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Administrivia

 TA Times:
 Anoop Ramakrishna: Thursday 12.30-1.30pm
 Manuel Tragut: Friday 11am – 12pm.

 HW1:  On the webpage
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Projectionsj

 What would we see if the cone to the left were transparent if we 
looked at it along the normal to the plane
 The plane goes through the origin
 Answer: the figure to the right

 How do we get this?  Projection
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g j
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Projection Matrix
90degrees

j
90degrees

W2

projectionW1

 Consider any plane specified by a set of vectors W1, W2..
 Or matrix [W1 W2 ] Or matrix [W1 W2 ..]
 Any vector can be projected onto this plane
 The matrix A that rotates and scales the vector so that it becomes 

its projection is a projection matrix
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its projection is a projection matrix
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Projection Matrix
90degrees

j
90degrees

W2

projectionW1

 Given a set of vectors W1, W2, which form a matrix W = [W1 W2.. ]
 The projection matrix that transforms any vector X to its projection on the plane isp j y p j p

 P = W (WTW)-1 WT

 We will visit matrix inversion shortly

 Magic – any set of vectors from the same plane that are expressed as a matrix will give 
you the same projection matrix
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you the same projection matrix
 P = V (VTV)-1 VT
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Projectionsj

 HOW?
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Projectionsj

 Draw any two vectors W1 and W2 that lie on the plane
 ANY two so long as they have different angles

 Compose a matrix W = [W1 W2]
 Compose the projection matrix P = W (WTW)-1 WT

 Multiply every point on the cone by P to get its projection
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 View it 
 I’m missing a step here – what is it?
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Projectionsj

 The projection actually projects it onto the plane, but you’re still seeing 
the plane in 3D
 The result of the projection is a 3-D vector
 P = W (WTW)-1 WT = 3x3,  P*Vector = 3x1
 The image must be rotated till the plane is in the plane of the paper

 The Z axis in this case will always be zero and can be ignored
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 How will you rotate it? (remember you know W1 and W2)
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Projection matrix propertiesj

 The projection of any vector that is already on the plane is the vector itself
 Px = x if x is on the plane
 If the object is already on the plane, there is no further projection to be performed

 The projection of a projection is the projection
 P (Px) = Px
 That is because Px is already on the plane
P j ti t i id t t
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 Projection matrices are idempotent
 P2 = P

 Follows from the above6 Sep 2011 65



Perspective

 The picture is the equivalent of “painting” the viewed 
scenery on a glass window

 Feature: The lines connecting any point in the scenery and 
its projection on the window merge at a common point
 The eye
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An aside on Perspective..

 Perspective is the result of convergence of the image to a pointp g g p
 Convergence can be to multiple points

 Top Left: One-point perspective
 Top Right: Two-point perspective Top Right: Two-point perspective
 Right: Three-point perspective
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Central Projectionj
x’,y’,z’

Y
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z
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 Property of a line through origin 'yy
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








 The positions on the “window” are scaled along the line
 To compute (x,y) position on the window,  we need z (distance of 

'z'y'x
yy

p ( ,y) p , (
window from eye), and (x’,y’,z’)  (location being projected)
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Projections: A more physical meaningj
 Let W1, W2 .. Wk be “bases”

W t t l i d t i t f th We want to explain our data in terms of these 
“bases”
 We often cannot do so We often cannot do so
 But we can explain a significant portion of it

Th ti f th d t th t b d i The portion of the data that can be expressed in 
terms of our vectors W1, W2, .. Wk,  is the projection 
of the data on the W1 Wk (hyper) planeof the data on the W1 .. Wk (hyper) plane
 In our previous example, the “data” were all the points on a 

cone
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 The interpretation for volumetric data is obvious
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Projection : an example with soundsj

Th t ( t i ) f i f i The spectrogram (matrix) of a piece of music

 How much of the above music was composed of the 
above notes
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above notes
 I.e. how much can it be explained by the notes

6 Sep 2011 70



Projection: one notej

M = 

Th t ( t i ) f i f i The spectrogram (matrix) of a piece of music

W = 

 M = spectrogram;   W = note
P W (WTW) 1 WT

11-755/18-797

 P = W (WTW)-1 WT

 Projected Spectrogram = P * M
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Projection: one note – cleaned upj

