11-755 Machine Learning for Signal Processing

Clustering

Class 14. 18 Oct 2011

18 Oct 2011



Clustering

18 Oct 2011



How

18 Oct 2011



Clustering

What is clustering

o Clustering is the determination of
naturally occurring grouping of
data/instances (with low within-group
variability and high between-group
variability)

18 Oct 2011




Clustering

= What is clustering

o Clustering is the determination of
naturally occurring grouping of
data/instances (with low within-group
variability and high between-group
variability)

18 Oct 2011




Clustering

What is clustering

o Clustering is the determination of
naturally occurring grouping of
data/instances (with low within-group
variability and high between-group

variability)

How is it done

o Find groupings of data such that the
groups optimize a “within-group-
variability” objective function of some
kind

18 Oct 2011




Clustering

What is clustering

o Clustering is the determination of
naturally occurring grouping of
data/instances (with low within-group
variability and high between-group
variability)

How is it done

o Find groupings of data such that the
groups optimize a “within-group-
variability” objective function of some
kind

o The objective function used affects
the nature of the discovered clusters

E.g. Euclidean distance and distance
from center result in different clusters
in this example

18 Oct 2011




Clustering

What is clustering

o Clustering is the determination of
naturally occurring grouping of
data/instances (with low within-group
variability and high between-group
variability)

How is it done

o Find groupings of data such that the
groups optimize a “within-group-
variability” objective function of some
kind

o The objective function used affects
the nature of the discovered clusters

E.g. Euclidean distance and distance
from center result in different clusters
in this example

18 Oct 2011




Why Clustering

Automatic grouping into “Classes”
o Different clusters may show different behavior

Quantization

o All data within a cluster are represented by a
single point

Preprocessing step for other algorithms
o Indexing, categorization, etc.
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Clustering criteria

Compactness criterion

o Measure that shows how “good” clusters are
The objective function

Distance of a point from a cluster
o To determine the cluster a data vector belongs to

18 Oct 2011

10
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“Compactness’ criteria for clustering

Distance based measures @
o Total distance between each

element in the cluster and every %

other element in the cluster

o Distance between the two
farthest points in the cluster

o Total distance of every element in
the cluster from the centroid of
the cluster

N

o Distance measures are often
weighted Minkowski metrics @

dist = §wi[a, —by|" +w[a, —by| +...+ iy |2, —by,|

18 Oct 2011 @




Clustering: Distance from cluster

How far is a data point from a
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from the centroid of the cluster
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Clustering: Distance from cluster

How far is a data point from a
cluster?

o Euclidean or Minkowski distance
from the centroid of the cluster

o Distance from the closest point in
the cluster

o Distance from the farthest point in
the cluster

o Probability of data measured on
cluster distribution

o Fit of data to cluster-based
18 Oct 2o1ﬁegreSSi0n
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Optimal clustering: Exhaustive

enumeration
All possible combinations of data must be evaluated

o If there are M data points, and we desire N clusters, the
number of ways of separating M instances into N clusters is

13 (N iy
D ( | ](N i)

o Exhaustive enumeration based clustering requires that the
objective function (the “Goodness measure”) be evaluated
for every one of these, and the best one chosen

This is the only correct way of optimal clustering
o Unfortunately, it is also computationally unrealistic
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Not-quite non sequitir: Quantization

TR T

Analog value (arrows are quantization levels)

Linear quantization (uniform quantization):

Q

=

o

>

3 Signal Value Bits | Mapped to
g S >=3.75v 11 | 3 * const
= 3.75v >S5S >=2.5v 10 | 2 * const
= 2.5v>S>=125v |01 |1*const
5 1.25v > S >= Qv 0 |0

8

o

L.

a

o Each digital value represents an equally wide range of analog

values
o Regardless of distribution of data

o Digital-to-analog conversion represented by a “uniform” table
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Not-quite non sequitir: Quantization

BERRHHEARE

Analog value (arrows are quantization levels)

Non-Linear quantization:

Q
%‘ Signal Value Bits Mapped to
> _

g S >=4v 11 4.5

= 4v > S >= 2.5y 10 3.25

<

HC_’ 2.5v>S >=1v 01 1.25

; 1.0v > S >=0v 0 0.5

=

a

o

Q

@)

[ -

(a1

o Each digital value represents a different range of analog values

Finer resolution in high-density areas

Mu-law / A-law assumes a gaussian-like distribution of data

o Digital-to-analog conversion represented by a “non-uniform” table
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Non-uniform quantization

/\

Analog value

Probability of analog value

If data distribution is not Gaussianish?
o Mu-law / A-law are not optimal

o How to compute the optimal ranges for quantization
Or the optimal table

18 Oct 2011
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The Lloyd Quantizer

/\

fere o Tt

Analog value (arrows show quantization levels)

