
9/20/2011

1

Detecting Faces in Images

11755/18797

Detecting Faces in Images

20 Sep 2011 37

Detecting Faces in Images

11755/18797

 Finding face like patterns
 How do we find if a picture has faces in it
 Where are the faces?

 A simple solution:
 Define a “typical face”
 Find the “typical face” in the image

20 Sep 2011 38

Finding faces in an image

Pi i l h h “ i l f ”

11755/18797

 Picture is larger than the “typical face”
 E.g. typical face is 100x100, picture is 600x800

 First convert to greyscale
 R + G + B

 Not very useful to work in color

20 Sep 2011 39

Finding faces in an image

G l T fi d if d h i h

11755/18797

 Goal .. To find out if and where images that
look like the “typical” face occur in the picture

20 Sep 2011 40

Finding faces in an image

T “ h” h i l f h

11755/18797

 Try to “match” the typical face to each
location in the picture

20 Sep 2011 41

Finding faces in an image

T “ h” h i l f h

11755/18797

 Try to “match” the typical face to each
location in the picture

20 Sep 2011 42

9/20/2011

2

Finding faces in an image

T “ h” h i l f h

11755/18797

 Try to “match” the typical face to each
location in the picture

20 Sep 2011 43

Finding faces in an image

T “ h” h i l f h

11755/18797

 Try to “match” the typical face to each
location in the picture

20 Sep 2011 44

Finding faces in an image

T “ h” h i l f h

11755/18797

 Try to “match” the typical face to each
location in the picture

20 Sep 2011 45

Finding faces in an image

T “ h” h i l f h

11755/18797

 Try to “match” the typical face to each
location in the picture

20 Sep 2011 46

Finding faces in an image

T “ h” h i l f h

11755/18797

 Try to “match” the typical face to each
location in the picture

20 Sep 2011 47

Finding faces in an image

T “ h” h i l f h

11755/18797

 Try to “match” the typical face to each
location in the picture

20 Sep 2011 48

9/20/2011

3

Finding faces in an image

T “ h” h i l f h

11755/18797

 Try to “match” the typical face to each
location in the picture

20 Sep 2011 49

Finding faces in an image

T “ h” h i l f h

11755/18797

 Try to “match” the typical face to each
location in the picture

 The “typical face” will explain some spots on
the image much better than others
 These are the spots at which we probably have a

face!

20 Sep 2011 50

How to “match”

 What exactly is the “match”

11755/18797

 What is the match “score”
 The DOT Product

 Express the typical face as a vector
 Express the region of the image being evaluated as a vector

 But first histogram equalize the region
 Just the section being evaluated, without considering the rest of the image

 Compute the dot product of the typical face vector and the
“region” vector

20 Sep 2011 51

What do we get

 The right panel shows the dot product a

11755/18797

 The right panel shows the dot product a
various loctions
 Redder is higher

 The locations of peaks indicate locations of faces!

20 Sep 2011 52

What do we get

 The right panel shows the dot product a various

11755/18797

g p p
loctions
 Redder is higher

 The locations of peaks indicate locations of faces!

 Correctly detects all three faces
 Likes George’s face most

 He looks most like the typical face

 Also finds a face where there is none!
 A false alarm

20 Sep 2011 53

Scaling and Rotation Problems

 Scaling
 Not all faces are the same size
 Some people have bigger faces
 The size of the face on the image

changes with perspective
 Our “typical face” only represents

11755/18797

yp y p
one of these sizes

 Rotation
 The head need not always be

upright!
 Our typical face image was

upright

20 Sep 2011 54

9/20/2011

4

Solution

 Create many “typical faces”
 One for each scaling factor

11755/18797

 One for each scaling factor
 One for each rotation

 How will we do this?

 Match them all

 Does this work
 Kind of .. Not well enough at all
 We need more sophisticated models

20 Sep 2011 55

Face Detection: A Quick Historical Perspective

11755/18797

 Many more complex methods
 Use edge detectors and search for face like patterns
 Find “feature” detectors (noses, ears..) and employ them in

complex neural networks..

 The Viola Jones method
 Boosted cascaded classifiers

 But first, what is boosting

20 Sep 2011 56

And even before that – what is classification?

 Given “features” describing an entity, determine the
category it belongs to
 Walks on two legs, has no hair. Is this

 A Chimpanizee

 A Human

H l h i i 5’4” t ll i thi

11755/18797

 Has long hair, is 5’4” tall, is this
 A man

 A woman

 Matches “eye” pattern with score 0.5, “mouth pattern” with
score 0.25, “nose” pattern with score 0.1. Are we looking at
 A face

 Not a face?

20 Sep 2011 57

Classification

 Multi-class classification
 Many possible categories

 E.g. Sounds “AH, IY, UW, EY..”
 E.g. Images “Tree, dog, house, person..”

 Binary classification

11755/18797

y
 Only two categories

 Man vs. Woman
 Face vs. not a face..