M = 

Th t ( t i ) f i f i The spectrogram (matrix) of a piece of music

W = 

 Floored all matrix values below a threshold to zero
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Projection: multiple notesj

M = 

Th t ( t i ) f i f i The spectrogram (matrix) of a piece of music

W = 

 P = W (WTW)-1 WT

P j t d S t P * M

11-755/18-797

 Projected Spectrogram = P * M
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Projection: multiple notes, cleaned upj

M = 

Th t ( t i ) f i f i The spectrogram (matrix) of a piece of music

W = 

 P = W (WTW)-1 WT

P j t d S t P * M

11-755/18-797

 Projected Spectrogram = P * M
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Projection and Least Squaresj
 Projection actually computes a least squared error estimate
 For each vector V in the music spectrogram matrix

 Approximation:  Vapprox = a*note1 + b*note2 + c*note3..pp approx

















 b
a

Vapprox  ot
e1

ot
e2

ot
e3

 Error vector E =  V – Vapprox











 c

app ox n n n
 Squared error energy for V     e(V) = norm(E)2

 Total error = sum_over_all_V { e(V) } = V e(V)
 Projection computes Vapprox for all vectors such that Total error is 

i i i dminimized
 It does not give you “a”, “b”, “c”.. Though

 That needs a different operation – the inverse / pseudo inverse
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Orthogonal and Orthonormal matrices







010
001





 

612035407070
612.0     354.0    707.0









 100
010












5.0866.0       0
612.0 354.0      707.0

 Orthogonal Matrix  :  AAT = diagonal
 Each row vector lies exactly along the normal to the plane 

specified by the rest of the vectors in the matrix

 Orthonormal Matrix: AAT = ATA = I
 In additional to be orthogonal, each vector has length exactly = 

1.0
 Interesting observation: In a square matrix if the length of the row 

11-755/18-797

vectors is 1.0, the length of the column vectors is also 1.0
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Orthogonal and Orthonormal Matrices

 Orthonormal matrices will retain the relative angles 
between transformed vectorsbetween transformed vectors
 Essentially, they are combinations of rotations, reflections 

and permutations
 Rotation matrices and permutation matrices are all 

orthonormal matrices
 The vectors in an orthonormal matrix are at 90degrees to The vectors in an orthonormal matrix are at 90degrees to 

one another.
 Orthogonal matrices are like Orthonormal matrices 

with stretching
 The product of a diagonal matrix and an orthonormal matrix
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Matrix Rank and Rank-Deficient Matrices

P * Cone = 

 Some matrices will eliminate one or more dimensions during g
transformation
 These are rank deficient matrices
 The rank of the matrix is the dimensionality of the trasnsformed

11-755/18-797

 The rank of the matrix is the dimensionality of the trasnsformed 
version of a full-dimensional object
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Matrix Rank and Rank-Deficient Matrices

 Some matrices will eliminate one or more dimensions 

Rank = 2 Rank = 1

during transformation
 These are rank deficient matrices
 The rank of the matrix is the dimensionality of the transformed 

11-755/18-797

y
version of a full-dimensional object
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Projections are often examples of rank-deficient transforms

M = 

P W (WTW) 1 WT P j t d S t P * M

W = 

 P = W (WTW)-1 WT ; Projected Spectrogram = P * M
 The original spectrogram can never be recovered

 P is rank deficient
 P explains all vectors in the new spectrogram as a 

mixture of only the 4 vectors in W
 There are only 4 independent bases
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 There are only 4 independent bases
 Rank of P is 4
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Non-square Matrices

 98 
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
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
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
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


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





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N

N
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yyy
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 Non-square matrices add or subtract axes


X = 2D data P = transform PX = 3D, rank 2



Non square matrices add or subtract axes
 More rows than columns  add axes

 But does not increase the dimensionality of the data
 Fewer rows than columns reduce axes
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 Fewer rows than columns  reduce axes
 May reduce dimensionality of the data
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Non-square Matrices






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
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
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N
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xxx
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 Non-square matrices add or subtract axes

X = 3D data, rank 3


P = transform PX = 2D, rank 2
 Nzzz ..21

Non square matrices add or subtract axes
 More rows than columns  add axes

 But does not increase the dimensionality of the data
 Fewer rows than columns reduce axes
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 Fewer rows than columns  reduce axes
 May reduce dimensionality of the data
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The Rank of  a Matrix

 98









115.
2.13.

















