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Summary So Far
 PLCA:

 The basic mixture-multinomial model for audio (and other The basic mixture multinomial model for audio (and other 
data)

 Sparse Decomposition: Sparse Decomposition:
 The notion of sparsity and how it can be imposed on 

learning

 Sparse Overcomplete Decomposition:
 The notion of overcomplete basis set

 Example-based representations
 Using the training data itself as our representation
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 Using the training data itself as our representation
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Next up: Shift/Transform Invariance

 Sometimes the “typical” structures that 
compose a sound are wider than one spectral 
frame
 E.g. in the above example we note multiple 

examples of a pattern that spans several frames
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Next up: Shift/Transform Invariance

 Sometimes the “typical” structures that compose a 
sound are wider than one spectral framesound are wider than one spectral frame
 E.g. in the above example we note multiple examples of a 

pattern that spans several frames
 Multiframe patterns may also be local in frequency

 E.g. the two green patches are similar only in the region 
l d b th bl b
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enclosed by the blue box
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Patches are more representative than frames

 Four bars from a music example
Th t l tt t ll t h The spectral patterns are actually patches
 Not all frequencies fall off in time at the same rate

 The basic unit is a spectral patch not a spectrum
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 The basic unit is a spectral patch, not a spectrum
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Images: Patches often form the image

A typical image component may be viewed as a A typical image component may be viewed as a 
patch
 The alien invaders
 Face like patches
 A car like patch 

l id i lf i

11755/18797

 overlaid on itself many times..
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Shift-invariant modelling
 A shift-invariant model permits individual 

bases to be patchesbases to be patches
 Each patch composes the entire image.

The data is a sum of the compositions from The data is a sum of the compositions from 
individual patches
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Shift Invariance in one Dimension
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 Our bases are now “patches”
 Typical spectro-temporal structures

Th t t h The urns now represent patches
 Each draw results in a (t,f) pair, rather than only f
 Also associated with each urn:  A shift probability distribution P(T|z)

 The overall drawing process is slightly more complex The overall drawing process is slightly more complex
 Repeat the following process:

 Select an urn Z with a probability P(Z)
 Draw a value T from P(t|Z)

Draw (t f) pair from the urn
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 Draw (t,f) pair from the urn
 Add to the histogram at (t+T, f)
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Shift Invariance in one Dimension

5
1583996

81444811645 598 1
14722436947224991327274453 1

147201737111371387520453 91
127246947720351510127411501502

 The process is shift-invariant because the 
probability of drawing a shift P(T|Z) does notprobability of drawing a shift P(T|Z) does not 
affect the probability of selecting urn Z

 Every location in the spectrogram has 
contributions from every urn patch
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y p

11 Oct 2011 9



Shift Invariance in one Dimension

5
1583996

81444811645 598 1
14722436947224991327274453 1

147201737111371387520453 91
127246947720351510127411501502

 The process is shift-invariant because the 
probability of drawing a shift P(T|Z) does notprobability of drawing a shift P(T|Z) does not 
affect the probability of selecting urn Z

 Every location in the spectrogram has 
contributions from every urn patch

11755/1879711 Oct 2011 10



Shift Invariance in one Dimension

5
1583996

81444811645 598 1
14722436947224991327274453 1

147201737111371387520453 91
127246947720351510127411501502

 The process is shift-invariant because the 
probability of drawing a shift P(T|Z) does notprobability of drawing a shift P(T|Z) does not 
affect the probability of selecting urn Z

 Every location in the spectrogram has 
contributions from every urn patch

11755/18797

y p

11 Oct 2011 11



Probability of drawing a particular (t,f) combination

  
z

zftPzPzPftP


 )|,()|()(),(

 The parameters of the model:
 P(t f|z) – the urns P(t,f|z) the urns
 P(T|z) – the urn-specific shift distribution
 P(z) – probability of selecting an urn

 The ways in which (t,f) can be drawn:
 Select any urn z
 Draw T from the urn-specific shift distribution
 Draw (t-T,f) from the urn

 The actual probability sums this over all shifts and urns
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Learning the Model
 The parameters of the model are learned analogously to the manner in 

which mixture multinomials are learned

Gi b ti f (t f) it k hi h it f d th hift Given observation of (t,f), it we knew which urn it came from and the shift, 
we could compute all probabilities by counting!
 If shift is T and urn is Z

 Count(Z) = Count(Z) + 1 Count(Z) = Count(Z) + 1
 For shift probability: Count(T|Z) = Count(T|Z)+1
 For urn: Count(t-T,f | Z) = Count(t-T,f|Z) + 1

 Since the value drawn from the urn was t-T,f

 After all observations are counted:
 Normalize Count(Z) to get P(Z)
 Normalize Count(T|Z) to get P(T|Z) Normalize Count(T|Z) to get P(T|Z)
 Normalize Count(t,f|Z) to get P(t,f|Z)