 Face detection: Recast as binary face classification
 For each little square of the image, determine if the square

represents a face or not

20 Sep 2011 58

Face Detection as Classification
For each square, run a
classifier to find out if it
is a face or not

11755/18797

 Faces can be many sizes
 They can happen anywhere in the image
 For each face size

 For each location
 Classify a rectangular region of the face size, at that location, as a

face or not a face

 This is a series of binary classification problems

20 Sep 2011 59

Introduction to Boosting
 An ensemble method that sequentially combines many simple

BINARY classifiers to construct a final complex classifier
 Simple classifiers are often called “weak” learners

 The complex classifiers are called “strong” learners

 Each weak learner focuses on instances where the previous
classifier failed

11755/18797

 Give greater weight to instances that have been incorrectly
classified by previous learners

 Restrictions for weak learners
 Better than 50% correct

 Final classifier is weighted sum of weak classifiers

20 Sep 2011 60

9/20/2011

5

Boosting: A very simple idea
 One can come up with many rules to classify

 E.g. Chimpanzee vs. Human classifier:

 If arms == long, entity is chimpanzee

 If height > 5’6” entity is human

 If lives in house == entity is human

 If lives in zoo == entity is chimpanzee

11755/18797

 Each of them is a reasonable rule, but makes many mistakes
 Each rule has an intrinsic error rate

 Combine the predictions of these rules
 But not equally

 Rules that are less accurate should be given lesser weight

20 Sep 2011 61

Boosting and the Chimpanzee Problem

Arm length?
armlength

Height?
height

Lives in house?
house

Lives in zoo?
zoo

human human chimp chimp

11755/18797

 The total confidence in all classifiers that classify the entity as a chimpanzee is

 The total confidence in all classifiers that classify it as a human is

 If Scorechimpanzee > Scorehuman then the our belief that we have a chimpanzee is
greater than the belief that we have a human


chimpanzeefavorsclassifier

chimpScore

classifier


humanfavorsclassifier

humanScore

classifier

20 Sep 2011 62

Boosting as defined by Freund
 A gambler wants to write a program to predict winning horses. His

program must encode the expertise of his brilliant winner friend

 The friend has no single, encodable algorithm. Instead he has many
rules of thumb

 He uses a different rule of thumb for each set of races
 E.g. “in this set, go with races that have black horses with stars on

their foreheads”

11755/18797

 But cannot really enumerate what rules of thumbs go with
what sets of races: he simply “knows” when he encounters
a set
 A common problem that faces us in many situations

 Problem:

 How best to combine all of the friend’s rules of thumb

 What is the best set of races to present to the friend, to
extract the various rules of thumb

20 Sep 2011 63

Boosting
The basic idea: Can a “weak” learning

algorithm that performs just slightly better than
random guessing be boosted into an arbitrarily
accurate “strong” learner

 Each of the gambler’s rules may be just better

11755/18797

than random guessing

This is a “meta” algorithm, that poses no
constraints on the form of the weak learners
themselves
 The gambler’s rules of thumb can be anything

20 Sep 2011 64

Boosting: A Voting Perspective
 Boosting can be considered a form of voting

 Let a number of different classifiers classify the data

 Go with the majority

 Intuition says that as the number of classifiers increases,
the dependability of the majority vote increases

The corresponding algorithms were called Boosting

11755/18797

 The corresponding algorithms were called Boosting
by majority
 A (weighted) majority vote taken over all the classifiers

 How do we compute weights for the classifiers?

 How do we actually train the classifiers

20 Sep 2011 65

ADA Boost: Adaptive algorithm for
learning the weights
 ADA Boost: Not named of ADA Lovelace
 An adaptive algorithm that learns the weights

of each classifier sequentially
 Learning adapts to the current accuracy

11755/18797

g p y

 Iteratively:
 Train a simple classifier from training data

 It will make errors even on training data
 Train a new classifier that focuses on the training data

points that have been misclassified

20 Sep 2011 66

9/20/2011

6

Boosting: An Example

11755/18797

 Red dots represent training data from Red class

 Blue dots represent training data from Blue class
20 Sep 2011 67

Boosting: An Example

11755/18797

 Very simple weak learner
 A line that is parallel to one of the two axes

Blue classRed class

20 Sep 2011 68

Boosting: An Example

11755/18797

 First weak learner makes many mistakes
 Errors coloured black

Blue classRed class

20 Sep 2011 69

Blue class

Red class

Boosting: An Example

11755/18797

Second weak learner focuses on errors made by
first learner

Blue classRed class

20 Sep 2011 70

BLUE
RED

Boosting: An Example

11755/18797

 Second strong learner: weighted combination of first and
second weak learners

‒ Decision boundary shown by black lines

RED RED

20 Sep 2011 71

BLUE
RED

Boosting: An Example

11755/18797

The second strong learner also makes
mistakes
 Errors colored black

RED RED

20 Sep 2011 72

9/20/2011

7

Blue class

R d l

BLUE
RED

Boosting: An Example

11755/18797

Third weak learner concentrates on errors
made by second strong learner

Red class

RED RED

20 Sep 2011 73

Blue class

Red class

Blue class

R d l

Boosting: An Example

11755/18797

 Third weak learner concentrates on errors made by
combination of previous weak learners

 Continue adding weak learners until….

