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Component Analysis for PR 
• Computer Vision & Image Processing

– Structure from motion.
– Spectral graph methods for segmentation.
– Appearance and shape models.
– Fundamental matrix estimation and calibration.
– Compression.
– Classification.
– Dimensionality reduction and visualization.

• Signal Processing
– Spectral estimation, system identification (e.g. Kalman filter), sensor 

array processing (e.g. cocktail problem, eco cancellation), blind source
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array processing (e.g. cocktail problem, eco cancellation), blind source 
separation, …

• Computer Graphics
– Compression (BRDF), synthesis,…

• Speech, bioinformatics, combinatorial problems.
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Why Component Analysis for PR?
• Learn from high dimensional data and few samples.

– Useful for dimensionality reduction.

(Everitt,1984)

• Easy to incorporate 
– Robustness to noise, missing data, outliers (de la Torre & Black, 2003a)
– Invariance to geometric transformations (de la Torre & Black, 2003b; de la 

Torre & Nguyen,2007)

– Non-linearities (Kernel methods) (Scholkopf & Smola,2002; Shawe-Taylor & 
Cristianini,2004)

– Probabilistic (latent variable models)
M lti f t i l (t ) ( & O’ &
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features  samples  

• Efficient methods  O(    d            n<  <n2    )

– Multi-factorial (tensors) (Paatero & Tapper, 1994 ;O’Leary & Peleg,1983; 
Vasilescu & Terzopoulos,2002; Vasilescu & Terzopoulos,2003)

– Exponential family PCA (Gordon,2002; Collins et al. 01)

Are CA Methods Popular/Useful/Used?
• About 20% of CVPR-06 papers use CA.

• Google:
– Results 1 - 10 of about 1,870,000 for "principal componentResults 1 10 of about 1,870,000 for principal component

analysis".
– Results 1 - 10 of about 506,000 for "independent component

analysis". 
– Results 1 - 10 of about 273,000 for "linear discriminant

analysis". 
– Results 1 - 10 of about 46,100 for "negative matrix

factorization".
Results 1 - 10 of about 491 000 for "kernel methods"
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• Still work to do
– Results 1 - 10 of about 65,300,000 for "Britney Spears".

– Results 1 - 10 of about 491,000 for kernel methods . 

Outline
• Introduction
• Generative models

– Principal Component Analysis (PCA)
– Non-negative Matrix Factorization (NMF)
– Independent Component Analysis (ICA)
– Multidimensional Scaling (MDS)

• Discriminative models
– Linear Discriminant Analysis (LDA).
– Oriented Component Analysis (OCA).
– Canonical Correlation Analysis (CCA).

• Standard extensions of linear models
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• Standard extensions of linear models
– Kernel methods.
– Latent variable models.
– Tensor factorization 

Principal Component Analysis (PCA)
(Pearson, 1901; Hotelling, 1933;Mardia et al., 1979; Jolliffe, 1986; Diamantaras, 1996)
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• PCA finds the directions of maximum variation of the
data based on linear correlation.

• PCA decorrelates the original variables.
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PCA
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•Assuming 0 mean data the basis B that preserve the maximum
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Assuming 0 mean data, the basis B that preserve the maximum
variation of the signal is given by the eigenvectors of DDT.

BΛBDD Td 

d 

Snap-shot Method & SVD
• If d>>n (e.g. images 100*100 vs. 300 samples) no DDT.
• DDT and DTD have the same eigenvalues (energy) and 

related eigenvectors (by D). 
• B is a linear combination of the data! (Sirovich 1987)• B is a linear combination of the data!

• [α,L]=eig(DTD)   B=D α(diag(diag(L))) -0.5

ΛDαDDαDDDDαBBΛBDD TTTT 

TVUΣD

• SVD factorizes the data matrix D as:

BCD

TT UUΛDD 

TT VVΛDD 

(Beltrami, 1873; Schmidt, 1907; Golub & Loan, 1989)

(Sirovich, 1987)
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SVDPCA
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Error Function for PCA

(Eckardt & Young, 1936; Gabriel & Zamir, 1979; Baldi & Hornik, 1989; Shum et al., 
1995; de la Torre & Black, 2003a)
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• PCA minimizes the following CONVEX function. 

• Not unique solution:
• To obtain same PCA solution R has to satisfy:
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• R is computed as a generalized k×k eigenvalue problem.

