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Signal Separation from Monaural 
Recordings
 The problem:p
 Multiple sources are producing sound 

simultaneously
 The combined signals are recorded over a single 

microphone
 The goal is to selectively separate out the signal 

for a target source in the mixture
 Or at least to enhance the signals from a selected Or at least to enhance the signals from a selected 

source
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Problem Specification
 The mixed signal contains 

components from multiple 
sources

 Each source has its own “bases”
 In each frame

+ =a b

 Each source draws from its own 
collection of bases to compose a 
spectrum
 Bases are selected with a frame 5158399681444811645598 114722436947224991327274453 1147201737111371387520453 91127246947720351510127411501502 5158399681444811645598 114722436947224991327274453 1147201737111371387520453 91127246947720351510127411501502 Bases are selected with a frame 

specific mixture weight
 The overall spectrum is a mixture 

of the spectra of individual 
sources

399 369 7 69 83996 22436947 201737 2469477

sources
 I.e. a histogram combining draws 

from both sources

 Underlying model: Spectra are 
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histograms over frequencies
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Ball-and-urn model for a mixed signal
Th ll !!The caller!!
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 Each sound source is represented by its own picker and urns
 Urns represent the distinctive spectral structures for that source
 Assumed to be known beforehand (learned from some separate training data)

 The caller selects a picker at random
 The picker selects an urn randomly and draws a ball
 The caller calls out the frequency on the ball
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 A spectrum is a histogram of frequencies called out
 The total number of draws of any frequency includes contributions from both sources
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Separating the sources
 Goal: Estimate number of draws from each source

 The probability distribution for the mixed signal is a linear 
combination of the distribution of the individual sourcescombination of the distribution of the individual sources

 The individual distributions are mixture multinomials
 And the urns are known

  fPPPfPPPfP )|()|()()|()|()()(

)|()()|()()( 2211 sfPsPsfPsPfP ttttt 
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G l E ti t b f d f h
Separating the sources
 Goal: Estimate number of draws from each source

 The probability distribution for the mixed signal is a linear 
combination of the distribution of the individual sources
Th i di id l di t ib ti i t lti i l The individual distributions are mixture multinomials

 And the urns are known
 Estimate remaining terms using EM

  fPPPfPPPfP )|()|()()|()|()()(

)|()()|()()( 2211 sfPsPsfPsPfP ttttt 
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Algorithm
 For each frame:

 Initialize Pt(s)t( )
 The fraction of balls obtained from source s
 Alternately, the fraction of energy in that frame from source s
Initialize P (z|s) Initialize Pt(z|s)
 The mixture weights of the urns in frame t for source s

 Reestimate the above two iteratively

 Note: P(f|z s) is not frame dependent Note:  P(f|z,s) is not frame dependent
 It is also not re-estimated
 Since it is assumed to have been learned from separately 
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obtained unmixed training data for the source
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Iterative algorithm
 Iterative process:

 Compute a posteriori probability of the combination of 
speaker s and the zth urn for each speaker for each fspeaker s and the zth urn for each speaker for each f

 

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 Compute mixture weight of zth urn for speaker s 
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What is Pt(s,z|f)
 Compute how each ball (frequency) is split between the urns of 

the various sources
 The ball is first split between the sources The ball is first split between the sources
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 The fraction of the ball attributed to any source s is split between 
its urns:
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 The portion attributed to any urn of any source is a product of the 
two
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Reestimation
 The reestimate of source weights is simply 

the proportion of all balls that was attributed 
to the sources
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 The reestimate of mixture weights is the 
ti f ll b ll tt ib t d t hproportion of all balls attributed to each urn
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Separating the Sources

 For each frame:
 Given
 St(f) – The spectrum at frequency f of the mixed 

i lsignal
 Estimate
 St,i(f) – The spectrum of the separated signal for 

the i-th source at frequency f
A i l i t i i ti t A simple maximum a posteriori estimator

 ttit fszPfSfS )|,()()(ˆ
,
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If we have only have bases for one source?

 Only the bases for one of the two sources is 
igiven

 Or, more generally, for N-1 of N sources

  fPPPfPPPfP )|()|()()|()|()()(
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If we have only have bases for one source?