Blue classRed class

Red class

20 Sep 2011 74

Boosting: An Example

11755/18797

 Voila! Final strong learner: very few errors on the
training data

20 Sep 2011 75

Boosting: An Example

11755/18797

 The final strong learner has learnt a complicated
decision boundary

20 Sep 2011 76

Boosting: An Example

11755/18797

 The final strong learner has learnt a complicated
decision boundary

 Decision boundaries in areas with low density of training
points assumed inconsequential

20 Sep 2011 77

Overall Learning Pattern
 Strong learner increasingly accurate with increasing

number of weak learners

 Residual errors increasingly difficult to correct
‒ Additional weak learners less and less effective

11755/18797

Error of nth weak learner

Error of nth strong learner

number of weak learners
20 Sep 2011 78

9/20/2011

8

ADABoost
 Cannot just add new classifiers that work well only

the the previously misclassified data

 Problem: The new classifier will make errors on the
points that the earlier classifiers got right
 Not good

11755/18797

g
 On test data we have no way of knowing which points were

correctly classified by the first classifier

 Solution: Weight the data when training the second
classifier
 Use all the data but assign them weights

 Data that are already correctly classified have less weight
 Data that are currently incorrectly classified have more weight

20 Sep 2011 79

ADA Boost

11755/18797

 The red and blue points (correctly classified) will have a weight  < 1
 Black points (incorrectly classified) will have a weight  > 1
 To compute the optimal second classifier, we minimize the total

weighted error
 Each data point contributes  or  to the total count of correctly and

incorrectly classified points
 E.g. if one of the red points is misclassified by the new classifier, the total

error of the new classifier goes up by 

20 Sep 2011 80

ADA Boost

11755/18797

 Each new classifier modifies the weights of the data
points based on the accuracy of the current
classifier

 The final classifier too is a weighted
combination of all component classifiers

20 Sep 2011 81

Formalizing the Boosting Concept
 Given a set of instances (x1, y1), (x2, y2),… (xN, yN)

 xi is the set of attributes of the ith instance

 y1 is the class for the ith instance
 y1 can be 1 or -1 (binary classification only)

 Given a set of classifiers h1, h2, … , hT

 hi classifies an instance with attributes x as hi(x)

11755/18797

 hi(x) is either -1 or +1 (for a binary classifier)

 y*h(x) is 1 for all correctly classified points and -1 for incorrectly
classified points

 Devise a function f (h1(x), h2(x),…, hT(x)) such that classification
based on f () is superior to classification by any hi(x)
 The function is succinctly represented as f (x)

20 Sep 2011 82

The Boosting Concept
 A simple combiner function: Voting

 f (x) = i hi(x)

 Classifier H(x) = sign(f (x)) = sign(i hi(x))

 Simple majority classifier

 A simple voting scheme

11755/18797

 A better combiner function: Boosting
 f (x) = i i hi(x)

 Can be any real number

 Classifier H(x) = sign(f (x)) = sign(i i hi(x))

 A weighted majority classifier

 The weight i for any hi(x) is a measure of our trust in hi(x)

20 Sep 2011 83

Adaptive Boosting
As before:

 y is either -1 or +1

 H(x) is +1 or -1

 If the instance is correctly classified, both y and
H(x) will have the same sign

Th d t H() i 1

11755/18797

 The product y.H(x) is 1

 For incorrectly classified instances the product is -1

Define the error for x : ½(1 – yH(x))
 For a correctly classified instance, this is 0

 For an incorrectly classified instance, this is 1

20 Sep 2011 84

9/20/2011

9

The ADABoost Algorithm
Given: a set (x1, y1), … (xN, yN) of training

instances
 xi is the set of attributes for the ith instance
 yi is the class for the ith instance and can be either

+1 or -1

11755/1879720 Sep 2011 85

The ADABoost Algorithm
 Initialize D1(xi) = 1/N
For t = 1, …, T

 Train a weak classifier ht using distribution Dt

 Compute total error on training data
 t = Sum {½ (1 – yi ht(xi))}

Set ½ ln ((1) /)

11755/18797

 Set t = ½ ln ((1 – t) / t)
 For i = 1… N

 set Dt+1(xi) = Dt(xi) exp(- t yi ht(xi))

 Normalize Dt+1 to make it a distribution

The final classifier is
 H(x) = sign(t t ht(x))

20 Sep 2011 86

First, some example data

E1

E2

= 0.3 E1 - 0.6 E2

= 0.5 E1 - 0.5 E2

= 0.7 E1 - 0.1 E2

= 0.6 E1 - 0.4 E2

= 0.2 E1 + 0.4 E2

= -0.8 E1 - 0.1 E2

= 0.4 E1 - 0.9 E2

= 0.2 E1 + 0.5 E2

I *E1 + b*E2 I E1/|I |

11755/18797

 Face detection with multiple Eigen faces

 Step 0: Derived top 2 Eigen faces from eigen face training data

 Step 1: On a (different) set of examples, express each image as a
linear combination of Eigen faces
 Examples include both faces and non faces

