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11-755/18-797 Machine Learning for Signal Processing

Introduction
Signal representation

Class 1.  30 August 2011

Instructor: Bhiksha Raj
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What is a signal

 A mechanism for conveying 
information
 Semaphores, gestures, traffic lights..

 Electrical engineering: currents, 
voltagesvoltages

 Digital signals: Ordered 
collections of numbers that 
convey information 
 from a source to a destination
 about a real world phenomenon

 Sounds, images
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Signal Examples: Audio

 A sequence of numbers
 [n1 n2 n3 n4 …]

 The order in which the numbers occur is important
 Ordered

 Represent a perceivable sound
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Example: Images

Pixel = 0.5

 A rectangular arrangement (matrix) of numbers 
 Or sets of numbers (for color images)

 Each pixel represents a visual representation of one 
of these numbers
 0 is minimum / black, 1 is maximum / white

 Position / order is important
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What is Signal Processing

 Analysis, Interpretation, and Manipulation of 
signals.
 Decomposition: Fourier transforms, wavelet 

transforms

 Denoising signals Denoising signals

 Coding: GSM, LPC, Mpeg, Ogg Vorbis

 Detection: Radars, Sonars

 Pattern matching: Biometrics, Iris recognition, 
finger print recognition

 Etc.
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What is Machine Learning

 The science that deals with the development of 
algorithms that can learn from data
 Learning patterns in data

 Automatic categorization of text into categories; Market basket 
analysis

 Learning to classify between different kinds of data Learning to classify between different kinds of data
 Spam filtering: Valid email or junk?

 Learning to predict data
 Weather prediction, movie recommendation

 Statistical analysis and pattern recognition when 
performed by a computer scientist..
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MLSP
 The application of Machine Learning techniques to the analysis of 

signals such as audio, images and video
 Learning to characterize signals in a data driven manner 

 What are they composed of?
 Can we automatically deduce that the fifth symphony is composed of notes?
 Can we segment out components of images?
 Can we learn the sparsest way to represent any signal

 Learning to detect signalsg g
 Radars. Face detection. Speaker verification

 Learning to recognize themes in signals

 Face recognition. Speech recognition.
 Learning to: interpret; optimally represent  etc

 In some sense, a combination of signal processing and machine 
learning
 But also includes learning based methods (as opposed to deterministic 

methods) for data analysis
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MLSP
 IEEE Signal Processing Society has an MLSP committee

 The Machine Learning for Signal Processing Techinical
Committee (MLSP TC) is at the interface between theory and 
application, developing novel theoretically-inspired 
methodologies targeting both longstanding and emergent signal 
processing applications. Central to MLSP is on-line/adaptive 
nonlinear signal processing and data-driven learning 
methodologies. Since application domains provide unique 
problem constraints/assumptions and thus motivate and driveproblem constraints/assumptions and thus motivate and drive 
signal processing advances, it is only natural that MLSP research 
has a broad application base. MLSP thus encompasses new 
theoretical frameworks for statistical signal processing (e.g. 
machine learning-based and information-theoretic signal 
processing), new and emerging paradigms in statistical signal 
processing (e.g. independent component analysis (ICA), kernel-
based methods, cognitive signal processing) and novel 
developments in these areas specialized to the processing of a 
variety of signals, including audio, speech, image, multispectral, 
industrial, biomedical, and genomic signals. 
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MLSP: Fast growing field
 IEEE Workshop on Machine Learning for Signal Processing

 Held this year in Beijing. Sep 18-21, http/mlsp2011.conwiz.dk/
 Several special interest groups

 IEEE  : multimedia and audio processing, machine learning and speech 
processing

 ACM
 ISCA

 Books Books
 In work: MLSP, P. Smaragdis and B. Raj

 Courses (18797 was one of the first)
 Used everywhere

 Biometrics: Face recognition, speaker identification
 User interfaces: Gesture UIs, voice UIs, music retrieval
 Data capture: OCR,. Compressive sensing
 Network traffic analysis: Routing algorithms, vehicular traffic..

