu and Michaels [7] showed that the differential curve length was a good feature for damage detec-
tion. The feature is computed similar to the curve length measurement shown previously, but instead
with the residual signal.

4 Experimental Results

In this section, we show the results of our damage detection and damage localization by using
three classification approaches: adaptive boosting (AdaBoost), support vector machines (SVM),
and a combined method of the two (AdaSVM). AdaBoost is an ensemble classification approach
that linearly superposes a number of weighted ”weak” binary classifiers to generate a final ”strong”
classifier [11]. The weak learners are usually simple and moderately inaccurate. Each weak classifier
focuses on the misclassified instances of the previous classifier [12, 13]. SVM is a linear maximum
margin classifier. It can provide a mapping of data into a higher dimensional space by applying
kernel tricks so that a linear hyperplane or set of hyperplanes can be determined to classify data in
that high dimensional feature space [14, 15].

One limitation of AdaBoost is that it can only linearly combine weak classifiers. So the final clas-
sifier may not necessarily be optimal [16, 17]. In contrast, SVM can effectively incorporate features
through kernel functions. However, applying SVM to 212 features is not computationally efficient
and some features may generate adverse effects in classification by adding noise. As a result, we
demonstrate a combination method that uses Adaboost to select principle features, followed by SVM
for classification. We define the principle features as the selected features used when the AdaBoost
classifier reaches its lowest error rate after T iterations.

4.1 Feature Selection by AdaBoost

We apply AdaBoost to automatically select principle features. In figure 3, we demonstrate two ex-
amples of feature spaces containing the first two principle features produced by AdaBoost. In the
first example (figure 3a) we use all of Collection 1 as the training data. AdaBoost ranks the top three
features to be the curve length, shift invariant correlation coefficient of the second principle com-
ponent, and the differential curve length with the 18th principle component as the baseline. In the
figure, we see that the two classes, undamaged and damaged, are well separated. This demonstrates
that the selected features are sensitive to the damage while robust to the environmental conditions.
Overall, when the training set is extracted from Collection 1, our results show that the curve length
and differential curve length features often rank as one of the top three principal features in detection
tests.
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(a) Features, selected by AdaBoost, from Collection
1 (training set) and Collection 2 (testing set).

(b) Features, selected by AdaBoost, from Collection
2. Unique sets of data from Collection 2 were used
as the training and testing sets.

Figure 3: The normalized feature spaces of the principle features, as selected by AdaBoost.

In the second example (figure 3b), the testing set consists of data sets U12, U42, U72, M12, M42
and M72 (120 data points), and the remaining 240 data points in Collection 2 are used for training.
Again, the undamaged and damaged classes are very distinguishable under the first two principle
features selected by AdaBoost: scale-invariant correlation of the signal with the second principle
component and the mean of the Mellin magnitude distribution. Similar to the previous example,
we have observed these that Mellin related two features are very effective in most of the detection
and localization tests when the training sets originate from Collection 2. While most pairs of our
extracted features do not provide any separation between the undamaged and mass data, our feature
selection results support both Mellin transform and curve length features to be robust to environ-
mental and operation effects on guided waves.

4.2 Results of damage detection

In order to detect and localize the mass, we employ three binary classification approaches, Ad-
aBoost, SVM, and AdaSVM. For cross-validation purposes, we have conducted several tests with
different training and testing sets. All of the trials are categorized into three groups: 1) the training
and testing data originate from Collection 1, 2) the training and testing data originate from Collection
2, and 3) all of Collection 1 is used as the training data while all of Collection 2 is used as the testing
data. Since we have the same number of undamaged instances as that of the damaged instances in
our datasets, we convert the confusion matrices to the representation of accuracy, false-positive rate
(FPR), and false-negative rate (FNR).

The Collection 1 and Collection 2 results (figures 4a, 4b) show that the three classification algorithms
all obtain more than 85% accuracy, with AdaSVM providing 100% accuracy in Collection 1. When
Collection 1 and Collection 2 are used together (figure 4c), SVM shows better performance than
Adaboost and AdaSVM, with an accuracy around 86.7%. Figures 4d, 4e, 4f show these rates for
each classification algorithm. It is evident that AdaSVM has an overall higher accuracy, lower FPR,
and lower PNR. On average, the AdaSVM method improves the detection performance of AdaBoost
by 4.3% and SVM by 2.1%.

4.3 Results of damage localization

In the damage localization tests, we apply the classification algorithms only to the damaged in-
stances. Here we present the results of a binary-class localization problem. For multiple damage
zones, we can utilize the same methods but for a hierarchical classifier structure. Similar to the
detection trials, the localization tests are also divided into three groups, based on the training and
testing data used. For all three types of trials, AdaSVM shows better performance than AdaBoost
and SVM (figures 5a, 5b, 5c). The accuracy, FPR, and FNR over every trials with AdaBoost, SVM,
AdaSVM are compared in figures 5d, 5e, 5f . On average, the AdaSVM method improves the
localization performance of AdaBoost by 2.5% and SVM by 37.8%.
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(a) AdaSVM :
Collection 1

(b) AdaSVM :
Collection 2

(c) SVM :
Collection 1(train) & 2(test)

(d) Accuracy rates (e) False negative rates (f) False positive rates

Figure 4: Results for detecting damage

(a) AdaSVM :
Collection 1

(b) AdaSVM :
Collection 2

(c) AdaSVM :
Collection 1(train) & 2(test)

(d) Accuracy rates (e) False negative rates (f) False positive rates

Figure 5: Results for localizing damage

5 Conclusions

Two sets of physical experiments were conducted on a pipe under varying operational and environ-
mental conditions. This includes changes in the internal pressure of the pipe, changes in the ambient
temperature, and several unknown changes and that may have occurred in the 35 days between data
collections. Various signal processing techniques have been applied to extract 212 features. When
evaluated by the AdaBoost algorithm, the curve length and Mellin domain features were largely
selected as principle features for fine separation between classes. Three classification approaches,
adaptive boosting, support vector machines and AdaSVM, have been investigated in order to detect
and localize damage in the pipe. On average, the AdaSVM algorithm shows superior performance
with average accuracy of 95.1% for damage detection and 97.5% for damage localization.
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