 Even the non-face images will are explained in terms of the eigen faces

E2Image = a*E1 + b*E2  a = Image.E1/|Image|

20 Sep 2011 87

Training Data
= 0.3 E1 - 0.6 E2

= 0.5 E1 - 0.5 E2

= 0.7 E1 - 0.1 E2

= 0.6 E1 - 0.4 E2

= 0.2 E1 + 0.4 E2

= -0.8 E1 - 0.1 E2

= 0.4 E1 - 0.9 E2

= 0.2 E1 + 0.5 E2

11755/18797

ID E1 E2. Class

A 0.3 -0.6 +1

B 0.5 -0.5 +1

C 0.7 -0.1 +1

D 0.6 -0.4 +1

E 0.2 0.4 -1

F -0.8 -0.1 -1

G 0.4 -0.9 -1

H 0.2 0.5 -1

Face = +1
Non-face = -1

20 Sep 2011 88

The ADABoost Algorithm
 Initialize D1(xi) = 1/N
For t = 1, …, T

 Train a weak classifier ht using distribution Dt

 Compute total error on training data
 t = Sum {Dt (xi) ½(1 – yi ht(xi))}

Set ½ ln ((1) /)

11755/18797

 Set t = ½ ln ((1 – t) / t)
 For i = 1… N

 set Dt+1(xi) = Dt(xi) exp(- t yi ht(xi))

 Normalize Dt+1 to make it a distribution

The final classifier is
 H(x) = sign(t t ht(x))

20 Sep 2011 89

Training Data
= 0.3 E1 - 0.6 E2

= 0.5 E1 - 0.5 E2

= 0.7 E1 - 0.1 E2

= 0.6 E1 - 0.4 E2

= 0.2 E1 + 0.4 E2

= -0.8 E1 - 0.1 E2

= 0.4 E1 - 0.9 E2

= 0.2 E1 + 0.5 E2

11755/18797

ID E1 E2. Class Weight

A 0.3 -0.6 +1 1/8

B 0.5 -0.5 +1 1/8

C 0.7 -0.1 +1 1/8

D 0.6 -0.4 +1 1/8

E 0.2 0.4 -1 1/8

F -0.8 -0.1 -1 1/8

G 0.4 -0.9 -1 1/8

H 0.2 0.5 -1 1/8

20 Sep 2011 90

9/20/2011

10

 Initialize D1(xi) = 1/N
For t = 1, …, T

 Train a weak classifier ht using distribution Dt

 Compute total error on training data
 t = Sum {Dt (xi) ½(1 – yi ht(xi))}

Set ½ ln (/(1))

The ADABoost Algorithm

11755/18797

 Set t = ½ ln (t /(1 – t))
 For i = 1… N

 set Dt+1(xi) = Dt(xi) exp(- t yi ht(xi))

 Normalize Dt+1 to make it a distribution

The final classifier is
 H(x) = sign(t t ht(x))

20 Sep 2011 91

The E1“Stump”

0.3 0.5 0.6 0.70.2-0.8 0.40.2

F E H A G B C D

1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8

Classifier based on E1:
if (sign*wt(E1) > thresh) > 0)

face = true

sign = +1 or -1

Sign = +1, error = 3/8
Sign = -1, error = 5/8

threshold

11755/18797

ID E1 E2. Class Weight

A 0.3 -0.6 +1 1/8

B 0.5 -0.5 +1 1/8

C 0.7 -0.1 +1 1/8

D 0.6 -0.4 +1 1/8

E 0.2 0.4 -1 1/8

F -0.8 -0.1 -1 1/8

G 0.4 -0.9 -1 1/8

H 0.2 0.5 -1 1/8

20 Sep 2011 92

The E1 “Stump”

0.3 0.5 0.6 0.70.2-0.8 0.40.2

F E H A G B C D

1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8

Classifier based on E1:
if (sign*wt(E1) > thresh) > 0)

face = true

sign = +1 or -1

Sign = +1, error = 2/8
Sign = -1, error = 6/8

threshold

11755/18797

ID E1 E2. Class Weight

A 0.3 -0.6 +1 1/8

B 0.5 -0.5 +1 1/8

C 0.7 -0.1 +1 1/8

D 0.6 -0.4 +1 1/8

E 0.2 0.4 -1 1/8

F -0.8 -0.1 -1 1/8

G 0.4 -0.9 -1 1/8

H 0.2 0.5 -1 1/8

20 Sep 2011 93

The E1 “Stump”

0.3 0.5 0.6 0.70.2-0.8 0.40.2

F E H A G B C D

1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8

Classifier based on E1:
if (sign*wt(E1) > thresh) > 0)

face = true

sign = +1 or -1

Sign = +1, error = 1/8
Sign = -1, error = 7/8

threshold

11755/18797

ID E1 E2. Class Weight

A 0.3 -0.6 +1 1/8

B 0.5 -0.5 +1 1/8

C 0.7 -0.1 +1 1/8

D 0.6 -0.4 +1 1/8

E 0.2 0.4 -1 1/8

F -0.8 -0.1 -1 1/8

G 0.4 -0.9 -1 1/8

H 0.2 0.5 -1 1/8

20 Sep 2011 94

The E1 “Stump”