 Synergy with other topics (text / genome)
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In this course
 Jetting through fundamentals:

 Signal Processing, Linear Algebra, Probability

 Machine learning concepts
 EM, various relevant estimation and classification techniques

 Sounds:
 Characterizing sounds
 Denoising speech
 Synthesizing speech
 Separating sounds in mixtures
 Processing music. 

 Images:
 Characterization
 Denoising
 Object detection and recognition
 Biometrics

 Representation:
 Transform methods
 Compressive sensing.

 Topics covered are representative
 Actual list to be covered may change, depending on how the course progresses
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Required Background

 DSP
 Fourier transforms, linear systems, basic statistical signal 

processing

 Linear Algebra
 Definitions, vectors, matrices, operations, properties, , , p , p p

 Probability
 Basics: what is an random variable, probability 

distributions, functions of a random variable

 Machine learning
 Learning, modelling and classification techniques
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Guest Lectures

 Several guest lectures by experts in the topics
 Alan Black (CMU)

 Statistical speech synthesis and Voice morphing

 Fernando de la Torre (CMU)
 Data representations

 Marios Savvides
 Iris recognition

 Paris Smaragdis (UIUC)
 Independent component analysis

 Petros Boufounos (Mitsubishi)
 Compressive Sensing
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Guest Lectures
 Several guest lectures by experts in the topics

 Rahul Sukhtankar (Google)
 Music retrieval

 Mario Berges
 Load monitoring

 Roger Dannenberg
 Music processing

 Iain Matthews (Disney) Iain Matthews (Disney)
 Active appearance models

 John McDonough
 Microphone arrays

 Subject to change
 Guest lecturers are notorious for having schedule changes �

 If the guest lecturer is unavailable, the topic will be covered by me
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Schedule of Other Lectures
 Early Lectures (the few weeks)

 Sep 1 : Linear algebra refresher

 Sep 5: More linear algebra

 Sep 8: Project ideas

 Sep 13: Representing sounds and images (DSP)

 Sep 15 : Eigen faces

 Sep 20: Boosting, Face detection

 Sep 22: Expectation Maximization

 Sep 27: Expectation Maximization and Clustering

 Sep 29: Latent Variable Models for Audio
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Schedule of Other Lectures
 Early Lectures (the few weeks)

 Oct 4 : Speech Synthesis (Black)

 Oct 6: Latent variable models: Shift invariance etc.

 Oct 11: Iris Recognition (Marios)

 Oct 13: Component Analysis (De La Torre) (2?)

 Oct 18: Linear classifiers and  regressions

 Oct 20: Sound Modification, Denoising

 Oct 25: Hidden Markov Models

 Oct 27: NMF, NMF for sounds, images, etc.

 Nov 1: Tracking and prediction: Kalman filters
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Schedule of Other Lectures
 Early Lectures (the few weeks)

 Nov 3: Paris Smaragdis Seminar

 Nov 8: Extended Kalman filtering

 Nov 10: Microphone array processing (McDonough)

 Nov 15: Active appearance models (Matthews)

 Nov 17: Bayes nets and Belief Propagation

 Nov 22: Independent Component Analysis

 Nov 24: Thanksgiving (no class)

 Nov 29: Compressive Sensing (Boufounos)

 Dec 1: Music Retrieval (Sukthankar)
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Grading
 Homework assignments : 50%
 Mini projects

 Will be assigned during course

 3 in all

 You will not catch up if you slack on any homework You will not catch up if you slack on any homework
 Those who didn’t slack will also do the next homework

 Final project: 50%
 Will be assigned early in course

 Dec 6: Poster presentation for all projects, with 
demos (if possible) 
 Partially graded by visitors to the poster
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Projects