 Problem: When learning the urns and shift distributions from a histogram, 
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the urn (Z) and shift (T) for any draw of (t,f) is not known
 These are unseen variables
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Learning the Model
 Urn Z and shift T are unknown

 So (t,f) contributes partial counts to every value of T and Z
 Contributions are proportional to the a posteriori probability of Z and T,Z
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 Each observation of (t,f) 
 P(z|t,f) to the count of the total number of draws from the urn

 Count(Z) = Count(Z) + P(z | t,f)

 P(z|t,f)P(T | z,t,f) to the count of the shift T for the shift distribution
 Count(T | Z) = Count(T | Z) + P(z|t,f)P(T | Z, t, f)
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 P(z|t,f)P(T | z,t,f) to the count of (t-T, f) for the urn
 Count(t-T,f | Z) = Count(t-T,f | Z) + P(z|t,f)P(T | z,t,f)
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Shift invariant model: Update Rules
 Given data (spectrogram) S(t,f)
 Initialize P(Z), P(T|Z), P(t,f | Z) Initialize P(Z), P(T|Z), P(t,f | Z)
 Iterate
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Shift-invariance in one time: example
 An Example: Two distinct sounds occuring with different repetition rates 

within a signal
 Modelled as being composed from two time-frequency bases
 NOTE: Width of patches must be specified

INPUT SPECTROGRAM
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Discovered time-frequency 
“patch” bases (urns)

Contribution of individual bases to the recording11 Oct 2011 16



Shift Invariance in Time: Dereverberation

=+  +

 Reverberation – a simple modelReverberation a simple model
 The Spectrogram of the reverberated signal is a 

sum of the spectrogram of the clean signal and 
several shifted and scaled versions of itself

 A convolution of the spectrogram and a room 
response
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Dereverberation

 Given the spectrogram of the reverberated Given the spectrogram of the reverberated 
signal:
 Learn a shift-invariant model with a single patch basis Learn a shift invariant model with a single patch basis

 Sparsity must be enforced on the basis

 The “basis” represents the clean speech!
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Shift Invariance in Two Dimensions

5 5 598 1 274453 1 7520453 914115015025
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147201737111371387520453 91
127246947720351510127411501502

 We now have urn-specific shifts along both T and Fp g
 The Drawing Process

 Select an urn Z with a probability P(Z)
 Draw SHIFT values (T,F) from Ps(T,F|Z)( , ) s( , | )
 Draw (t,f) pair from the urn
 Add to the histogram at (t+T, f+F)

 This is a two-dimensional shift-invariant model
 We have shifts in both time and frequency

 Or, more generically, along both axes
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Learning the Model
 Learning is analogous to the 1-D case

 Given observation of (t,f), it we knew which urn it came from and ( , ),
the shift, we could compute all probabilities by counting!
 If shift is T,F and urn is Z

 Count(Z) = Count(Z) + 1 Count(Z)  Count(Z)  1
 For shift probability: ShiftCount(T,F|Z) = ShiftCount(T,F|Z)+1
 For urn: Count(t-T,f-F | Z) = Count(t-T,f-F|Z) + 1

 Since the value drawn from the urn was t-T,f-F,

 After all observations are counted:
 Normalize Count(Z) to get P(Z)( ) g ( )
 Normalize ShiftCount(T,F|Z) to get Ps(T,F|Z)
 Normalize Count(t,f|Z) to get P(t,f|Z)
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 Problem: Shift and Urn are unknown
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Learning the Model
 Urn Z and shift T,F are unknown

 So (t,f) contributes partial counts to every value of T,F and Z
 Contributions are proportional to the a posteriori probability of Z and T,F|Z
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 Each observation of (t,f) 
 P(z|t,f) to the count of the total number of draws from the urn

 Count(Z) = Count(Z) + P(z | t,f)

 P(z|t,f)P(T,F | z,t,f) to the count of the shift T,F for the shift distribution
 ShiftCount(T,F | Z) = ShiftCount(T,F | Z) + P(z|t,f)P(T | Z, t, f)
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 P(T | z,t,f) to the count of (t-T, f-F) for the urn
 Count(t-T,f-F | Z) = Count(t-T,f-F | Z) + P(z|t,f)P(t-T,f-F | z,t,f)
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Shift invariant model: Update Rules
 Given data (spectrogram) S(t,f)
 Initialize P(Z), Ps(T,F|Z), P(t,f | Z) Initialize P(Z), Ps(T,F|Z), P(t,f | Z)
 Iterate

  )|,()|,()|,,,(   )|,()|,()(),,(
FT

ZFfTtPZFTPZftFTPZFfTtPZFTPZPZftP

 




',''

