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Clustering
 What is clustering

 Clustering is the determination of 
naturally occurring grouping ofnaturally occurring grouping of 
data/instances (with low within-group 
variability and high between-group 
variability)
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Why Clustering

 Automatic grouping into “Classes”
ff ff Different clusters may show different behavior

Q Quantization
 All data within a cluster are represented by a 

i l i tsingle point

P i t f th l ith Preprocessing step for other algorithms
 Indexing, categorization, etc.
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Clustering criteria

 Compactness criterion
“ Measure that shows how “good” clusters are

 The objective function

 Distance of a point from a cluster
T d t i th l t d t t b l t To determine the cluster a data vector belongs to
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“Compactness” criteria for clustering
 Distance based measures

 Total distance between each 
element in the cluster and 
every other element in the 
clustercluster
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“Compactness” criteria for clustering

 Distance based measures
Total distance between each Total distance between each 
element in the cluster and every 
other element in the cluster

 Distance between the two 
farthest points in the cluster

 Total distance of every element in y
the cluster from the centroid of 
the cluster

 Distance measures are often Distance measures are often 
weighted Minkowski metrics

n nnn bawbawbawdist  n
MMM bawbawbawdist  ...222111
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Clustering: Distance from cluster
 How far is a data point from a 

cluster?
 Euclidean or Minkowski distance 

from the centroid of the cluster

 Distance from the closest point in 
the cluster

 Distance from the farthest point 
in the cluster

 Probability of data measured on 
cluster distribution
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Clustering: Distance from cluster
 How far is a data point from a 

cluster?
 Euclidean or Minkowski distance 

from the centroid of the cluster

 Distance from the closest point in 
the cluster

 Distance from the farthest point in 
the cluster

 Probability of data measured on 
cluster distribution

 Fit of data to cluster-based 
regression 2218 Oct 2011



Optimal clustering: Exhaustive 
enumeration
 All possible combinations of data must be evaluated

 If there are M data points, and we desire N clusters, the 
number of ways of separating M instances into N clusters is

N N













N

i

Mi iN
i
N

M 0
)()1(

!
1

 Exhaustive enumeration based clustering requires that the 
objective function (the “Goodness measure”) be evaluated 
for every one of these, and the best one chosen

 This is the only correct way of optimal clustering
 Unfortunately, it is also computationally unrealisticy p y
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Not-quite non sequitir:  Quantization
e

Signal Value Bits Mapped to
S > 3 75v 11 3 * constal
og

 v
al

ue

S >= 3.75v 11 3 * const
3.75v > S >= 2.5v 10 2 * const
2.5v > S >= 1.25v 01 1 * const
1 25 S 0 0 0

lit
y 

of
 a

na

1.25v > S >= 0v 0 0 

Analog value (arrows are quantization levels)Pr
ob

ab
i

 Linear quantization (uniform quantization):q ( q )
 Each digital value represents an equally wide range of analog 

values
 Regardless of distribution of data Regardless of distribution of data
 Digital-to-analog conversion represented by a “uniform” table
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Not-quite non sequitir:  Quantization
e
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S >= 4v 11 4.5
4v > S >= 2.5v 10 3.25
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2.5v > S >= 1v 01 1.25
1.0v > S >= 0v 0 0.5

Analog value (arrows are quantization levels)Pr
ob
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i

 Non-Linear quantization:q
 Each digital value represents a different range of analog values

 Finer resolution in high-density areas
 Mu-law / A-law assumes a gaussian-like distribution of dataMu law / A law assumes a gaussian like distribution of data

 Digital-to-analog conversion represented by a “non-uniform” table
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Non-uniform quantization
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Analog valuePr
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 If data distribution is not Gaussianish?

Analog valueP

 Mu-law / A-law are not optimal
 How to compute the optimal ranges for quantization

 Or the optimal table Or the optimal table
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The Lloyd Quantizer
og
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 Lloyd quantizer: An iterative algorithm for computing

Analog value (arrows show quantization levels)

P

 Lloyd quantizer: An iterative algorithm for computing 
optimal quantization tables for non-uniformly 
distributed data

 Learned from “training” data
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Lloyd Quantizer
 Randomly initialize 

quantization pointsquantization points
 Right column entries of 

quantization table

 Assign all training points 
to the nearest 

ti ti i tquantization point

 Reestimate quantization 
points

 Iterate until convergence Iterate until convergence
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Generalized Lloyd Algorithm: K–means clustering

 K means is an iterative algorithm for clustering 
vector data
 McQueen, J. 1967. “Some methods for classification and 

analysis of multivariate observations.” Proceedings of the 
Fifth Berkeley Symposium on Mathematical Statistics andFifth Berkeley Symposium on Mathematical Statistics and 
Probability, 281-297 

 General procedure:p
 Initially group data into the required number of clusters 

somehow (initialization)
Assign each data point to the closest cluster Assign each data point to the closest cluster