 2010 list given as handout
 Multiple publications and one thesis problem

 2011: Exciting set of projects
 Project from NASA

 Sarnoff Labs

 Deputy Coroner of Fayette..
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Instructor and TA
 Instructor: Prof. Bhiksha Raj

 Room 6705 Hillman Building
 bhiksha@cs.cmu.edu
 412 268 9826

Hillman

Windows

My office

 TA: 
 Manuel Tragut
 Anoop Ramakrishna

 Office Hours:
 Bhiksha Raj:  Mon 3:00-4.00
 TA: TBD
 Available by email:   bhiksha@cs.cmu.edu

Forbes
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Additional Administrivia

 Website:
 http://mlsp.cs.cmu.edu/courses/fall2011/

 Lecture material will be posted on the day of each 
class on the website

 Reading material and pointers to additional Reading material and pointers to additional 
information will be on the website

 Discussion board
 blackboard.andrew.cmu.edu/
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Representing Data

 Audio

 Images
 Video

 Other types of signals
 In a manner similar to one of the above
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What is an audio signal
 A typical audio signal
 It’s a sequence of points

30 Aug 2011 11-755/18-797 22

Where do these numbers come from?
Pressure highs

Spaces between
arcs show pressure
lows

 Any sound is a pressure wave: alternating highs and lows of air 
pressure moving through the air

 When we speak, we produce these pressure waves
 Essentially by producing puff after puff of air
 Any sound producing mechanism actually produces pressure waves

 These pressure waves move the eardrum
 Highs push it in, lows suck it out
 We sense these motions of our eardrum as “sound”
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SOUND PERCEPTION
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Storing pressure waves on a computer
 The pressure wave moves a diaphragm

 On the microphone

 The motion of the diaphragm is converted to 
continuous variations of an electrical signal
 Many ways to do this

 A “sampler” samples the continuous signal at regular 
intervals of time and stores the numbers
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Are these numbers sound?

 How do we even know that the numbers we store on the 
computer have anything to do with speech really?
 Recreate the sense of sound

 The numbers are used to control the levels of an electrical 
signal

 The electrical signal moves a diaphragm back and forth to 
produce a pressure wavep p
 That we sense as sound

************

*
*

**
**

**

****

*

*
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Are these numbers sound?

 How do we even know that the numbers we store on the 
computer have anything to do with speech really?
 Recreate the sense of sound

 The numbers are used to control the levels of an electrical 
signal

 The electrical signal moves a diaphragm back and forth to 
produce a pressure wavep p
 That we sense as sound

************

*
*

**
**

**

****

*

*
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How many samples a second
 Convenient to think of sound in terms of 

sinusoids with frequency

 Sounds may be modelled as the sum of 
many sinusoids of different frequencies
 Frequency is a physically motivated unit

 Each hair cell in our inner ear is tuned to 0 10 20 30 40 50 60 70 80 90 100
-1

-0.5

0

0.5

1


P

re
ss

ur
e


A sinusoid

 Each hair cell in our inner ear is tuned to 
specific frequency

 Any sound has many frequency 
components
 We can hear frequencies up to 16000Hz

 Frequency components above 16000Hz 
can be heard by children and some young 
adults

 Nearly nobody can hear over 20000Hz. 
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Signal representation - Sampling
 Sampling frequency (or sampling rate) refers 

to the number of samples taken a second

 Sampling is measured in Hz

 We need a sample rate twice as high as the 
highest frequency we want to represent (Nyquist
freq)

 For our ears this means a sample rate of at least *

* *
**

**

**** For our ears this means a sample rate of at least 
40kHz

 Cause we hear up to 20kHz

 Common sample rates

 For speech 8kHz to 16kHz

 For music 32kHz to 44.1kHz

 Pro-equipment 96kHz

 When in doubt use 44.1kHz

* * *
*

Time in secs.
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Aliasing
 Low sample rates result in aliasing
 High frequencies are misrepresented

 Frequency f1 will become (sample rate – f1 )