 Only the bases for one of the two sources is given
 Or more generally for N 1 of N sources Or, more generally, for N-1 of N sources
 The unknown bases for the remaining source must also be 

estimated!

  fPPPfPPPfP )|()|()()|()|()()(
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Partial information: bases for one source 
unknown
 P(f|z s) must be initialized for the additional P(f|z,s) must be initialized for the additional 

source
Estimation procedure now estimates bases Estimation procedure now estimates bases 
along with mixture weights and source 
probabilitiesprobabilities
 From the mixed signal itself

 The final separation is done as before The final separation is done as before
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Iterative algorithm
 Iterative process:

 Compute a posteriori probability of the combination of 
speaker s and the zth urn for the speaker for each fspeaker s and the zth urn for the speaker for each f
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Partial information: bases for one source 
unknown
 P(f|z s) must be initialized for the additional P(f|z,s) must be initialized for the additional 

source
Estimation procedure now estimates bases Estimation procedure now estimates bases 
along with mixture weights and source 
probabilitiesprobabilities
 From the mixed signal itself

 The final separation is done as before The final separation is done as before
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Separating Mixed Signals: Examples

 “Raise my rent” by David 
Gilmour  Norah Jones singing “Sunrise”Gilmour

 Background music “bases” 
learnt from 5-seconds of 

 Norah Jones singing Sunrise

 A more difficult problem:
 Original audio clipped!

music-only segments within 
the song  Background music bases 

learnt from 5 seconds of 
music-only segments
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 Lead guitar “bases” bases 
learnt from the rest of the song

music only segments
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Where it works

 When the spectral structures of the two 
d di ti tsound sources are distinct

 Don’t look much like one another
E V l d i E.g. Vocals and music

 E.g. Lead guitar and music

 Not as effective when the sources are similar
 Voice on voice Voice on voice
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Separate overlapping speech

 Bases for both speakers learnt from 5 second 
recordings of individual speakers

 Shows improvement of about 5dB in Speaker-to-
Speaker ratio for both speakers
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Speaker ratio for both speakers
 Improvements are worse for same-gender mixtures
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How about non-speech data
19x19 images = 361 dimensional vectors

 We can use the same model to represent other data
 Images: 

 Every face in a collection is a histogram
 Each histogram is composed from a mixture of a fixed number of 

multinomials
 All faces are composed from the same multinomials but the manner in which the All faces are composed from the same multinomials, but the manner in which the 

multinomials are selected differs from face to face
 Each component multinomial is also an image

 And can be learned from a collection of faces
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 Component multinomials are observed to be parts of faces
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How many bases can we learn
 The number of bases that must be learned is a 

fundamental questionfundamental question
 How do we know how many bases to learn
 How many bases can we actually learn computationally

 A key computational problem in learning bases:
Th b f b l tl i t i t d b The number of bases we can learn correctly is restricted by 
the dimension of the data

 I.e., if the spectrum has F frequencies, we cannot estimate 
more than F-1 component multinomials reliably
 Why?
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Indeterminacy in Learning Bases
 Consider the four histograms 

to the right
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 All of them are mixtures of the 
same K component 
multinomials B1 B2

 For K < 3, a single global 
solution may exist
 I.e there may be a unique set

B1 B2

 I.e there may be a unique set 
of component multinomials 
that explain all the 
multinomials
 With error – model will not be 

perfect
 For K = 3 a trivial solution 
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exists
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Indeterminacy
 Multiple solutions for K = 3..

 We cannot learn a non-
trivial set of “optimal” bases 
from the histograms

 The component 
multinomials we do learn tell 
us nothing about the data

 For K > 3, the problem only 

3

2

1

2

1

3

1

3

2

1

22

gets worse
 An inifinite set of solutions 

are possible 1 1 1
B1 B2 B3

 E.g. the trivial solution plus 
a random basis

0 0 0 0 0 0
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Indeterminacy in signal representations

 Spectra:
 If our spectra have D frequencies (no of unique indices in If our spectra have D frequencies (no. of unique indices in 

the DFT) then..
 We cannot learn D or more meaningful component 

multinomials to represent themmultinomials to represent them
 The trivial solution will give us D components, each of which 

has probability 1.0 for one frequency and 0 for all others
 This does not capture the innate spectral structures for the 

source

 Images: Not possible to learn more than P-1 g p
meaningful component multinomials from a 
collection of P-pixel images
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How many bases to represent sounds/images?
 In each case, the bases represent “typical unit structures”

 Notes
 Phonemes Phonemes
 Facial features..