 Once all data points are assigned to clusters, redefine 
clusters

 Iterate 
3218 Oct 2011



K–means
 Problem: Given a set of data 

vectors, find natural clustersvectors, find natural clusters

 Clustering criterion is scatter: 
distance from the centroiddistance from the centroid

 Every cluster has a centroid
 The centroid represents the 

l tcluster

 Definition:  The centroid is 
the weighted mean of the 
cluster

 Weight = 1 for basic scheme 


l
iicluster xw

w
m 1

e g t o bas c sc e e  


clusteri
clusteri

iw
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K–means
1. Initialize a set of centroids

randomly

2. For each data point x, find the 
distance from the centroid for 
each cluster
•

3. Put data point in the cluster of the 
l t t id

),( clustercluster mxd distance

closest centroid
• Cluster for which dcluster is 

minimum

4. When all data points clustered, 
recompute cluster centroid

l xm 1

5. If not converged, go back to 2


clusteri

i
cluster

cluster x
N

m
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K-Means comments

 The distance metric determines the clusters
f In the original formulation, the distance is L2 

distance
 Euclidean norm w = 1 Euclidean norm, wi = 1


l

icluster x
N

m 1
2||||),( clusterclustercluster mxmx distance

 If we replace every x by mcluster(x), we get Vector 
Quantization

clustericlusterN

Quantization
 K-means is an instance of generalized EM

Not guaranteed to converge for all distance Not guaranteed to converge for all distance 
metrics
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Initialization
 Random initialization
 Top-down clustering Top-down clustering
 Initially partition the data into two (or a small 

number of) clusters using K meansnumber of) clusters using K means
 Partition each of the resulting clusters into two 

(or a small number of) clusters, also using K 
means

 Terminate when the desired number of clusters 
i bt i dis obtained
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K-Means for Top–Down clustering
1. Start with one cluster 

S lit h l t i t t2. Split each cluster into two:
 Perturb centroid of cluster slightly  (by < 5%) 

to generate two centroids

3. Initialize K means with new set of 
centroids

4. Iterate Kmeans until convergence

5. If the desired number of clusters is 
not obtained, return to 2
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Non-Euclidean clusters

 Basic K means results in good clusters in Basic K-means results in good clusters in 
Euclidean spaces
 Alternately stated will only find clusters that are Alternately stated, will only find clusters that are 

“good” in terms of Euclidean distances
 Will not find other types of clusters Will not find other types of clusters
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Non-euclidean clusters
f([x,y]) -> [x,y,z]
x = x
y = y
z = (x2 + y2)

 For other forms of clusters we must modify the distance measure
 E.g. distance from a circleg

 May be viewed as a distance in a higher dimensional space
 I.e Kernel distances
 Kernel K-means Kernel K means

 Other related clustering mechansims:
 Spectral clustering

 Non-linear weighting of adjacency Non linear weighting of adjacency

 Normalized cuts..
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The Kernel Trick
f([x,y]) -> [x,y,z]
x = x
y = y
z = (x2 + y2)

 Transform the data into a synthetic higher-dimensional space 
where the desired patterns become natural clusterswhere the desired patterns become natural clusters
 E.g. the quadratic transform above

 Problem: What is the function/space? Problem: What is the function/space?

 Problem: Distances in higher dimensional-space are more 
expensive to computeexpensive to compute
 Yet only carry the same information in the lower-dimensional space 
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Distance in higher-dimensional space
 Transform data x through an unknown function 
(x) into a higher (potentially infinite)(x) into a higher (potentially infinite) 
dimensional space
 z = (x) z  (x)

 The distance between two points is computed in 
the higher-dimensional space
 d(x1, x2) =  ||z1- z2||2 = ||(x1) – (x2)||2

 d(x1, x2) can be computed without computing z
 Since it is a direct function of x1 and x2 Since it is a direct function of x1 and x2
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Distance in higher-dimensional space
 Distance in lower-dimensional space: A combination 

of dot productsof dot products
 ||x1- x2||2 = (z1- z2)T(z1- z2) = z1.z1 + z2.z2 -2 z1.z2

 Distance in higher-dimensional space
 d(x1, x2) =||(x1) – (x2)||2

= (x1). (x1) + (x2). (x2) -2 (x1). (x2)

d( ) can be computed without knowing ( ) if: d(x1, x2) can be computed without knowing (x) if:
 (x1). (x2) can be computed for any x1 and x2 without 

knowing (.)g ( )
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The Kernel function
 A kernel function K(x1,x2) is a function such that:

K( ) ( ) ( ) K(x1,x2) = (x1). (x2) 

 Once such a kernel function is found the Once such a kernel function is found, the 
distance in higher-dimensional space can be 
found in terms of the kernels
 d(x1, x2) =||(x1) – (x2)||2