 In video also when you see wheels go 
backwards
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Aliasing examples
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Avoiding Aliasing

 Sound naturally has all perceivable frequencies
 And then some

 Cannot control the rate of variation of pressure waves in 

Antialiasing
Filter

Sampling

Analog signal Digital signal

p
nature

 Sampling at any rate will result in aliasing

 Solution: Filter the electrical signal before sampling 
it
 Cut off all frequencies above samplingfrequency/2

 E.g., to sample at 44.1Khz, filter the signal to eliminate all 
frequencies above 22050 Hz
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Storing numbers on the Computer
 Sound is the outcome of a continuous range of 

variations
 The pressure wave can take any value (within limit)
 The diaphragm can also move continuously
 The electrical signal from the diaphragm has continuous 

variations

 A computer has finite resolution
 Numbers can only be stored to finite resolution
 E.g. a 16-bit number can store only 65536 values, while a 4-

bit number can store only 16 values
 To store the sound wave on the computer, the continuous 

variation must be “mapped” on to the discrete set of numbers 
we can store
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Mapping signals into bits

 Example of 1-bit sampling table

Signal Value Bit sequence Mapped to

S > 2.5v 1 1 * const

S <=2.5v 0 0 

Original Signal Quantized approximation
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Mapping signals into bits

 Example of 2-bit sampling table

Signal Value Bit sequence Mapped to

S >= 3.75v 11 3 * const

3.75v > S >= 2.5v 10 2 * const

2 5v > S >= 1 25v 01 1 * const2.5v > S >  1.25v 01 1  const

1.25v > S >= 0v 0 0 

Original Signal Quantized approximation
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Storing the signal on a computer

 The original signal

 8 bit quantization

 3 bit quantization

 2 bit quantization

 1 bit quantization
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Tom Sullivan Says his Name

 16 bit sampling

 5 bit sampling

 4 bit sampling

 3 bit sampling

 1 bit sampling
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A Schubert Piece
 16 bit sampling

 5 bit sampling

 4 bit sampling

 3 bit sampling

 1 bit sampling
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Quantization Formats
 Sampling can be uniform
 Sample values equally spaced out

Signal Value Bits Mapped to

S >= 3.75v 11 3 * const

3.75v > S >= 2.5v 10 2 * const

2.5v > S >= 1.25v 01 1 * const

1 25 S 0 0 0

 Or nonuniform

1.25v > S >= 0v 0 0 

Signal Value Bits Mapped to

S >= 4v 11 4.5 * const

4v > S >= 2.5v 10 3.25 * const

2.5v > S >= 1v 01 1.25 * const

1.0v > S >= 0v 0 0.5 * const 
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Uniform Quantization

UPON BEING SAMPLED AT ONLY 3 BITS (8 LEVELS)
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Uniform Quantization

 At the sampling instant, the actual value of the 
waveform is rounded off to the nearest level 
permitted by the quantization

 Values entirely outside the range are quantized 
to either the highest or lowest values
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Uniform Quantization

 There is a lot more action in the central region than outside.

 Assigning only four levels to the busy central region and 
four entire levels to the sparse outer region is inefficient

 Assigning more levels to the central region and less to the 
outer region can give better fidelity
 for the same storage
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Non-uniform Quantization

 Assigning more levels to the central region and less to the 
outer region can give better fidelity for the same storage
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Non-uniform Quantization
Uniform

Non uniform

 Assigning more levels to the central region and less to the 
outer region can give better fidelity for the same storage

Non-uniform
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Non-uniform Sampling
Original Uniform Nonuniform

 At the sampling instant, the actual value of the 
waveform is rounded off to the nearest level 
permitted by the quantization

 Values entirely outside the range are quantized 
to either the highest or lowest values

30 Aug 2011 11-755/18-797 45

Non-uniform Sampling
NonlinearUniform

Analog value
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 Uniform sampling maps uniform widths of the analog signal to units 
steps of the quantized signal