Probability of analog value

Lloyd quantizer: An iterative algorithm for computing
optimal quantization tables for non-uniformly
distributed data

Learned from “training” data

18 Oct 2011
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‘ Lloyd Quantizer

/\

I
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= Randomly initialize
guantization points

o Right column entries of
guantization table
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Lloyd Quantizer

()

JAWAVAN

18 Oct 2011

Randomly initialize
guantization points

o Right column entries of
guantization table

Assign all training points
to the nearest
guantization point

o Draw boundaries

Reestimate quantization
points

Iterate until convergence

31



Generalized Lloyd Algorithm: K—-means clustering

K means is an iterative algorithm for clustering
vector data

o McQueen, J. 1967. “Some methods for classification and
analysis of multivariate observations.” Proceedings of the
Fifth Berkeley Symposium on Mathematical Statistics and
Probability, 281-297

General procedure:

o Initially group data into the required number of clusters
somehow (initialization)

o Assign each data point to the closest cluster

o Once all data points are assigned to clusters, redefine
clusters

o lterate

18 Oct 2011
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K—means

Problem: Given a set of data
vectors, find natural clusters

Clustering criterion is scatter:
distance from the centroid
o Every cluster has a centroid

o The centroid represents the
cluster

Definition: The centroid iIs
the weighted mean of the
cluster m

— W X
o Weight = 1 for basic scheme cluster — Z W, Z

Iecluster

iecluster
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K—means

Initialize a set of centroids
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K—means

1. Initialize a set of centroids
randomly

2. For each data point x, find the
distance from the centroid for
each cluster

° d = distance(x, M., )

cluster

3. Put data point in the cluster of the
closest centroid

e Cluster for which d . IS
minimum

4. When all data points are
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K-Means comments

The distance metric determines the clusters

o In the original formulation, the distance is L2
distance

Euclidean norm, w, =1

diStanCecluster (X’ mcluster) :” X = Myuster ”2 Metuster = Z Xi

Cluster iecluster

o If we replace every x by m «/(X), we get Vector
Quantization

K-means Is an instance of generalized EM

Not guaranteed to converge for all distance
metrics
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Initialization

Random initialization

Top-down clustering

o Initially partition the data into two (or a small
number of) clusters using K means

o Partition each of the resulting clusters into two
(or a small number of) clusters, also using K
means

o Terminate when the desired number of clusters
IS obtained
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K-Means tor Top—Down clustering

Start with one cluster
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o O
o
o
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K-Means tor Top—Down clustering

Start with one cluster ®
O O e ©O
Split each cluster into two: ©
o Perturb centroid of cluster slightly (by < 5%)
to generate two centroids ' f
O\O-/,.:‘.::.——O

Initialize K means with new set of
centroids

lterate Kmeans until convergence
O

If the desired number of clusters is

not obtained, return to 2
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Non-FEuclidean clusters

Basic K-means results in good clusters in

Euclidean spaces

o Alternately stated, will only find clusters that are
*good” in terms of Euclidean distances

Will not find other types of clusters
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Non-euclidean clusters A

f([X,y]) -> [X,y,Z] .
X=X
y=y
z=a(C+y?) i

05 .

For other forms of clusters we must modify the distance measure
o E.g. distance from a circle

May be viewed as a distance in a higher dimensional space
o l.e Kernel distances

o Kernel K-means

Other related clustering mechansims:

o Spectral clustering
0 Non-linear weighting of adjacency

o Normalized cuts..
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The Kernel Trick

2o

() > eyl |
X=X
Y=Yy
2= a(+y?)

05 .

Transform the data into a synthetic higher-dimensional space
where the desired patterns become natural clusters
o E.g. the quadratic transform above

Problem: What is the function/space?

Problem: Distances in higher dimensional-space are more
expensive to compute

o Yet only carry the same information in the lower-dimensional space

18 Oct 2011
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Distance in higher-dimensional space

Transform data x through an unknown function
d(x) into a higher (potentially infinite)
dimensional space

0 z2=®d(X)

The distance between two points is computed In
the higher-dimensional space

0 d(Xy, X)) = |24~ Z,|[2 = [[D(Xy) = P(X)]|?

d(x;, X,) can be computed without computing z
o Since it is a direct function of x, and X,
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Distance in higher-dimensional space

Distance in lower-dimensional space: A combination
of dot products

0 IXem Xoll? = (207 25) (247 25) = 2021 + 2,.2,-2 2,7,

Distance in higher-dimensional space

3 d(Xy, Xp) =I|D(K,) — D)2
= D(X,). D(X;) + DX,). D(X,) -2 D(x,). D(x,)

d(xy, X,) can be computed without knowing ®(x) If:

o ®(x,). d(Xx,) can be computed for any x; and x, without
knowing @(.)
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The Kernel function

A kernel function K(x,,X,) Is a function such that:

0 K(X1,Xg) = O(Xy). D(X,)

Once such a kernel function is found, the
distance in higher-dimensional space can be
found In terms of the kernels
0 d(Xg, X) =[|D(Xy) — D(X)|[?
= @(Xy). D(Xy) + D(Xy). D(Xy) -2 D(Xy). D(X,)
= K(X1,Xp) + K(X9,X5) = 2K(X,X))

But what is K(Xy,X,)?