0.3 0.5 0.6 0.70.2-0.8 0.40.2

F E H A G B C D

1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8

Classifier based on E1:
if (sign*wt(E1) > thresh) > 0)

face = true

sign = +1 or -1

Sign = +1, error = 2/8
Sign = -1, error = 6/8

threshold

11755/18797

ID E1 E2. Class Weight

A 0.3 -0.6 +1 1/8

B 0.5 -0.5 +1 1/8

C 0.7 -0.1 +1 1/8

D 0.6 -0.4 +1 1/8

E 0.2 0.4 -1 1/8

F -0.8 -0.1 -1 1/8

G 0.4 -0.9 -1 1/8

H 0.2 0.5 -1 1/8

20 Sep 2011 95

The E1 “Stump”

0.3 0.5 0.6 0.70.2-0.8 0.40.2

F E H A G B C D

1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8

Classifier based on E1:
if (sign*wt(E1) > thresh) > 0)

face = true

sign = +1 or -1

Sign = +1, error = 1/8
Sign = -1, error = 7/8

threshold

11755/18797

ID E1 E2. Class Weight

A 0.3 -0.6 +1 1/8

B 0.5 -0.5 +1 1/8

C 0.7 -0.1 +1 1/8

D 0.6 -0.4 +1 1/8

E 0.2 0.4 -1 1/8

F -0.8 -0.1 -1 1/8

G 0.4 -0.9 -1 1/8

H 0.2 0.5 -1 1/8

20 Sep 2011 96

9/20/2011

11

The E1 “Stump”

0.3 0.5 0.6 0.70.2-0.8 0.40.2

F E H A G B C D

1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8

Classifier based on E1:
if (sign*wt(E1) > thresh) > 0)

face = true

sign = +1 or -1

Sign = +1, error = 2/8
Sign = -1, error = 6/8

threshold

11755/18797

ID E1 E2. Class Weight

A 0.3 -0.6 +1 1/8

B 0.5 -0.5 +1 1/8

C 0.7 -0.1 +1 1/8

D 0.6 -0.4 +1 1/8

E 0.2 0.4 -1 1/8

F -0.8 -0.1 -1 1/8

G 0.4 -0.9 -1 1/8

H 0.2 0.5 -1 1/8

20 Sep 2011 97

The Best E1 “Stump”

0.3 0.5 0.6 0.70.2-0.8 0.40.2

F E H A G B C D

1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8

Classifier based on E1:
if (sign*wt(E1) > thresh) > 0)

face = true

Sign = +1
Threshold = 0.45Sign = +1, error = 1/8

threshold

11755/18797

ID E1 E2. Class Weight

A 0.3 -0.6 +1 1/8

B 0.5 -0.5 +1 1/8

C 0.7 -0.1 +1 1/8

D 0.6 -0.4 +1 1/8

E 0.2 0.4 -1 1/8

F -0.8 -0.1 -1 1/8

G 0.4 -0.9 -1 1/8

H 0.2 0.5 -1 1/8

20 Sep 2011 98

The E2“Stump”

-0.4 -0.1 0.4 0.5-0.6-0.9 -0.1-0.5

G A B D C F E H

1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8

Classifier based on E2:
if (sign*wt(E2) > thresh) > 0)

face = true

sign = +1 or -1

Sign = +1, error = 3/8
Sign = -1, error = 5/8

threshold

Note order

11755/18797

ID E1 E2. Class Weight

A 0.3 -0.6 +1 1/8

B 0.5 -0.5 +1 1/8

C 0.7 -0.1 +1 1/8

D 0.6 -0.4 +1 1/8

E 0.2 0.4 -1 1/8

F -0.8 -0.1 -1 1/8

G 0.4 -0.9 -1 1/8

H 0.2 0.5 -1 1/8

20 Sep 2011 99

The Best E2“Stump”

-0.4 -0.1 0.4 0.5-0.6-0.9 -0.1-0.5

1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8

Classifier based on E2:
if (sign*wt(E2) > thresh) > 0)

face = true

sign = -1
Threshold = 0.15

Sign = -1, error = 2/8

threshold

G A B D C F E H

11755/18797

ID E1 E2. Class Weight

A 0.3 -0.6 +1 1/8

B 0.5 -0.5 +1 1/8

C 0.7 -0.1 +1 1/8

D 0.6 -0.4 +1 1/8

E 0.2 0.4 -1 1/8

F -0.8 -0.1 -1 1/8

G 0.4 -0.9 -1 1/8

H 0.2 0.5 -1 1/8

20 Sep 2011 100

The Best “Stump”

0.3 0.5 0.6 0.70.2-0.8 0.40.2

F E H A G B C D

1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8

The Best overall classifier
based on a single feature is
based on E1

If (wt(E1) > 0.45)  Face
Sign = +1, error = 1/8

threshold

11755/18797

ID E1 E2. Class Weight

A 0.3 -0.6 +1 1/8

B 0.5 -0.5 +1 1/8

C 0.7 -0.1 +1 1/8

D 0.6 -0.4 +1 1/8

E 0.2 0.4 -1 1/8

F -0.8 0.1 -1 1/8

G 0.4 -0.9 -1 1/8

H 0.2 0.5 -1 1/8

20 Sep 2011 101

 Initialize D1(xi) = 1/N
For t = 1, …, T

 Train a weak classifier ht using distribution Dt

 Compute total error on training data
 t = Sum {Dt (xi) ½(1 – yi ht(xi))}

Set ½ ln (/(1))