06.
9.1.
9.8.

 The matrix rank is the dimensionality of the transformation of a full-
dimensioned object in the original spacej g p

 The matrix can never increase dimensions
 Cannot convert a circle to a sphere or a line to a circle
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 The rank of a matrix can never be greater than the lower of its two 
dimensions6 Sep 2011 83



The Rank of Matrix

M = 

 Projected Spectrogram = P * M
 Every vector in it is a combination of only 4 bases

 The rank of the matrix is the smallest no. of bases 
required to describe the outputrequired to describe the output
 E.g. if note no. 4 in P could be expressed as a combination of 

notes 1,2 and 3, it provides no additional information
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 Eliminating note no. 4 would give us the same projection
 The rank of P would be 3!

6 Sep 2011 84



Matrix rank is unchanged by transposition

 805090  4201090

















86.044.042.0
9.04.01.0
8.05.09.0

















86.09.08.0
44.04.05.0
42.01.09.0

 If an N-D object is compressed to a K-D 
object by a matrix it will also be compressedobject by a matrix, it will also be compressed 
to a K-D object by the transpose of the matrix
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Matrix Determinant
(r2) (r1+r2)

(r1)

(r2)

The determinant is the “volume” of a matrix

(r1)

 The determinant is the volume  of a matrix
 Actually the volume of a parallelepiped formed from 

its row vectors
 Also the volume of the parallelepiped formed from its 

column vectors
 Standard formula for determinant: in text book
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 Standard formula for determinant: in text book
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Matrix Determinant: Another Perspective
Volume = V1 Volume = V2

















7.09.0       7.0
8.0  8.0       0.1
7.0     0    8.0

The determinant is the ratio of N volumes The determinant is the ratio of N-volumes
 If V1 is the volume of an N-dimensional object “O” in N-

dimensional space
O i th l t t f i t ti th t if th bj t O is the complete set of points or vertices that specify the object

 If V2 is the volume of the N-dimensional object specified by A*O,  
where A is a matrix that transforms the space
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 |A| = V2 / V1
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Matrix Determinants
 Matrix determinants are only defined for square matrices

 They characterize volumes in linearly transformed space of the They characterize volumes in linearly transformed space of the 
same dimensionality as the vectors

 Rank deficient matrices have determinant 0Rank deficient matrices have determinant 0
 Since they compress full-volumed N-D objects into zero-volume 

N-D objects
 E g a 3-D sphere into a 2-D ellipse: The ellipse has 0 volume E.g. a 3 D sphere into a 2 D ellipse:  The ellipse has 0 volume 

(although it does have area)

 Conversely, all matrices of determinant 0 are rank deficientConversely, all matrices of determinant 0 are rank deficient
 Since they compress full-volumed N-D objects into zero-volume 

objects
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Multiplication properties
 Properties of vector/matrix products

 Associative Associative

 Distributive

A  (B C)  (A B) C
 Distributive

 NOT commutative!!!

A  (B C)  A B A C
 NOT commutative!!!

 left multiplications ≠ right multiplications
A B  B A

p g p
 Transposition

  TTT ABBA 

11-755/18-797

  ABBA
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Determinant properties
 Associative for square matrices CBACBA 

 Scaling volume sequentially by several matrices is equal to 
scaling once by the product of the matrices

 Volume of sum != sum of Volumes

 The volume of the parallelepiped formed by row vectors of the

CBCB  )(

 The volume of the parallelepiped formed by row vectors of the 
sum of two matrices  is not the sum of the volumes of the 
parallelepipeds formed by the original matrices

 Commutative for square matrices!!!
BAABBA 
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 The order in which you scale the volume of an object is irrelevant
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Matrix Inversion








 8.0  8.0       0.1
7.0     0    8.0

T

 A matrix transforms an N-
D object to a different N-






 7.09.0       7.0

D object to a different N-
D object

 What transforms the new 
object back to the 
original?

1

???