 How many notes in music
 Several octaves Several octaves
 Several instruments

 The typical sounds in speech –
 Many phonemes, many variations, can number in the thousands Many phonemes, many variations, can number in the thousands

 Images:
 Millions of units that can compose an image – trees, dogs, walls, sky, etc. 

etc. etc…

 To model the data well, all of these must be represented
 More bases than dimensions
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Overcomplete Representations
 Representations where there are more bases than dimensions are 

called Overcompletep
 E.g. more multinomial components than dimensions
 Overcomplete representations are required to represent the world 

adequatelyq y
 The complexity of the world is not restricted by the dimensionality of our representations!

 Overcomplete representations are difficult to compute
 Straight-forward computation results in indeterminate solutions

 Additional constraints must be imposed in the learning process to p g p
learn more components than dimensions

 We will require our solutions to be sparse

11755/18797
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SPARSE Decompositions

 Allow any arbitrary number of bases (urns)

5158399681444811645 598 114722436947224991327274453 1147201737111371387520453 911272469477203515101274115015025158399681444811645598 114722436947224991327274453 11472017371113713875204535158399681444811645 598 114722436947224991327274453 1147201737111371387520453

 Overcomplete

 Specify that for any specific frame only a small number of bases may be 
usedused
 Although there are many spectral structures, any given frame only has a few of 

these

 In other words, the mixture weights with which the bases are combined 
must be sparse
 Have non-zero value for only a small number of bases
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 Alternately, be of the form that only a small number of bases contribute 
significantly
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The history of sparsity
 The search for “sparse” decompositions has a long history

 Even outside the scope of overcomplete representations

S C f A landmark paper: Sparse Coding of Natural Images Produces Localized, 
Oriented, Bandpass Receptive Fields, by Olshausen and Fields
 “The images we typically view, or natural scenes, constitute a minuscule fraction of the 

space of all possible images. It seems reasonable that the visual cortex, which has 
evolved and developed to effectively cope with these images, has discovered efficient 
coding strategies for representing their structure. Here, we explore the hypothesis that 
the coding strategy employed at the earliest stage of the mammalian visual cortex 
maximizes the sparseness of the representation. We show that a learning algorithm 
th t tt t t fi d li d f t l ill d l ti fi ldthat attempts to find linear sparse codes for natural scenes will develop receptive fields 
that are localized, oriented, and bandpass, much like those in the visual system.” 

 Images can be described in terms of a small number of descriptors from a large set
 E.g. a scene is “a grapevine plus grapes plus a fox plus sky”

 Other studies indicate that human perception may be based on sparse 
compositions of a large number of “icons”

 The number of sensors (rods/cones in the eye, hair cells in the ear) is much 
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( y , )
smaller than the number of visual / auditory objects in the world around us
 The internal representation of images must be overcomplete
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Estimating Mixture Weights given Multinomials

 Basic estimation: Maximum likelihood
 ArgmaxW log P(X ; B,W)  = ArgmaxW f X(f)log(i wi Bi(f))

 Modified estimation: Maximum a posteriori
 Denote W = [w1 w2 .. ]  (in vector form)
 ArgmaxW f X(f)log(i wi Bi(f)) + log P(W)

 Sparsity obtained by enforcing an a priori probability 
distribution P(W) over the mixture weights that ( ) g
favors sparse mixture weights

The algorithm for estimating weights must be
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 The algorithm for estimating weights must be 
modified to account for the priors
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The a priori distribution
 A variety of a priori probability distributions all 

provide a bias towards “sparse” solutionsprovide a bias towards sparse  solutions

 The Dirichlet prior:p
 P(W) = Z* i wi



 The entropic prior:
 P(W) = Z*exp(-H(W))

 H(W) = entropy of W = -i wi log(wi)
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A simplex view of the world
(1,0,0)

(0,0,1)

(0,1,0)(0,0,1)(1,0,0)

(0,1,0)

 The mixture weights are a probability distribution
 i wi = 1.0

 They can be viewed as a vector
 W = [w0 w1 w2 w3 w4 …]
 The vector components are positive and sum to 1.0

 All probability vectors lie on a simplex
 A convex region of a linear subspace in which all vectors sum to 

1 0
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1.0
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Probability Simplex
(1,0,0)

(0 1 0)(0 0 1)