The ADABoost Algorithm

11755/18797

 Set t = ½ ln (t /(1 – t))
 For i = 1… N

 set Dt+1(xi) = Dt(xi) exp(- t yi ht(xi))

 Normalize Dt+1 to make it a distribution

The final classifier is
 H(x) = sign(t t ht(x))

20 Sep 2011 102

9/20/2011

12

The Best Error

0.3 0.5 0.6 0.70.2-0.8 0.40.2

F E H A G B C D

1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8

The Error of the classifier
is the sum of the weights of
the misclassified instances

Sign = +1, error = 1/8

threshold

11755/18797

ID E1 E2. Class Weight

A 0.3 -0.6 +1 1/8

B 0.5 -0.5 +1 1/8

C 0.7 -0.1 +1 1/8

D 0.6 -0.4 +1 1/8

E 0.2 0.4 -1 1/8

F -0.8 0.1 -1 1/8

G 0.4 -0.9 -1 1/8

H 0.2 0.5 -1 1/8

NOTE: THE ERROR IS THE SUM OF THE WEIGHTS OF MISCLASSIFIED
INSTANCES
20 Sep 2011 103

 Initialize D1(xi) = 1/N
For t = 1, …, T

 Train a weak classifier ht using distribution Dt

 Compute total error on training data
 t = Sum {Dt (xi) ½(1 – yi ht(xi))}

Set ½ ln ((1) /)

The ADABoost Algorithm

11755/18797

 Set t = ½ ln ((1 – t) / t)
 For i = 1… N

 set Dt+1(xi) = Dt(xi) exp(- t yi ht(xi))

 Normalize Dt+1 to make it a distribution

The final classifier is
 H(x) = sign(t t ht(x))

20 Sep 2011 104

Computing Alpha

0.3 0.5 0.6 0.70.2-0.8 0.40.2

F E H A G B C D

1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8

Alpha = 0.5ln((1-1/8) / (1/8))

= 0.5 ln(7) = 0.97

Sign = +1, error = 1/8

threshold

11755/1879720 Sep 2011 105

The Boosted Classifier Thus Far

0.3 0.5 0.6 0.70.2-0.8 0.40.2

F E H A G B C D

1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8

Alpha = 0.5ln((1-1/8) / (1/8))

= 0.5 ln(7) = 0.97

Sign = +1, error = 1/8

threshold

11755/18797

h1(X) = wt(E1) > 0.45 ? +1 : -1

H(X) = sign(0.97 * h1(X))

It’s the same as h1(x)

20 Sep 2011 106

 Initialize D1(xi) = 1/N
For t = 1, …, T

 Train a weak classifier ht using distribution Dt

 Compute total error on training data
 t = Average {½ (1 – yi ht(xi))}

Set ½ ln ((1) /)

The ADABoost Algorithm

11755/18797

 Set t = ½ ln ((1 – t) / t)
 For i = 1… N

 set Dt+1(xi) = Dt(xi) exp(- t yi ht(xi))

 Normalize Dt+1 to make it a distribution

The final classifier is
 H(x) = sign(t t ht(x))

20 Sep 2011 107

The Best Error

ID E1 E2. Class Weight Weight

A 0.3 -0.6 +1 1/8 * 2.63 0.33

B 0.5 -0.5 +1 1/8 * 0.38 0.05

0.3 0.5 0.6 0.70.2-0.8 0.40.2

F E H A G B C D

1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8

threshold

Dt+1(xi) = Dt(xi) exp(- t yi ht (xi))

exp(t) = exp(0.97) = 2.63
exp(-t) = exp(-0.97) = 0.38

11755/18797

C 0.7 -0.1 +1 1/8 * 0.38 0.05

D 0.6 -0.4 +1 1/8 * 0.38 0.05

E 0.2 0.4 -1 1/8 * 0.38 0.05

F -0.8 0.1 -1 1/8 * 0.38 0.05

G 0.4 -0.9 -1 1/8 * 0.38 0.05

H 0.2 0.5 -1 1/8 * 0.38 0.05

Multiply the correctly classified instances by 0.38
Multiply incorrectly classified instances by 2.63

20 Sep 2011 108

9/20/2011

13

 Initialize D1(xi) = 1/N
For t = 1, …, T

 Train a weak classifier ht using distribution Dt

 Compute total error on training data
 t = Average {½ (1 – yi ht(xi))}

Set ½ ln ((1) /)

The ADABoost Algorithm

11755/18797

 Set t = ½ ln ((1 – t) / t)
 For i = 1… N

 set Dt+1(xi) = Dt(xi) exp(- t yi ht(xi))

 Normalize Dt+1 to make it a distribution

The final classifier is
 H(x) = sign(t t ht(x))