 CCIBB

  11 
 BRBRCC TT

(de la Torre, 2006)

PCA/SVD in Computer Vision
• PCA/SVD has been applied to:

– Recognition (eigenfaces:Turk & Pentland, 1991; Sirovich & Kirby, 1987; Leonardis & 
Bischof, 2000; Gong et al., 2000; McKenna et al., 1997a)

– Parameterized motion models (Yacoob & Black, 1999; Black et al., 2000; Black, 
1999; Black & Jepson, 1998)

– Appearance/shape models (Cootes & Taylor, 2001; Cootes et al., 1998; Pentland 
t l 1994 J & P i 1998 C i & S l ff 1999 Bl k & J 1998 Bl &et al., 1994; Jones & Poggio, 1998; Casia & Sclaroff, 1999; Black & Jepson, 1998; Blanz & 

Vetter, 1999; Cootes et al., 1995; McKenna et al., 1997; de la Torre et al., 1998b; de la 
Torre et al., 1998b)

– Dynamic appearance models (Soatto et al., 2001; Rao, 1997; Orriols & Binefa, 
2001; Gong et al., 2000)

– Structure from Motion (Tomasi & Kanade, 1992; Bregler et al., 2000; Sturm & 
Triggs, 1996; Brand, 2001)

– Illumination based reconstruction (Hayakawa, 1994)
– Visual servoing (Murase & Nayar, 1995; Murase & Nayar, 1994)

– Visual correspondence (Zhang et al., 1995; Jones & Malik, 1992)
C i i i
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– Camera motion estimation (Hartley, 1992; Hartley & Zisserman, 2000)
– Image watermarking (Liu & Tan, 2000)
– Signal processing (Moonen & de Moor, 1995)
– Neural approaches (Oja, 1982; Sanger, 1989; Xu, 1993)

– Bilinear models (Tenenbaum & Freeman, 2000; Marimont & Wandell, 1992)
– Direct extensions (Welling et al., 2003; Penev & Atick, 1996)
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“Intercorrelations among 
variables are the bane of the 

multivariate researcher’s struggle 
for meaning”

Cooley and Lohnes, 1971
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Part-based Representation

The firing rates of neurons are never negative.
 Independent representations.

NMF & ICA

Component Analysis for Signal Processing 18

NMF & ICA

Non-negative Matrix Factorization
• Positive factorization.

• Leads to part-based representation.
0||||)(  CB,BCDCB, FE
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Nonnegative Factorization 

 
 ij
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(Lee & Seung, 1999;Lee & Seung, 2000)
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• Multiplicative algorithm can be interpreted as 
diagonally rescaled gradient descent.

ij
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ij

)()( DCBCC
B
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Independent Component Analysis

• We need more than second order statistics to represent 
the signal.

Component Analysis for Signal Processing 21

ICA

• Look for si that are independent.
• PCA finds uncorrelated variables, the independent 

components have non Gaussian distributions

1 BWWDSCBCD
(Hyvrinen et al., 2001)

components have non Gaussian distributions.
• Uncorrelated E(sisj)= E(si)E(sj)
• Independent  E(g(si)f(sj))= E(g(si))E(f(sj)) for any non-

linear f,g
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PCA ICA

ICA vs PCA
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Many optimization criteria

• Minimize high order moments: e.g. kurtosis
kurt(W) = E{s4} -3(E{s2}) 2

• Many other information criteria.





n

i
i

n

i
ii S

11
)(cBcd

Sparseness (e.g. S=| |) 

(Olhausen & Field, 1996)• Also an error function:
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(Chennubhotla & Jepson, 2001b; Zou et al., 2005; dAspremont et al., 2004;)

• Other sparse PCA.
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Basis of natural images
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Denoising 

Original
image Noisy Image

(30% i )(30% noise)

Denoise
(Wi filt ) ICA
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(Wiener filter) ICA

Multidimensional Scaling (MDS)
• MDS takes a matrix of pair-wise distances 

and finds an embedding that preserves the 
interpoint distancesinterpoint distances.

Component Analysis for Signal Processing 27 Component Analysis for Signal Processing 28
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Outline
• Introduction
• Generative models

– Principal Component Analysis (PCA)
– Non-negative Matrix Factorization (NMF)
– Independent Component Analysis (ICA)
– Multidimensional Scaling (MDS)

• Discriminative models
– Linear Discriminant Analysis (LDA).
– Oriented Component Analysis (OCA).
– Canonical Correlation Analysis (CCA).

• Standard extensions of linear models
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• Standard extensions of linear models
– Kernel methods.
– Latent variable models.
– Tensor factorization 

Linear Discriminant Analysis (LDA)

C C

(Fisher, 1938;Mardia et al., 1979; Bishop, 1995)

BΛSBS
BSB
BSBB b

b
t

t
T

T

J 
||
||)(


 


C

i

C

j

T
jijib

1 1

))(( μμμμS





n

i

T
ii

T
t

1

ddDDS

c C

Component Analysis for Signal Processing 31

• Optimal linear dimensionality reduction if classes are 
Gaussian with equal covariance matrix.