 In non-uniform sampling the step sizes are smaller near 0 and wider 
farther away
 The curve that the steps are drawn on follow a logarithmic law:  

 Mu Law:  Y  =  C. log(1 + X/C)/(1+)

 A Law:  Y =  C. (1 + log(a.X)/C)/(1+a)

 One can get the same perceptual effect with 8bits of non-linear 
sampling as 12bits of linear sampling
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Storage based on prediction

*
*

* *
*

**

Actual observed sample

Sample predicted based on trend

Prediction error; store only this

 “Predict” the next sample and store the difference between the value 
we predict and what we actually see using a small number of bits

 To reconstruct, predict the next sample and add the stored 
difference back in

 Variety of formats:  DPCM, ADPCM.

 Coding schemes: LPC based methods (G728,G729), Mpeg, Ogg 
Vorbis, …
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Dealing with audio

 Capture / read audio in the format provided by the file or hardware
 Linear PCM Mu-law A-law Coded

Signal Value Bits Mapped to

S >= 3.75v 11 3

3.75v > S >= 2.5v 10 2

2.5v > S >= 1.25v 01 1

1.25v > S >= 0v 0 0 

Signal Value Bits Mapped to

S >= 4v 11 4.5

4v > S >= 2.5v 10 3.25

2.5v > S >= 1v 01 1.25

1.0v > S >= 0v 0 0.5

 Linear PCM, Mu-law, A-law, Coded

 Convert to 16-bit PCM value
 I.e. map the bits onto the number on the right column

 This mapping is typically provided by a table computed from the sample 
compression function

 No lookup for data stored in PCM

 Conversion from Mu law:
 http://www.speech.cs.cmu.edu/comp.speech/Section2/Q2.7.html
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Common Audio Capture Errors

 Gain/Clipping: High gain 
levels in A/D can result in 
distortion of the audio

 Antialiasing:  If the audio is g
sampled at N kHz, it must 
first be low-pass filtered at  < 
N/2 kHz
 Otherwise high-frequency 

components will alias into lower 
frequencies and distort them
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Images
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Images

30 Aug 2011 11-755/18-797 51

The Eye

Retina

Basic Neuroscience: Anatomy and Physiology Arthur C. Guyton, M.D. 1987 W.B.Saunders Co.
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The Retina

http://www.brad.ac.uk/acad/lifesci/optometry/resources/modules/stage1/pvp1/Retina.html
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Rods and Cones

 Separate Systems
 Rods

 Fast
 Sensitive
 predominate in the 

peripheryperiphery

 Cones
 Slow
 Not so sensitive
 Fovea / Macula
 COLOR!

Basic Neuroscience: Anatomy and Physiology Arthur C. Guyton, M.D. 1987 W.B.Saunders Co.
30 Aug 2011 11-755/18-797 54
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The Eye

 The density of cones is highest at the fovea
 The region immediately surrounding the fovea is the macula

 The most important part of your eye: damage == blindness

 Peripheral vision is almost entirely black and white

 Eagles are bifoveate
 Dogs and cats have no fovea, instead they have an elongated slit
30 Aug 2011 11-755/18-797 55

Spatial Arrangement of the Retina

(From Foundations of Vision, by Brian Wandell, Sinauer Assoc.)
30 Aug 2011 11-755/18-797 56

Three Types of Cones (trichromatic 
vision)
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Trichromatic Vision

 So-called “blue” light sensors respond to an 
entire range of frequencies
 Including in the so-called “green” and “red” 

regions

 The difference in response of “green” and The difference in response of green  and 
“red” sensors is small
 Varies from person to person

 Each person really sees the world in a different color

 If the two curves get too close, we have color 
blindness
 Ideally traffic lights should be red and blue
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White Light

30 Aug 2011 11-755/18-797 59

Response to White Light

??