= (x1). (x1) + (x2). (x2) -2 (x1). (x2)
= K(x x ) + K(x x ) 2K(x x )= K(x1,x1) + K(x2,x2) - 2K(x1,x2)

 But what is K(x1,x2)?( 1, 2)
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A property of the dot product

 For any vector v, vTv = ||v||2 >= 0
f f This is just the length of v and is therefore non-

negative

 For any vector u = i ai vi,  ||u||2 >=0
 => (i ai vi)T(i ai vi) >= 0 > (i ai vi) (i ai vi) >  0
 => i j ai aj vi .vj >= 0

 This holds for ANY real {a1, a2, …}
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The Mercer Condition
 If z = (x) is a high-dimensional vector derived 

from x then for all real {a1, a2, …} and any setfrom x then for all real {a1, a2, …} and any set  
{z1, z2, … } = {(x1), (x2),…}
 i j ai aj zi .zj >= 0i j i j i j

 i j ai aj(xi).(xj)   >= 0

If ( ) ( ) ( ) If K(x1,x2) = (x1). (x2)
 i j ai aj K(xi,xj)   >= 0

 Any function K() that satisfies the above 
condition is a valid kernel functioncondition is a valid kernel function

6118 Oct 2011



The Mercer Condition
 K(x1,x2) = (x1). (x2)

 i j ai aj K(xi xj) >= 0 i j ai aj K(xi,xj)   >  0

 A corollary: If any kernel K(.) satisfies the Mercer 
condition 
d(x1, x2) = K(x1,x1) + K(x2,x2) - 2K(x1,x2) 

ti fi th f ll i i t fsatisfies the following requirements for a 
“distance”
 d(x x) = 0 d(x,x) = 0
 d(x,y) >= 0
 d(x,w) + d(w,y) >= d(x,y) d(x,w)  d(w,y)  d(x,y)
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Typical Kernel Functions
 Linear: K(x,y) = xTy + c

 Polynomial K(x,y) = (axTy + c)n

 Gaussian: K(x,y) = exp(-||x-y||2/2)

 Exponential: K(x,y) =  exp(-||x-y||/)

 Several others
 Choosing the right Kernel with the right 

t f bl i tfparameters for your problem is an artform
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Kernel K-means

K(x,y)= (xT y + c)2

 Perform the K-mean in the Kernel space
 The space of z = (x)

 The algorithm..
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K–means
 Initialize the clusters with a 

random set of K points  


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ii
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cluster )x(w
w

1m
random set of K points

 Cluster has 1 point

 For each data point x find the closest cluster

 


clusteri
clusteri

iw

 For each data point x, find the closest cluster
2
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  
  clusteri clusteri clusterj

jj

Computed entirely using only the kernel function!
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K–means
1. Initialize a set of centroids

randomly

2. For each data point x, find the 
distance from the centroid for 
each cluster
•

3. Put data point in the cluster of the 
l t t id

),( clustercluster mxd distance

closest centroid
• Cluster for which dcluster is 

minimum

4. When all data points clustered, 
recompute cluster centroid

l xm 1

5. If not converged, go back to 2


clusteri

i
cluster

cluster x
N

m
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K–means
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Kernel K–means
1. Initialize a set of centroids

randomly

2. For each data point x, find the 
distance from the centroid for 
each cluster
•

3. Put data point in the cluster of the 
l t t id

),( clustercluster mxd distance

closest centroid
• Cluster for which dcluster is 

minimum

4. When all data points are 
clustered, recompute centroids
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 iicluster xwm 1

5. If not converged, go back to 2

 

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ii

clusteri
i

cluster w
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How many clusters?

 Assumptions:
f f Dimensionality of kernel space > no. of clusters

 Clusters represent separate directions in Kernel 
spacesspaces

 Kernel correlation matrix K Kernel correlation matrix K
 Kij = K(xi,xj)

 Find Eigen values  and Eigen vectors e of Find Eigen values  and Eigen vectors e of 
kernel matrix
 No of clusters = no of dominant i (1Tei) terms No. of clusters  no. of dominant i (1 ei) terms
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Spectral Methods
 “Spectral” methods attempt to find “principal” 

subspaces of the high dimensional kernel spacesubspaces of the high-dimensional kernel space
 Clustering is performed in the principal 

subspacessubspaces
 Normalized cuts
 Spectral clustering Spectral clustering

 Involves finding Eigenvectors and Eigen values 
of Kernel matrix

 Fortunately, provably analogous to Kernel K-
means
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Other clustering methods

 Regression based clustering
 Find a regression representing each cluster
 Associate each point to the cluster with the 

best regression
 Related to kernel methods
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Clustering..

 Many many other variants
 Many applications..

 Important: Appropriate choice of feature
 Appropriate choice of feature may eliminate need 

for kernel trick..

 Google is your friend.
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