20 Sep 2011 109

The Best Error

ID E1 E2. Class Weight Weight Weight

A 0.3 -0.6 +1 1/8 * 2.63 0.33 0.48

B 0.5 -0.5 +1 1/8 * 0.38 0.05 0.074

0.3 0.5 0.6 0.70.2-0.8 0.40.2

F E H A G B C D

1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8

threshold

D’ = D / sum(D)

11755/18797

C 0.7 -0.1 +1 1/8 * 0.38 0.05 0.074

D 0.6 -0.4 +1 1/8 * 0.38 0.05 0.074

E 0.2 0.4 -1 1/8 * 0.38 0.05 0.074

F -0.8 0.1 -1 1/8 * 0.38 0.05 0.074

G 0.4 -0.9 -1 1/8 * 0.38 0.05 0.074

H 0.2 0.5 -1 1/8 * 0.38 0.05 0.074

Multiply the correctly classified instances by 0.38
Multiply incorrectly classified instances by 2.63
Normalize to sum to 1.0

20 Sep 2011 110

The Best Error

ID E1 E2. Class Weight

A 0.3 -0.6 +1 0.48

B 0.5 -0.5 +1 0.074

0.3 0.5 0.6 0.70.2-0.8 0.40.2

F E H A G B C D

1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8

threshold

D’ = D / sum(D)

11755/18797

C 0.7 -0.1 +1 0.074

D 0.6 -0.4 +1 0.074

E 0.2 0.4 -1 0.074

F -0.8 0.1 -1 0.074

G 0.4 -0.9 -1 0.074

H 0.2 0.5 -1 0.074

Multiply the correctly classified instances by 0.38
Multiply incorrectly classified instances by 2.63
Normalize to sum to 1.0

20 Sep 2011 111

 Initialize D1(xi) = 1/N
For t = 1, …, T

 Train a weak classifier ht using distribution Dt

 Compute total error on training data
 t = Average {½ (1 – yi ht(xi))}

Set ½ ln (/(1))

The ADABoost Algorithm

11755/18797

 Set t = ½ ln (t /(1 – t))
 For i = 1… N

 set Dt+1(xi) = Dt(xi) exp(- t yi ht(xi))

 Normalize Dt+1 to make it a distribution

The final classifier is
 H(x) = sign(t t ht(x))

20 Sep 2011 112

E1 classifier

0.3 0.5 0.6 0.70.2-0.8 0.40.2

F E H A G B C D

.074 .074 .074 .48 .074 .074 .074 .074

threshold

Classifier based on E1:
if (sign*wt(E1) > thresh) > 0)

face = true

sign = +1 or -1

Sign = +1, error = 0.222
Sign = -1, error = 0.778

11755/18797

ID E1 E2. Class Weight

A 0.3 -0.6 +1 0.48

B 0.5 -0.5 +1 0.074

C 0.7 -0.1 +1 0.074

D 0.6 -0.4 +1 0.074

E 0.2 0.4 -1 0.074

F -0.8 0.1 -1 0.074

G 0.4 -0.9 -1 0.074

H 0.2 0.5 -1 0.074

20 Sep 2011 113

E1 classifier

0.3 0.5 0.6 0.70.2-0.8 0.40.2

F E H A G B C D

.074 .074 .074 .074 .074 .074

threshold

Classifier based on E1:
if (sign*wt(E1) > thresh) > 0)

face = true

sign = +1 or -1

Sign = +1, error = 0.148
Sign = -1, error = 0.852

.48 .074

11755/18797

ID E1 E2. Class Weight

A 0.3 -0.6 +1 0.48

B 0.5 -0.5 +1 0.074

C 0.7 -0.1 +1 0.074

D 0.6 -0.4 +1 0.074

E 0.2 0.4 -1 0.074

F -0.8 0.1 -1 0.074

G 0.4 -0.9 -1 0.074

H 0.2 0.5 -1 0.074

20 Sep 2011 114

9/20/2011

14

The Best E1 classifier

0.3 0.5 0.6 0.70.2-0.8 0.40.2

F E H A G B C D

.074 .074 .074 .074 .074 .074

threshold

Classifier based on E1:
if (sign*wt(E1) > thresh) > 0)

face = true

sign = +1 or -1

Sign = +1, error = 0.074

.48 .074

11755/18797

ID E1 E2. Class Weight

A 0.3 -0.6 +1 0.48

B 0.5 -0.5 +1 0.074

C 0.7 -0.1 +1 0.074

D 0.6 -0.4 +1 0.074

E 0.2 0.4 -1 0.074

F -0.8 0.1 -1 0.074

G 0.4 -0.9 -1 0.074

H 0.2 0.5 -1 0.074

20 Sep 2011 115

The Best E2 classifier

-0.4 -0.1 0.4 0.5-0.6-0.9 -0.1-0.5

G A B D C F E H

.074 .48 .074 .074 .074 .074 .074 .074

threshold

Classifier based on E2:
if (sign*wt(E2) > thresh) > 0)