30 Aug 2011 11-755/18-797 60
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Response to White Light
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Response to Sparse Light

?
30 Aug 2011 11-755/18-797 62

Response to Sparse Light
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Human perception anomalies

Dim Bright

 The same intensity of monochromatic light will result in 
different perceived brightness at different wavelengths

 Many combinations of wavelengths can produce the 
same sensation of colour.

 Yet humans can distinguish 10 million colours
30 Aug 2011 11-755/18-797 64

Representing Images

 Utilize trichromatic nature of human vision
 Sufficient to trigger each of the three cone types in a manner that produces 

the sensation of the desired color
 A tetrachromatic animal would be very confused by our computer images

 Some new-world monkeys are tetrachromatic

 The three “chosen” colors are red (650nm), green (510nm) and blue 
(475nm)
 By appropriate combinations of these colors, the cones can be excited to 

produce a very large set of colours
 Which is still a small fraction of what we can actually see

 How many colours? …30 Aug 2011 11-755/18-797 65

The “CIE” colour space
 From experiments done in the 1920s by W. 

David Wright and John Guild 
 Subjects adjusted x,y,and z on the right of a 

circular screen to match a colour on the left

 X, Y and Z are normalized responses of the 
three sensors
 X + Y + Z is 1.0

International council on illumination, 1931

 Normalized to have to total net intensity

 The image represents all colours a person can 
see
 The outer curved locus represents monochromatic 

light
 X,Y and Z as a function of 

 The lower line is the line of purples
 End of visual spectrum

 The CIE chart was updated  in 1960 and 1976
 The newer charts are less popular

30 Aug 2011 11-755/18-797 66
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What is displayed
 The RGB triangle

 Colours outside this area cannot be matched 
by combining only 3 colours
 Any other set of monochromatic colours would 

have a differently restricted area

 TV images can never be like the real world

 Each corner represents the (X,Y,Z) Each corner represents the (X,Y,Z) 
coordinate of one of the three “primary” 
colours used in images

 In reality, this represents a very tiny 
fraction of our visual acuity
 Also affected by the quantization of levels of 

the colours
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Representing Images on Computers
 Greyscale: a single matrix of numbers

 Each number represents the intensity of the image at a 
specific location in the image

 Implicitly, R = G = B at all locations

 Color: 3 matrices of numbers
 The matrices represent different things in different 

representations

 RGB Colorspace: Matrices represent intensity of Red, 
Green and Blue

 CMYK Colorspace:  Cyan, Magenta, Yellow

 YIQ Colorspace..

 HSV Colorspace..
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Computer Images: Grey Scale
R = G = B. Only a single number need
be stored per pixel

Picture Element (PIXEL)
Position & gray value (scalar)
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What we see What the computer “sees”

10

10
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Image Histograms
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Example 
histograms

From:  Digital Image 
Processing,

by Gonzales and Woods, 
Addison Wesley, 1992
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Pixel operations

 New value is a function of the old value
 Tonescale to change image brightness

 Threshold to reduce the information in an image

 Colorspace operations
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J=1.5*I
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Saturation
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J=0.5*I
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J=uint8(0.75*I)
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What’s this?
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Non-Linear Darken
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Non-Linear Lighten
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Linear vs. Non-Linear
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Color Images

Picture Element (PIXEL)
Position & color value (red, green, blue)
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RGB Representation

RR

original
B

G

B

G
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RGB Manipulation Example: Color Balance

RR

original
B

G

B

G

30 Aug 2011 11-755/18-797 84



8/29/2011

15

The CMYK color space

 Represent 
colors in terms 
of cyan, yellow 

d tand magenta
 The “K” stands 

for “Key”, not 
“black”

Blue
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CMYK is a subtractive representation

 RGB is based on composition, i.e. it is an additive representation
 Adding equal parts of red, green and blue creates white

 What happens when you mix red, green and blue paint?
 Clue – paint colouring is subtractive..