 The inverse transformation

 The inverse 
transformation is called

1

???
??? 










 TQ

transformation is called 
the matrix inverse
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Matrix Inversion
T T-1

 The product of a matrix and its inverse is the
T-1T = I

 The product of a matrix and its inverse is the 
identity matrix
 Transforming an object and then inverse Transforming an object, and then inverse 

transforming it gives us back the original object
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Inverting rank-deficient matrices

 001




















75.0433.00
433.025.0

001

 Rank deficient matrices “flatten” objects
 In the process, multiple points in the original object get mapped to the same point in the 

transformed  objectj

 It is not possible to go “back” from the flattened object to the original object
 Because of the many-to-one forward mapping
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 Rank deficient matrices have no inverse
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Revisiting Projections and Least Squares
 Projection computes a least squared error estimate
 For each vector V in the music spectrogram matrix

 Approximation: V = a*note1 + b*note2 + c*note3 Approximation:  Vapprox = a note1 + b note2 + c note3..





 1 2 3 



a

 










T
no

te
1

no
te

2
no

te
3

  











c
bTVapprox

 Error vector E =  V – Vapprox

 Squared error energy for V     e(V) = norm(E)2

 Total error = Total error + e(V) Total error = Total error + e(V)
 Projection computes Vapprox for all vectors such that Total error is 

minimized
B t WHAT ARE “ ” “b” d “ ”?
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 But WHAT ARE “a” “b” and “c”?
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The Pseudo Inverse (PINV)

  










 b
a

TVapprox   










 b
a

TV VTPINVb
a

 * )(   










 We are approximating spectral vectors V as the






c 





c c







 We are approximating spectral vectors V as the 
transformation of the vector [a b c]T
 Note – we’re viewing the collection of bases in T as a 

transformation

 The solution is obtained using the pseudo inverse The solution is obtained using the pseudo inverse
 This give us a LEAST SQUARES solution

 If T were square and invertible Pinv(T) = T-1, and V=Vapprox
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Explaining music with one note

M = 

X =PINV(W)*M

W = 

 Recap:  P = W (WTW)-1 WT, Projected Spectrogram = P*M

 Approximation:  M = W*X
 The amount of W in each vector = X = PINV(W)*M

W*Pi (W)*M P j t d S t
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 W*Pinv(W)*M = Projected Spectrogram
 W*Pinv(W) = Projection matrix!!

PINV(W) = (WTW)-1WT
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Explanation with multiple notes

M = 

X=PINV(W)M( )

W =W  
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 X =  Pinv(W) * M;   Projected matrix = W*X = W*Pinv(W)*M
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How about the other way?

M = 

V = 

??W = ?? U = 
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 WV \approx M              W = M * Pinv(V)       U = WV
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Pseudo-inverse (PINV)

 Pinv()  applies to non-square matrices
 Pinv ( Pinv (A))) = A
 A*Pinv(A)= projection matrix!
 Projection onto the columns of A

 If A = K x N matrix and K > N, A projects N-D 
vectors into a higher-dimensional K-D space

 Pinv(A)*A = I  in this case
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Matrix inversion (division)
 The inverse of matrix multiplication

 Not element-wise division!!
Provides a way to “undo” a linear transformation Provides a way to “undo” a linear transformation
 Inverse of the unit matrix is itself
 Inverse of a diagonal is diagonal
 Inverse of a rotation is a (counter)rotation (its transpose!)
 Inverse of a rank deficient matrix does not exist!

 But pseudoinverse exists But pseudoinverse exists
 Pay attention to multiplication side!

A B  C,  A  C B1,  B  A 1 C
 Matrix inverses defined for square matrices only

 If matrix not square use a matrix pseudoinverse:
A B C A C B B A  C

11-755/18-797
 MATLAB syntax: inv(a), pinv(a)

A B  C,  A  C B ,   B  A C
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What is the  Matrix   ?
 Duality in terms of the matrix identity

Can be a container of data Can be a container of data
 An image, a set of vectors, a table, etc …

 Can be a linear transformation
 A process by which to transform data in another matrix

 We’ll usually start with the first definition and 
then apply the second one on it
 Very frequent operation