,

)|',',','(
)|,,,(),,|,(                             

)',,(
),,(),|(

FTZ

FT

ZFfTtFTP
ZFfTtFTPftZFTP

ZftP
ZftPftZP








),(),,|','(),|(

),(),,|,(),|(

)|,(   
),(),|'(

),(),|(

)( t ft f

ftSftZFTPftZP

ftSftZFTPftZP

ZFTP
ftSftZP

ftSftZP

ZP

,






 ,

' ''

),(),,|,(),|(

)|(

),(),,|,(),|(),(),|(

FT

T F t fZ t f

FTSFTZfFtTPFTZP

ZftP

fffff

11755/18797

 


',' ,

),(),,|','(),|(
)|,(

ft FT

FTSFTZfFtTPFTZP
ZftP

11 Oct 2011 22



2D Shift Invariance: The problem of 
indeterminacy
 P(t,f|Z) and Ps(T,F|Z) are analogouss

 Difficult to specify which will be the “urn” and which the 
“shift”

 Additional constraints required to ensure that one of 
them is clearly the shift and the other the urn

 Typical solution: Enforce sparsity on Ps(T,F|Z) 
 The patch represented by the urn occurs only in a few 

locations in the datalocations in the data
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Example: 2-D shift invariance

11755/18797

 Only one “patch” used to model the image (i.e. a single urn)
 The learnt urn is an “average” face, the learned shifts show the locations 

of faces11 Oct 2011 24



Example: 2-D shift invarince

 The original figure has multiple handwritten 
d i f th h trenderings of three characters

 In different colours
Th l ith l th th h t d The algorithm learns the three characters and 
identifies their locations in the figure

Input data

D
is

co
ve

re
d

P
at

ch
es

P
at

ch
Lo

ca
tio

ns
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Beyond shift-invariance: transform 
invariance

5
1583996

81444811645 598 1
14722436947224991327274453 1

147201737111371387520453 91
127246947720351510127411501502

 The draws from the urns may not only be shifted, 
but also transformed
Th ith ti i i il t th hift The arithmetic remains very similar to the shift-
invariant model
 We must now impose one of an enumerated set of We must now impose one of an enumerated set of 

transforms to (t,f), after shifting them by (T,F)
 In the estimation, the precise transform applied is an 

unseen variable
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unseen variable
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Transform invariance: Generation
 The set of transforms is enumerable

 E.g. scaling by 0.9, scaling by 1.1, rotation right by 90degrees, rotation g g y , g y , g y g ,
left by 90 degrees, rotation by 180 degrees, reflection

 Transformations can be chosen by draws from a distribution over 
transforms
 E.g. P(rotation by 90 degrees) = 0.2..
 Distributions are URN SPECIFIC

 The drawing process: The drawing process:
 Select an urn Z (patch)
 Select a shift (T,F) from Ps(T, F| Z)
 Select a transform from P(txfm | Z) Select a transform from P(txfm | Z)
 Select a (t,f) pair from P(t,f | Z)
 Transform (t,f) to txfm(t,f)

Increment the histogram at txfm(t f) + (T F) Increment the histogram at txfm(t,f) + (T,F)
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Transform invariance
 The learning algorithm must now estimate

 P(Z) – probability of selecting urn/patch in any draw
 P(t,f|Z) – the urns / patches
 P(txfm | Z) – the urn specific distribution over transforms
 Ps(T,F|Z) – the urn-specific shift distribution

 Essentially determines what the basic shapes are, where they occur in 
the data and how they are transformed
The mathematics for learning are similar to the maths for shift The mathematics for learning are similar to the maths for shift 
invariance
 With the addition that each instance of a draw must be fractured into urns, shifts 

AND transforms

 Details of learning are left as an exercise
 Alternately, refer to Madhusudana Shashanka’s PhD thesis at BU
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Example: Transform Invariance

 Top left: Original figure
 Bottom left – the two bases discovered
 Bottom right –

 Left panel, positions of “a”
 Right panel positions of “l”
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 Right panel, positions of l
 Top right: estimated distribution underlying original figure
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Transform invariance: model limitations 
and extensions
 The current model only allows one transform to be 

applied at any draw
 E.g. a basis may be rotated or scaled, but not scaled and 

rotated
 An obvious extension is to permit combinations of 

transformations
M d l t b t d d t d th bi ti f Model must be extended to draw the combination from 
some distribution

 Data dimensionality: All examples so far assume 
only two dimensions (e.g. in spectrogram or image)

 The models are trivially extended to higher-
dimensional datadimensional data
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Transform Invariance: Uses and 
Limitations

Not very useful to analyze audio Not very useful to analyze audio
 May be used to analyze images and video

 Main restriction: Computational complexity
 Requires unreasonable amounts of memory and 

CPU
 Efficient implementation an open issue
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Example: Higher dimensional data
 Video example
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