 The sparsest probability vectors lie on the vertices of the simplex

(0,1,0)(0,0,1)

p p y p
 The edges of the simplex are progressively less sparse

 Two-dimensional edges have 2 non-zero elements
 Three-dimensional edges have 3 non-zero elements Three dimensional edges have 3 non zero elements
 Etc.
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Sparse Priors: Dirichlet

P(W) = Z* i wi


=0.5

 For alpha < 1, sparse probability vectors are 
more likely than dense ones
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Sparse Priors: The entropic prior

P(W) = Z*exp(-H(W))

=0.5

 Vectors (probability distributions) with low entropy 
are more probable than those with high entropy
 Low entropy distributions are sparse!
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 Low-entropy distributions are sparse!
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Optimization with the entropic prior
 The objective function

Argmax  X(f)log( w B (f)) H(W)ArgmaxW X X(f)log(i wi Bi(f)) - H(W)

 By estimating W such that the above By estimating W such that the above 
equation is maximized, we can derive 
minimum entropy solutionsminimum entropy solutions
 Jointly optimize W for predicting the data while 

minimizing its entropyg y
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The Expectation Maximization Algorithm
 The parameters are actually learned using the Expectation 

Maximization (EM) algorithm
 The EM algorithm actually optimizes the following objective 

function

Q  P(Z | f) X(f)l (P(Z) P(f|Z)) H({P(Z)}) Q = X P(Z | f) X(f)log(P(Z) P(f|Z)) - H({P(Z)})
 P(Z) = wz, {P(Z)} = W

 The second term here is derived from the entropic prior
O i i i f h b d l i h f ll i Optimization of the above needs a solution to the following

0))(log1(
)(

)|(),(




 zP

fzPftS

t
f

t

 The solution requires a new function: 
 The lambert W function

))(g(
)(zP t

t
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Lambert’s W Function
 Lambert’s W function is the solution to:

W + log(W) = X
W0(x)

 Where W = F(X) is the Lambert function
 Alternately, the inverse function of

 X = W exp(W)
 In general, a multi-valued function
 If X is real, W is real for X > -1/e

 Still multi-valued
 If we impose the restriction W > -1 and W == real we get the zeroth 

branch of the W function
 Single valued

 For W < -1 and W == real we get the -1th branch of the W function
 Single valued
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Estimating W0(z)
 An iterative solution

Newton’s Method Newton s Method

 Halley Iterationsy

 Code for Lambert’s W function is available on 
wikipedia
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wikipedia
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Solutions with entropic prior
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 The update rules are the same as before, with one minor modification
 To estimate the mixture weights, the above two equations must be 

iterated 
 To convergence
 Or just for a few iterations

 Alpha is the sparsity factor
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 Pt(z) must be initialized randomly
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Learning Rules for Overcomplete Basis Set

 Exactly the same as earlier, with the 
modification that P (z) is now estimated to bemodification that Pt(z) is now estimated to be 
sparse

Initialize P (z) for all t and P(f|z) Initialize Pt(z) for all t and P(f|z)
 Iterate
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A Simplex Example for Overcompleteness

 Synthetic data: Four clusters of data within the probability simplex
R l l i ith 3 b l l i t i l Regular learning with 3 bases learns an enclosing triangle

 Overcomplete solutions without sparsity restults in meaningless 
solutions
S l d l h di ib i f h d
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 Sparse overcomplete model captures the distribution of the data
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Sparsity can be employed without 
overcompleteness
 Overcompleteness requires sparsity Overcompleteness requires sparsity

 Sparsity does not require overcompletenessSparsity does not require overcompleteness
 Sparsity only imposes the constraint that the data 

are composed from a mixture of as few 
multinomial components as possible

 This makes no assumption about 
l tovercompleteness
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Examples without overcompleteness

 Left panel, Regular learning: most bases have significant energy in all frames

11755/18797

Left panel, Regular learning: most bases have significant energy in all frames
 Right panel, Sparse learning: Fewer bases active within any frame

 Sparse decomposiions result in more localized activation of bases
 Bases, too, are better defined in their structure6 Oct 2011 44



Face Data: The effect of sparsity
 As solutions get more sparse, bases 

become more informative High-entropy mixture weights
 In the limit, each basis is a complete 

face by itself.
 Mixture weights simply select face

 Solution also allows for mixture 
weights to have maximum entropy

Maximally dense i e minimally sparse Maximally dense, i.e. minimally sparse
 The bases become much more 

localized components No sparsity
 The sparsity factor allows us to tune 

the bases we learn Sparse mixture weights
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Benefit of overcompleteness