R b ti i fl ti t Room reverberations, mirror reflections, etc …
 Most of signal processing and machine 

learning are a matrix multiplication!
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learning are a matrix multiplication!
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Eigenanalysis
 If something can go through a process mostly 

unscathed in character it is an eigen-somethingg g
 Sound example:

 A vector that can undergo a matrix multiplication 
and keep pointing the same way is an 
eigenvector
 Its length can change though Its length can change though

 How much its length changes is expressed by its 
corresponding eigenvaluep g g
 Each eigenvector of a matrix has its eigenvalue

 Finding these “eigenthings” is called 
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eigenanalysis
6 Sep 2011 102



EigenVectors and EigenValues








 


0170
7.05.1

A
Black 
vectors

 0.17.0
are
eigen 
vectors

 Vectors that do not change angle upon transformation
They may change length They may change length

V i t

VMV 
 V = eigen vector
  = eigen value
 Matlab:  [V, L] = eig(M)

L i di l t i h t i th i l
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 L is a diagonal matrix whose entries are the eigen values
 V is a maxtrix whose columns are the eigen vectors
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Eigen vector example
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Matrix multiplication revisited





 


07.00.1

A 



 2.11.1

 Matrix transformation “transforms” the space Matrix transformation transforms  the space
 Warps the paper so that the normals to the two 

vectors now lie along the axes
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ec o s o e a o g e a es
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A stretching operation
1.4 0.8

 Draw two lines
 Stretch / shrink the paper along these lines by p p g y

factors 1 and 2
 The factors could be negative – implies flipping the paper
The result is a transformation of the space
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 The result is a transformation of the space
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A stretching operation

 Draw two lines
 Stretch / shrink the paper along these lines by p p g y

factors 1 and 2
 The factors could be negative – implies flipping the paper
The result is a transformation of the space
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 The result is a transformation of the space
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Physical interpretation of eigen vector

 The result of the stretching is exactly the same as transformation 
by a matrix

 The axes of stretching/shrinking are the eigenvectorse a es o st etc g/s g a e t e e ge ecto s
 The degree of stretching/shrinking are the corresponding 

eigenvalues
 The EigenVectors and EigenValues convey all the information

11-755/18-797

 The EigenVectors and EigenValues convey all the information 
about the matrix
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Physical interpretation of eigen vector

 21 VVV

2

1

0
0








L




1
2



VLVM

 The result of the stretching is exactly the same as transformation 
by a matrix

 The axes of stretching/shrinking are the eigenvectors
 The degree of stretching/shrinking are the corresponding 

eigenvalues
 The EigenVectors and EigenValues convey all the information 

b t th t i
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about the matrix
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Eigen Analysis
 Not all square matrices have nice eigen values and 

vectorsvectors
 E.g. consider a rotation matrix

 sincos 
























 


'

cossin
sincos

x
X

y
x

X




R



 This rotates every vector in the plane








'y

X new

 No vector that remains unchanged
 In these cases the Eigen vectors and values are 

complex
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complex
 Some matrices are special however..
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Singular Value Decomposition














2.11.1
07.00.1

A


 Matrix transformations convert circles to ellipses
 Eigen vectors are vectors that do not change direction in 

the processthe process
 There is another key feature of the ellipse to the right that 

carries information about the transform
C id if i ? Can you identify it?
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Singular Value Decomposition














2.11.1
07.00.1

A


 The major and minor axes of the transformed 
ellipse define the ellipse

Th t i ht l They are at right angles
 These are transformations of right-angled 

vectors on the original circle!vectors on the original circle!

6 Sep 2011 11-755/18-797 112



Singular Value Decomposition














2.11.1
07.00.1

A
V V

s1U1

U 

matlab:

A = U S VT

V1 V2s2U1

matlab:
[U,S,V] = svd(A)

 U and V are orthonormal matrices
 Columns are orthonormal vectors

 S is a diagonal matrix

 The right singular vectors of V are transformed to the left singular 
vectors in U
 And scaled by the singular values that are the diagonal entries of S
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Singular Value Decomposition
 The left and right singular vectors are not the same

 If A is not a square matrix the left and right singular vectors will If A is not a square matrix, the left and right singular vectors will 
be of different dimensions