18 Oct 2011
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A property ot the dot product

For any vector v, viv = |[v||? >=0
o This is just the length of v and is therefore non-
negative

For any vectoru =% a v, [|ul||?>=0
0 =>(Zav)'(Zigv) >=0

0 =>X 88V, >=0

This holds for ANY real {a,, a,, ...}

18 Oct 2011
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The Mercer Condition

If z = d(X) Is a high-dimensional vector derived
from x then for all real {a,, a,, ...} and any set

{21, 250 .. = H{O(X), (X))

T K(X,X;) = @(Xy). D(Xy)
0 %% a KX, x) >=0

Any function K() that satisfies the above
condition is a valid kernel function

18 Oct 2011
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The Mercer Condition

K(X1,Xp) = ©(Xy). D(Xy)
0 %% KX, x) >=0

A corollary: If any kernel K(.) satisfies the Mercer
condition

d(Xy, X5) = K(X1,Xq) + K(X5,Xp) - 2K(X1,X5)

satisfies the following requirements for a
“distance”

2 dx,x) =0

o dx,y)>=0

0 d(x,w) + d(w,y) >= d(x,y)
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Typical Kernel Functions
Linear: K(x,y) = x'y + ¢
Polynomial K(x,y) = (ax'y + ¢c)"
Gaussian: K(x,y) = exp(-||x-y||?/c?)
Exponential: K(x,y) = exp(-||x-y||/A)

Several others

o Choosing the right Kernel with the right
parameters for your problem is an artform

18 Oct 2011
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Kernel K-means

K(xy)= Ty +c)2 |

= Perform the K-mean in the Kernel space

o The space of z = ®(x)

= The algorithm..
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K—means

Initialize the clusters with a
. mcluster o ZW (D(X )
random set of K points ZW, A
o Cluster has 1 point ecluster

For each data point X, find the closest cluster
| D(X)—m

2
cluster ”

cluster(x) = min d(x, cluster) = min

cluster cluster |

d(x, cluster) = D (X) — M e ”2:((1)()()_(: ZWiCD(Xi)j ((D(X)_C Zwiq)(xi)j

iecluster iecluster

:[cD(x)TcD(x)—ZC > wo(x) D(x,)+C* Zwichb(xi)TCD(Xj)]

iecluster iecluster jecluster
=K(x,x)-2C > wK(x,x)+C* > > wwK(x;,X;)
iecluster iecluster jecluster

Computed entirely using only the kernel function!
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K—means

Initialize a set of centroids
randomly

For each data point x, find the
distance from the centroid for
each cluster

° d = distance(x, M., )

cluster
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Kernel K—means

1. Initialize a set of centroids
randomly

2. For each data point x, find the
distance from the centroid for
each cluster

° d = distance(x, M., )

cluster

3. Put data point in the cluster of the
closest centroid

e Cluster for which d . IS
minimum

4. When all data points are
clustered, recompute centroids

1
mcluster = Z Wi Xi

E Wi iecluster

iecluster

5. odbipt converged, go back to 2 »




How many clusters?

Assumptions:

o Dimensionality of kernel space > no. of clusters

o Clusters represent separate directions in Kernel
spaces

Kernel correlation matrix K

0 Ky = K(X;,x)

Find Eigen values A and Eigen vectors e of
kernel matrix

o No. of clusters = no. of dominant A; (17e;) terms
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Spectral Methods

“Spectral” methods attempt to find “
subspaces of the high-dimensional

Clustering is performed in the princi
subspaces

o Normalized cuts
o Spectral clustering

principal”
Kernel space

nal

Involves finding Eigenvectors and Eigen values

of Kernel matrix

Fortunately, provably analogous to Kernel K-

means

18 Oct 2011
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Other clustering methods

Regression based clustering
Find a regression representing each cluster

Associate each point to the cluster with the
best regression

o Related to kernel methods
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Clustering..

Many many other variants
Many applications..

Important: Appropriate choice of feature

o Appropriate choice of feature may eliminate need
for kernel trick..

o Google is your friend.
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