 19x19 pixel images (361 pixels)p g ( p )
 Up to1000 bases trained from 2000 faces
 SNR of reconstruction from overcomplete basis set more than 

10dB better than reconstruction from corresponding “compact”

11755/18797

10dB better than reconstruction from corresponding compact  
(regular) basis set
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Signal Processing: How

 Exactly as before
 Learn an overcomplete set of bases
 For each new data vector to be processed, 

compute the optimal mixture weights
 Constrainting the mixture weights to be sparse 

now
 Use the estimated mixture weights and the 

b t f dditi l ibases to perform additional processing
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Signal Separation with Overcomplete Bases
 Learn overcomplete bases for each source
 For each frame of the mixed signal 

 Estimate prior probability of source and mixture weights for each source
 Constraint: Use sparse learning for mixture weights

 Estimate separated signals as   ttit fszPfSfS )|,()()(ˆ
, 

z
,

  fPPPfPPPfP )|()|()()|()|()()(

)|()()|()()( 2211 sfPsPsfPsPfP ttttt 
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Sparse Overcomplete Bases: Separation
 3000 bases for each of the speakers

 The speaker-to-speaker ratio typically doubles (in dB) w.r.t “compact” bases

Regular bases

Panels 2 and 3: Regular learning

Panels 4 and 5 Sparse learning

Sparse bases

Panels 4 and 5: Sparse learning
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The Limits of Overcompleteness

 How many bases can we learn?
 The limit is: as many bases as the number of 

vectors in the training data
 Or rather, the number of distinct histograms in the 

training data
 Since we treat each vector as a histogram Since we treat each vector as a histogram

 It is not possible to learn more than this 
number regardless of sparsitynumber regardless of sparsity
 The arithmetic supports it, but the results will be 

meaningless
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meaningless
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Working at the limits of overcompleteness: 
The “Example-Based” Model

Every training vector is a basis Every training vector is a basis
 Normalized to be a distribution

 Let S(t f) be the tth training vector Let S(t,f) be the t training vector
 Let T be the total number of training vectors
 The total number of bases is T The total number of bases is T
 The kth basis is given by

 B(k,f) = S(k,f) / fS(k,f) = S(k,f) / |S(k,f)|1( ) ( ) f ( ) ( ) | ( )|1
 Learning bases requires no additional learning steps 

besides simply collecting (and computing spectra 
f ) t i i d t

11755/18797

from) training data
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The example based model – an illustration

 In the above example all training data lie on the curve shown (Left 
Panel)
 Each of them is a vector that sums to 1.0

 The learning procedure for bases learns multinomial components that 
are linear combinations of the data (Middle Panel)
 These can lie anywhere within the area enclosed by the data
 The layout of the components hides the actual structure of the layout of the 

data
 The example based representation captures the layout of the data 

perfectly (right panel)
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perfectly (right panel)
 Since the data are the bases

6 Oct 2011 52



Signal Processing with the Example Based 
Model
 All previously defined operations can be All previously defined operations can be 

performed using the example based model 
exactly as beforeexactly as before
 For each data vector, estimate the optimal mixture 

weights to combine the basesg
 Mixture weights MUST be estimated to be sparse

 The example based representation is simply 
a special case of an overcomplete basis set
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Speaker Separation Example

 Speaker-to-interference ratio of separated 
speakers

State of the art separation res lts
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 State-of-the-art separation results
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Example-based model: All the training 
data?

I i i l d t ll t i i d t In principle, no need to use all training data 
as the model

A well selected subset will do A well-selected subset will do
 E.g. – ignore spectral vectors from all pauses and 

non-speech regions of speech samplesnon speech regions of speech samples
 E.g. – eliminate spectral vectors that are nearly 

identical
 The problem of selecting the optimal set of 

training examples remains open, however
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Summary So Far
 PLCA:

 The basic mixture-multinomial model for audio (and other The basic mixture multinomial model for audio (and other 
data)

 Sparse Decomposition: Sparse Decomposition:
 The notion of sparsity and how it can be imposed on 

learning

 Sparse Overcomplete Decomposition:
 The notion of overcomplete basis set

 Example-based representations
 Using the training data itself as our representation
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 Using the training data itself as our representation
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