 The singular values are always real The singular values are always real

 The largest singular value is the largest amount by which a 
t i l d b Avector is scaled by A

 Max (|Ax| / |x|) = smax

 The smallest singular value is the smallest amount by g y
which a vector is scaled by A
 Min (|Ax| / |x|) = smin

 This can be 0 (for low-rank or non-square matrices) This can be 0 (for low-rank or non-square matrices)
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The Singular Values
s1U1

Us2U1

S t i Th d t f th i l l i th d t i t f th Square matrices: The product of the singular values is the determinant of  the 
matrix
 This is also the product of the eigen values
 I.e. there are two different sets of axes whose products give you the area of an ellipse

 For any “broad” rectangular matrix A, the largest singular value of any square 
submatrix B cannot be larger than the largest singular value of A
 An analogous rule applies to the smallest singluar valueg pp g
 This property is utilized in various problems, such as compressive sensing
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Symmetric Matrices





  7.05.1





 17.0

 Matrices that do not change on transposition Matrices that do not change on transposition
 Row and column vectors are identical

 The left and right singular vectors are identical
 U = V
 A = U S UT

 They are identical to the eigen vectors of the matrix
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 They are identical to the eigen vectors of the matrix
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Symmetric Matrices





  7.05.1





 17.0

 Matrices that do not change on transposition Matrices that do not change on transposition
 Row and column vectors are identical

 Symmetric matrix: Eigen vectors and Eigen values 
are always real

 Eigen vectors are always orthogonal
At 90 degrees to one another
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 At 90 degrees to one another
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Symmetric Matrices











17.0

7.05.1

 Eigen vectors point in the direction of the Eigen vectors point in the direction of the 
major and minor axes of the ellipsoid 
resulting from the transformation of aresulting from the transformation of a 
spheroid
 The eigen values are the lengths of the axes
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g g
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Symmetric matrices
 Eigen vectors Vi are orthonormal

 Vi
TVi = 1

 Vi
TVj = 0, i != j

 Listing all eigen vectors in matrix form V
VT V 1 VT = V-1

 VT V = I
 V VT= I

 C Vi = Vi

 In matrix form  :  C V  = V L
 L is a diagonal matrix with all eigen values

 C = V L VT
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 C  V L V
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The Correlation and Covariance Matrices
A AT

ia1,i2

=
CN

iak,iak,
j

 Consider a set of column vectors represented as a DxN matrix M
 The correlation matrix is

C (1/N) MMT C = (1/N) MMT

 If the average value (mean) of the vectors in M is 0, C is called the covariance
matrix

 covariance = correlation + mean * meanT

 Diagonal elements represent average value of the squared value of 
each dimension
 Off diagonal elements represent how two components are related
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 How much knowing one lets us guess the value of the other
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Correlation / Covariance Matrix

VLVC
T

T

VLSqrtVVLSqrtVCSqrtCSqrt
VLSqrtVCSqrt

TT

TT

T




).(.).(.)().(
).(.)(

 The correlation / covariance matrix is symmetric

CVLVVLSqrtLSqrtV TT  )().(.

y
 Has orthonormal eigen vectors and real, non-negative eigen 

values
 The square root of a correlation or covariance matrix is easily The square root of a correlation or covariance matrix is easily 

derived from the eigen vectors and eigen values
 The eigen values of the square root of the covariance matrix are 

the square roots of the eigen values of the covariance matrix

11-755/18-797

the square roots of the eigen values of the covariance matrix
 These are also the “singular values” of the data set
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Square root of the Covariance Matrix

C

 The square root of the covariance matrix 
represents the elliptical scatter of the datarepresents the elliptical scatter of the data

 The eigenvectors of the matrix represent the 
major and minor axes
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major and minor axes
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The Covariance Matrix
Any vector V = aV,1 * eigenvec1 + aV,2 *eigenvec2 + ..