 CMYK is based on masking, i.e. it is subtractive
 The base is white
 Masking it with equal parts of C, M and Y creates Black
 Masking it with C and Y creates Green

 Yellow masks blue
 Masking it with M and Y creates Red

 Magenta masks green
 Masking it with M and C creates Blue

 Cyan masks green
 Designed specifically for printing

 As opposed to rendering
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An Interesting Aside

 Paints create subtractive coloring
 Each paint masks out some colours
 Mixing paint subtracts combinations of colors
 Paintings represent subtractive colour masks

 In the 1880s Georges-Pierre Seurat pioneered an 
additive-colour technique for painting based on “pointilism”
 How do you think he did it?
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NTSC color components

Y = “luminance” 

I = “red-green” 

Q = “blue-yellow”

a.k.a. YUV although 
YUV is actually the 
color specification 
for PAL video
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YIQ Color Space
Green

Y

.299 .587 .114

.596 .275 .321

.212 .523 .311

Y R

I G

Q B

     
            
          

Red
Blue

IQ
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Color Representations
R

G

B

Y

IQ

 Y value lies in the same range as R,G,B ([0,1])
 I is to [-0.59 0.59]
 Q is limited to [-0.52 0.52]
 Takes advantage of lower human sensitivity to I and 

Q axes 

B
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YIQ

 Top: Original image
 Second: Y
 Third: I (displayed as red-cyan)
 Fourth: Q (displayed as green-

magenta)
 From http://wikipedia.org/

 Processing (e.g. histogram 
equalization) only needed on Y
 In RGB must be done on all three 

colors. Can distort image colors
 A black and white TV only needs Y
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Bandwidth (transmission resources) for the components of 
the television signal
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Luminance Chrominance

0                   1                   2                  3                   4

a
m

frequency (MHz)

Understanding image perception allowed NTSC to add color to the black 
and white television signal. The eye is more sensitive to I than Q, so 
lesser bandwidth is needed for Q. Both together used much less than Y, 
allowing for color to be added for minimal increase in transmission 
bandwidth.
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Hue, Saturation, Value

The HSV Colour Model    By Mark Roberts     
http://www.cs.bham.ac.uk/~mer/colour/hsv.html

V = [0,1], S = [0,1]
H = [0,360]

Blue
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HSV

 V = Intensity
 0 = Black

 1 = Max (white at S = 0)

 S = 1:
 As H goes from 0 (Red) 

to 360, it represents a 
different combinations of 
2 colors

 As S->0, the color 
components from the 
opposite side of the 
polygon increase

V = [0,1], S = [0,1]
H = [0,360]
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Hue, Saturation, Value

Max  is the maximum of (R,G,B)
Min is the minimum of (R,G,B)
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HSV

 Top: Original image

 Second H (assuming S = 1, V = 1)

 Third S (H=0, V=1)

 Fourth V (H=0, S=1)

H

S

V
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Quantization and Saturation 

 Captured images are typically quantized to N-bits

 Standard value: 8 bits

 8-bits is not very much < 1000:1

 Humans can easily accept 100,000:1
 And most cameras will give you 6-bits anyway And most cameras will give you 6 bits anyway…
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Processing Colour Images

 Typically work only on the Grey Scale image
 Decode image from whatever representation to 

RGB

 GS = R + G + B

The Y of YIQ may also be used The Y of YIQ may also be used
 Y is a linear combination of R,G and B

 For specific algorithms that deal with colour, 
individual colours may be maintained
 Or any linear combination that makes sense may 

be maintained.
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Reference Info

 Many books
 Digital Image Processing, by Gonzales and 

Woods, Addison Wesley, 1992

 Computer Vision: A Modern Approach, by David 
A Forsyth and Jean PonceA. Forsyth and Jean Ponce 

 Spoken Language Processing: A Guide to Theory, 
Algorithm and System Development, by Xuedong 
Huang, Alex Acero and Hsiao-Wuen Hon
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