11-755 Machine Learning for Signal Processing

Latent Variable Models and
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Summary So Far

PLCA:

o The basic mixture-multinomial model for audio (and other
data)

Sparse Decomposition:

o The notion of sparsity and how it can be imposed on
learning

Sparse Overcomplete Decomposition:
o The notion of overcomplete basis set

Example-based representations
o Using the training data itself as our representation
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‘ Next up: Shift/ Transform Invariance
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= Sometimes the “typical” structures that

compose a sound are wider than one spectral
frame

o E.g. In the above example we note multiple
examples of a pattern that spans several frames
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= Sometimes the “typical”’ structures that compose a
sound are wider than one spectral frame

o E.g. In the above example we note multiple examples of a
pattern that spans several frames

= Multiframe patterns may also be local in frequency

o E.g. the two green patches are similar only in the region
enclosed by the blue box

11 Oct 2011 11755/18797



Patches are more representative than tframes

= Four bars from a music example

= The spectral patterns are actually patches
o Not all frequencies fall off in time at the same rate

= The basic unit is a spectral patch, not a spectrum
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Images: Patches often form the image
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A typical image component may be viewed as a
patch

a The alien invaders
o Face like patches

o A car like patch
overlaid on itself many times..
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Shift-invariant modelling

A shift-invariant model permits individual
bases to be patches

Each patch composes the entire image.

The data is a sum of the compositions from
iIndividual patches
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‘ Shift Invariance in one Dimension
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= Our bases are now “patches”
o Typical spectro-temporal structures

= The urns now represent patches
o Each draw results in a (t,f) pair, rather than only f
o Also associated with each urn: A shift probability distribution P(T|z)

= The overall drawing process is slightly more complex

= Repeat the following process:
o Select an urn Z with a probability P(Z)
o Draw avalue T from P(t|2)
o Draw (t,f) pair from the urn
o Add to the histogram at (t+T, f)
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Shift Invariance in one Dimension
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The process is shift-invariant because the
probabllity of drawing a shift P(T|Z) does not
affect the probability of selecting urn Z

Every location in the spectrogram has
contributions from every urn patch
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Shift Invariance in one Dimension
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The process is shift-invariant because the

probabillity of drawing a shift P(T|Z) does not
affect the probability of selecting urn Z

Every location in the spectrogram has
contributions from every urn patch
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Shift Invariance in one Dimension
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The process is shift-invariant because the
probabllity of drawing a shift P(T|Z) does not
affect the probability of selecting urn Z

Every location in the spectrogram has
contributions from every urn patch
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Probability of drawing a particular (t,f) combination

P(t, f) =) P(2)) P(z|2)P(t-7,f |2)

The parameters of the model:

o P(t,f|z) — the urns

o P(T|z) — the urn-specific shift distribution
o P(z) — probability of selecting an urn

The ways in which (t,f) can be drawn:

o Select any urn z

o Draw T from the urn-specific shift distribution
o Draw (t-T,f) from the urn

The actual probability sums this over all shifts and urns
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Learning the Model

The parameters of the model are learned analogously to the manner in
which mixture multinomials are learned

Given observation of (t,f), it we knew which urn it came from and the shift,
we could compute all probabilities by counting!

o Ifshiftis Tand urnis Z
Count(Z) = Count(2Z) + 1
For shift probability: Count(T|Z) = Count(T|Z)+1
For urn: Count(t-T,f | Z) = Count(t-T,f|Z) + 1
o Since the value drawn from the urn was t-T,f

o After all observations are counted:
Normalize Count(Z) to get P(2)
Normalize Count(T|Z) to get P(T|Z)
Normalize Count(t,f|Z2) to get P(t,f|2)

Problem: When learning the urns and shift distributions from a histogram,
the urn (Z) and shift (T) for any draw of (t,f) is not known

o These are unseen variables
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Learning the Model

Urn Z and shift T are unknown
o So (t,f) contributes partial counts to every value of T and Z
o Contributions are proportional to the a posteriori probability of Z and T,Z

P(t, f,2) = P(Z)ZP(T 1Z)P(t—T,f|2) P(T.t,f|Z)=P(T|Z)P(t-T,f|2)
T
P(t, f,2) P(T,t-T,f]2)
P(Z |t f)= P(T|Zt f)=
(2It1) ZP(t,f,Z') et ) ZP(T',t—T',HZ)
Z' T'