V aV,i = eigenvalue(i)

 Projections along the N eigen vectors with the 
largest eigen values represent the N greatest g g p g
“energy-carrying” components of the matrix

 Conversely, N “bases” that result in the least square 
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error are the N best eigen vectors
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An audio example

 The spectrogram has 974 vectors of 
dimension 1025

 The covariance matrix is size 1025 x 1025
 There are 1025 eigenvectors
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Eigen Reduction

)(][
. T

CeigLV
MMC

mspectrograM


 1025x1000

1025x1025

V = 1025x1025

dim

251
)(

]..[
)(],[

reducedlow

reduced
MVPinvM

VVV
CeigLV





1025x25

25x1000

V = 1025x1025

 Compute the Covariance/Correlation

dimlowreducedtedreconstruc MVM  1025x1000

 Compute the Covariance/Correlation
 Compute Eigen vectors and values
 Create matrix from the 25 Eigen vectors corresponding to 25 highest 

Eigen valuesEigen values
 Compute the weights of the 25 eigenvectors
 To reconstruct the spectrogram – compute the projection on the 25 

eigen vectors
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eigen vectors 
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Eigenvalues and Eigenvectors

 Left panel: Matrix with 1025 eigen vectors mspectrograM p g
 Right panel: Corresponding eigen values

 Most eigen values are close to zero
 The corresponding eigenvectors are “unimportant”

)(],[
.

CeigLV
MMC

p g
T



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 The corresponding eigenvectors are unimportant
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Eigenvalues and Eigenvectors

The vectors in the spectrogram are linear combinations of all

Vec = a1 *eigenvec1 + a2 * eigenvec2 + a3 * eigenvec3 …

 The vectors in the spectrogram are linear combinations of all 
1025 eigen vectors

 The eigen vectors with low eigen values contribute very little
 The average value of ai is proportional to the square root of the 

eigenvalue
 Ignoring these will not affect the composition of the spectrogram
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An audio example VVVreduced ]..[ 251
MVPinvM reducedlow )(dim 

 The same spectrogram projected down to the 25 
eigen vectors with the highest eigen values
 Only the 25 dimensional weights are shown Only the 25-dimensional weights are shown

 The weights with which the 25 eigen vectors must be added to 
compose a least squares approximation to the spectrogram
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An audio example

Th t t t d f l th 25 i

dimlowreducedtedreconstruc MVM 

 The same spectrogram constructed from only the 25 eigen 
vectors with the highest eigen values
 Looks similar

With 100 eigen ectors it o ld be indisting ishable from the original With 100 eigenvectors, it would be indistinguishable from the original
 Sounds pretty close
 But now sufficient to store 25 numbers per vector (instead of 

1024)
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1024)
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With only 5 eigenvectors

 The same spectrogram constructed from only 
the 5 eigen vectors with the highest eigen 

lvalues
 Highly recognizable
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Eigenvectors, Eigenvalues and 
Covariances
 The eigenvectors and eigenvalues (singular The eigenvectors and eigenvalues (singular 

values) derived from the correlation matrix 
are importantare important

 Do we need to actually compute the 
correlation matrix?correlation matrix?
 No

 Direct computation using Singular Value Direct computation using Singular Value 
Decomposition
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SVD vs. Eigen decomposition
 Singluar value decomposition is analogous to the 

eigen decomposition of the correlation matrix of theeigen decomposition of the correlation matrix of the 
data

 The “right” singluar vectors are the eigen vectors of g g g
the correlation matrix
 Show the directions of greatest importance

 The corresponding singular values are the square 
roots of the eigen values of the correlation matrixroots of the eigen values of the correlation matrix
 Show the importance of the eigen vector
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Thin SVD, compact SVD, reduced SVD

A U VT
NxM

NxN MxM

. .
=

NxM

 Thin SVD:  Only compute the first N columns of U
 All that is required if N < M

 Compact SVD: Only the left and right eigen vectors Compact SVD: Only the left and right eigen vectors 
corresponding to non-zero singular values are computed

 Reduced SVD: Only compute the columns of U corresponding to 
the K highest singular values
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the K highest singular values
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Why bother with eigens/SVD
 Can provide a unique insight into 

data
 Strong statistical grounding 
 Can display complex interactions 

between the data
 Can uncover irrelevant parts of 

the data we can throw out
 Can provide basis functions

f A set of elements to compactly 
describe our data

 Indispensable for performing 
compression and classification Eigenfacescompression and classification

 Used over and over and still 
perform amazingly well

Eigenfaces
Using a linear transform of 

the above “eigenvectors” we 
can compose various faces
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