T
ji

c

j

C

i
jiw

i
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1 1

μdμdS 
 

Oriented Component Analysis (OCA)

T bΣb
signal

OCAb

• Generalized eigenvalue problem:

OCA
T

OCAOCA

noiseOCA

signal

bΣb

bΣb

keki bΣbΣ 

noise
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Generalized eigenvalue problem:
• boca is steered by the distribution of noise.

keki
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OCA for face recognition

T 1 T 2
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Canonical Correlation Analysis 
(CCA)

• PCA independently and general mapping

PCA PCA
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• Signals dependent signals with small energy can be lost.

Canonical Correlation Analysis (CCA)

• Learn relations between multiple data sets? (e.g. find 
features in one set related to another data set)

• Given two sets                                       , CCA finds the pair 
of directions w and w that maximize the correlation

ndnd and   21 YX

(Mardia et al., 1979; Borga)

of directions wx and wy that maximize the correlation 
between the projections (assume zero mean data)

• Several ways of optimizing it:
T
y

TT
y

T
x

TT
x

y
TT

x

YwYwXwXw

YwXw


 TT w0XXYX0
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• An stationary point of r is the solution to CCA.
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Dynamic Coupled Component Analysis
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Robot localization with Canonical 
Correlation Analysis

(Skocaj & Leonardis, 2000)
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Outline
• Introduction
• Generative models

– Principal Component Analysis (PCA)
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• Standard extensions of linear models
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• Standard extensions of linear models
– Kernel methods.
– Latent variable models.
– Tensor factorization 

Kernel Methods

Component Analysis for Signal Processing 39

Linear methods fail

Component Analysis for Signal Processing 40
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Linear methods fail 
• Learning a non-linear representation for classification
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Kernel Methods for Classification

),,(),,(),( 321
2
2

2
12121 zzzxxxxxx 

• The kernel defines an implicit mapping (usually high dimensional and
non-linear) from input to feature space so the data becomes linearly

Feature spaceInput space
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non linear) from input to feature space, so the data becomes linearly
separable.

• Computation in the feature space can be costly because it is
(usually) high dimensional
– The feature space is typically infinite-dimensional!

Kernel Methods
• Suppose (.) is given as follows

• An inner product in the feature space is

• So, if we define the kernel function as follows, there is no 
need to carry out (.) explicitly

• This use of kernel function to avoid carrying out ( )

Component Analysis for Signal Processing 43

• This use of kernel function to avoid carrying out (.) 
explicitly is known as the kernel trick. In any linear 
algorithm that can be expressed by inner products can be 
made nonlinear by going to the feature space

Kernel PCA
(Scholkopf et al., 1998)

Component Analysis for Signal Processing 44
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Kernel PCA

• Eigenvectors of the cov. Matrix in feature space.

 
n
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(Scholkopf et al., 1998)

• Eigenvectors lie in the span of data in feature space.              
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Latent Variable Models
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Factor Analysis
• A Gaussian distribution on the coefficients and noise is 

added to PCA Factor Analysis.




k NpNp BcμdBcdI0,cc
ηBcμd

),|(),|()|()(

(Mardia et al., 1979)

• Inference (Roweis & Ghahramani, 1999;Tipping & Bishop, 1999a)
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• Probabilistic visual learning (Moghaddam & Pentland, 1997;)
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Tensor Factorization
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Tensor faces
(Vasilescu & Terzopoulos, 2002; Vasilescu & Terzopoulos, 2003)

people

expressions
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views
illuminations

Eigenfaces
• Facial images (identity change)

• Eigenfaces bases vectors capture the variability in facial 
appearance (do not decouple pose, illumination, …)
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Data Organization
• Linear/PCA: Data Matrix

– Rpixels x images

– a matrix of image vectors
D

Pi
xe

ls

ImagesD

• Multilinear: Data Tensor
– Rpeople x views x illums x express x pixels

– N-dimensional matrix

Views

D

D
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N dimensional matrix
– 28 people, 45 images/person
– 5 views, 3 illuminations, 

3 expressions per person
exilvpp ,,,iIl

lu
m

in
at

io
ns
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N-Mode SVD Algorithm

N = 3

pixelsxexpressxillums.xviews xpeoplex 51 UUUUU  .
 ZD 432
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PCA:

TensorFaces:
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Strategic Data Compression = 
Perceptual Quality

• TensorFaces data reduction in illumination space primarily 
degrades illumination effects (cast shadows, highlights)

• PCA has lower mean square error but higher perceptual error
TensorFaces

Mean Sq. Err. = 409.15
3 illum + 11 people param.

33 basis vectors

PCA

Mean Sq. Err. = 85.75
33 parameters

33 basis vectors

Original

176 basis vectors

TensorFaces

6 illum + 11 people param.
66 basis vectors

• PCA has lower mean square error but higher perceptual error
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