Each observation of (t,f)

o P(z|t,f) to the count of the total number of draws from the urn
Count(Z) = Count(Z) + P(z | t,f)

o P(z|t,))P(T | z,t,f) to the count of the shift T for the shift distribution
Count(T | Z) = Count(T | 2) + P(z|t.)P(T | Z, t, f)

o P(z|t,HP(T | z,t,f) to the count of (t-T, f) for the urn

oo COUNIET F112) = Count(t-T.f] 2) + P(ILAP(T | 2.t
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Shift invartant model: Update Rules

Given data (spectrogram) S(t,f)
Initialize P(Z2), P(T|2), P(t,f| 2)

lterate
P(t, f,Z) = P(Z)ZP(T |Z)P(t=T, f|Z) P(T,t,f|Z)=P(T |Z)P(t-T,f|2)
T
P(t, f,2) P(T,t-T,f|2)
P(Z |t f)= P(T|Z.t, f)=
(It h) ZP(t,fZ) Tzt ZP(T',t—T',HZ)
= .

A
>N Pt st f) ZZP(ZIt f)P(T|Z.t, F)S(t, )

P(Z) = e P(T |Z
&l 3NN P, f)s(t, 1) == 777P(Z|t F)P(T'| Z,t, £)S(t, f)
VAR | f
ZP(Z|T,f)P(T—t|Z,T,f)S(T,f)
P(t, f |Z) =

ZZP(ZH f)P(T —t|Z,T,)S(T, f)
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‘ Shift-invariance in one time: example

= An Example: Two distinct sounds occuring with different repetition rates
within a signal

o Modelled as being composed from two time-frequency bases
o NOTE: Width of patches must be specified

INPUT SPECTROGRAM

el

melzed Frequency (caradiample)  Nomnalized Frequency (xeradisample

‘I‘Discclaalse)rtego{qme-freqUency Contribution of individual bases to the recording 16
patch™ bases (urns)



Sbift Invariance in Time: Dereverberation
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= Reverberation — a simple model

o The Spectrogram of the reverberated signal is a
sum of the spectrogram of the clean signal and
several shifted and scaled versions of itself

2 A convolution of the spectrogram and a room
response
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‘ Dereverberation
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= Given the spectrogram of the reverberated
signal:

o Learn a shift-invariant model with a single patch basis
= Sparsity must be enforced on the basis

o The “basis” represents the clean speech!
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‘ Shift Invariance in Two Dimensions

= We now have urn-specific shifts along both T and F
= The Drawing Process

o Select an urn Z with a probability P(Z)

o Draw SHIFT values (T,F) from P(T,F|Z)

o Draw (t,f) pair from the urn

o Add to the histogram at (t+T, f+F)

= This is a two-dimensional shift-invariant model

o We have shifts in both time and frequency
= Or, more generically, along both axes
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Learning the Model

Learning is analogous to the 1-D case

Given observation of (t,f), it we knew which urn it came from and
the shift, we could compute all probabilities by counting!
o IfshiftisT,Fandurnis Z

Count(Z) = Count(Z) + 1

For shift probability: ShiftCount(T,F|Z) = ShiftCount(T,F|Z2)+1

For urn: Count(t-T,f-F | Z2) = Count(t-T,f-F|Z) + 1

0 Since the value drawn from the urn was t-T,f-F

o After all observations are counted:
Normalize Count(Z) to get P(2)
Normalize ShiftCount(T,F|Z) to get P,(T,F|Z)
Normalize Count(t,f|Z) to get P(t,f|Z)

Problem: Shift and Urn are unknown
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Learning the Model

Urn Z and shift T,F are unknown
o So (t,f) contributes partial counts to every value of T,F and Z
o Contributions are proportional to the a posteriori probability of Z and T,F|Z

P(t,f,Z):P(Z)ZP(T,F|Z)P(t—T,f—F|Z) P(T,F.t,f|Z)=P(T,F|Z)P(t-T,f —F|2)
T,F
P(t, f,2) P(T,F,t-T,f —F|2)
P(Z |t f)= P(T.F|Z.t )=
(It ) ZP(t,fZ) (T.F ) ZP(I",F',t—T',f—F'|Z)
Z' T'"F'

Each observation of (t,f)

o P(z|t,f) to the count of the total number of draws from the urn
Count(Z) = Count(Z) + P(z | t,f)

o P(z|t,H)P(T,F | z,t,f) to the count of the shift T,F for the shift distribution
ShiftCount(T,F | Z) = ShiftCount(T,F | Z) + P(z|t,)P(T | Z, t, f)

o P(T | zt,(f) to the count of (t-T, f-F) for the urn

Count(t-T,f-F | Z) = Count(t-T,f-F | Z) + P(Z|t.)P(t-T i-F | z,t,f)
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Shift invariant model:

Given data (spectrogram) S(t,f)
Initialize P(2), P4(T,F|Z2), P(t,f | Z2)

Update Rules

lterate
P(t,f,Z)=P(Z)ZP(T,F|Z)P(t—T,f—F|Z) P(T,F.t,f|Z)=P(T,F|Z)P(t-T,f —F|2)
T,F
P(t, f,2) P(T,F,t-T,f —F|2)
P(Z |t f)= P(T.F|Zt f)=
(2]t 1) ZP(t,fZ) (LEIZLE) ZP(T',F',t—T',f—F'|Z)
Z' T F'

ZZP(Z It, )S(t, f)
t f
ZZZ P(Z'|t, F)S(t, f)
Z' t f

P(Z) = P(T,F|Z)=

ZZP(Z It, f)P(T,F|Z,t, f)S(t, f)

t f
7777 P(Z|t, f)P(T F|Z,t, f)S(t, f)
T F t f

ZP(Z IT,F)P(T —t,F — f|Z,T,F)S(T,F)

P(t, f|Z) = —<

ZZP(Z IT,F)P(T —t',F— f'|Z,T,F)S(T,F)

t,f'T,F
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2D Shift Invariance: The problem of

indeterminacy

P(t,f|Z) and P.(T,F|Z) are analogous

o Difficult to specify which will be the “urn” and which the
“shift”

Additional constraints required to ensure that one of
them is clearly the shift and the other the urn

Typical solution: Enforce sparsity on P(T,F|Z)

o The patch represented by the urn occurs only in a few
locations in the data
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Basis Weights

1 1 _
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Only one “patch” used to model the image (i.e. a single urn)

o The learnt urn is an “average” face, the learned shifts show the locations
11 Oct 20161: faces lllll J L0 24



Example: 2-D shift invarince

The original figure has multiple handwritten
renderings of three characters

o In different colours

The algorithm learns the three characters and
identifies their locations in the figure
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Input data

o F
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Patches

—

g

g
Patch
Locations
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Beyond shift-invariance: transtorm
invariance  gZ e

The draws from the urns may not only be shifted,
but also transformed

The arithmetic remains very similar to the shift-
iInvariant model

o We must now impose one of an enumerated set of
transforms to (t,f), after shifting them by (T,F)

o In the estimation, the precise transform applied is an
unseen variable
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Transform invariance: Generation

The set of transforms Is enumerable

o E.g. scaling by 0.9, scaling by 1.1, rotation right by 90degrees, rotation
left by 90 degrees, rotation by 180 degrees, reflection

o Transformations can be chosen by draws from a distribution over
transforms
E.g. P(rotation by 90 degrees) = 0.2..
Distributions are URN SPECIFIC

The drawing process:

Select an urn Z (patch)

Select a shift (T,F) from P(T, F| Z)

Select a transform from P(txfm | Z2)

Select a (t,f) pair from P(t,f | 2)

Transform (t,f) to txfm(t,f)

Increment the histogram at txfm(t,f) + (T,F)

o 0 0 0O 0 O
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Transform invariance

The learning algorithm must now estimate

o P(Z) — probability of selecting urn/patch in any draw

o P(t,f|Z2) — the urns / patches

o P(txfm | Z) — the urn specific distribution over transforms
o P((T,F|Z) — the urn-specific shift distribution

Essentially determines what the basic shapes are, where they occur in
the data and how they are transformed

The mathematics for learning are similar to the maths for shift
Invariance

o With the addition that each instance of a draw must be fractured into urns, shifts
AND transforms

Details of learning are left as an exercise
o Alternately, refer to Madhusudana Shashanka’s PhD thesis at BU
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Example: Transtorm Invariance

Top left: Original figure

Bottom left — the two bases discovered

Bottom right —

o Left panel, positions of “a”

o Right panel, positions of “|”

Top right: estimated distribution underlying original figure
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Transform invariance: model limitations

and extensions

The current model only allows one transform to be
applied at any draw

o E.g. a basis may be rotated or scaled, but not scaled and
rotated

An obvious extension is to permit combinations of
transformations

o Model must be extended to draw the combination from
some distribution

Data dimensionality: All examples so far assume
only two dimensions (e.g. in spectrogram or image)

The models are trivially extended to higher-
dimensional data
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Transform Invariance: Uses and
Limitations

Not very useful to analyze audio
May be used to analyze images and video

Main restriction: Computational complexity

o Requires unreasonable amounts of memory and
CPU

o Efficient implementation an open issue
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Example: Higher dimensional data
Video example

DCescription of Input Kemel 1

Kemel 2 Kemel 3
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