face = true

sign = +1 or -1

Sign = -1, error = 0.148

11755/18797

ID E1 E2. Class Weight

A 0.3 -0.6 +1 0.48

B 0.5 -0.5 +1 0.074

C 0.7 -0.1 +1 0.074

D 0.6 -0.4 +1 0.074

E 0.2 0.4 -1 0.074

F -0.8 -0.1 -1 0.074

G 0.4 -0.9 -1 0.074

H 0.2 0.5 -1 0.074

20 Sep 2011 116

The Best Classifier

0.3 0.5 0.6 0.70.2-0.8 0.40.2

F E H A G B C D

.074 .074 .074 .074 .074 .074

threshold

Classifier based on E1:
if (wt(E1) > 0.45) face = true

Sign = +1, error = 0.074

.48 .074

Alpha = 0.5ln((1-0.074) / 0.074)
= 1.26

11755/18797

ID E1 E2. Class Weight

A 0.3 -0.6 +1 0.48

B 0.5 -0.5 +1 0.074

C 0.7 -0.1 +1 0.074

D 0.6 -0.4 +1 0.074

E 0.2 0.4 -1 0.074

F -0.8 0.1 -1 0.074

G 0.4 -0.9 -1 0.074

H 0.2 0.5 -1 0.074

20 Sep 2011 117

The Boosted Classifier Thus Far

h1(X) = wt(E1) > 0.45 ? +1 : -1

h2(X) = wt(E1) > 0.25 ? +1 : -1

0.3 0.5 0.6 0.70.2-0.8 0.40.2

F E H A G B C D

.074 .074 .074 .074 .074 .074

threshold

.48 .074

threshold

11755/18797

H(X) = sign(0.97 * h1(X) + 1.26 * h2(X))

20 Sep 2011 118

Reweighting the Data

0.3 0.5 0.6 0.70.2-0.8 0.40.2

F E H A G B C D

.074 .074 .074 .074 .074 .074

threshold

Sign = +1, error = 0.074

.48 .074

Exp(alpha) = exp(1.26) = 3.5
Exp(-alpha) = exp(-1.26) = 0.28

11755/18797

ID E1 E2. Class Weight

A 0.3 -0.6 +1 0.48*0.28 0.32

B 0.5 -0.5 +1 0.074*0.28 0.05

C 0.7 -0.1 +1 0.074*0.28 0.05

D 0.6 -0.4 +1 0.074*0.28 0.05

E 0.2 0.4 -1 0.074*0.28 0.05

F -0.8 0.1 -1 0.074*0.28 0.05

G 0.4 -0.9 -1 0.074*3.5 0.38

H 0.2 0.5 -1 0.074*0.28 0.05

RENORMALIZE
20 Sep 2011 119

Reweighting the Data

0.3 0.5 0.6 0.70.2-0.8 0.40.2

F E H A G B C D

.074 .074 .074 .074 .074 .074

threshold

Sign = +1, error = 0.074

.48 .074

NOTE: THE WEIGHT OF “G”
WHICH WAS MISCLASSIFIED
BY THE SECOND CLASSIFIER
IS NOW SUDDENLY HIGH

11755/18797
RENORMALIZE

20 Sep 2011 120

ID E1 E2. Class Weight

A 0.3 -0.6 +1 0.48*0.28 0.32

B 0.5 -0.5 +1 0.074*0.28 0.05

C 0.7 -0.1 +1 0.074*0.28 0.05

D 0.6 -0.4 +1 0.074*0.28 0.05

E 0.2 0.4 -1 0.074*0.28 0.05

F -0.8 0.1 -1 0.074*0.28 0.05

G 0.4 -0.9 -1 0.074*3.5 0.38

H 0.2 0.5 -1 0.074*0.28 0.05

9/20/2011

15

AdaBoost

 In this example both of our first two classifiers were
based on E1
 Additional classifiers may switch to E2

 In general, the reweighting of the data will result in a
different feature being picked for each classifier

11755/18797

 This also automatically gives us a feature selection
strategy
 In this data the wt(E1) is the most important feature

20 Sep 2011 121

AdaBoost

 NOT required to go with the best classifier so far

 For instance, for our second classifier, we might use
the best E2 classifier, even though its worse than the
E1 classifier
 So long as its right more than 50% of the time

11755/18797

 We can continue to add classifiers even after we get
100% classification of the training data
 Because the weights of the data keep changing

 Adding new classifiers beyond this point is often a
good thing to do

20 Sep 2011 122

ADA Boost

 The final classifier is

E1 E2

= 0.4 E1 - 0.4 E2

11755/18797

 H(x) = sign(t t ht(x))

 The output is 1 if the total weight of all weak
learners that classify x as 1 is greater than
the total weight of all weak learners that
classify it as -1

20 Sep 2011 123

Boosting and Face Detection

 Boosting forms the basis of the most
common technique for face detection today:
The Viola-Jones algorithm.

11755/1879720 Sep 2011 124

The problem of face detection

 1. Defining Features
 Should we be searching for noses, eyes, eyebrows etc.?

 Nice, but expensive

 Or something simpler

2 S l ti F t

11755/18797

 2. Selecting Features
 Of all the possible features we can think of, which ones

make sense

 3. Classification: Combining evidence
 How does one combine the evidence from the different

features?

20 Sep 2011 125

Features: The Viola Jones Method

Integral Features!!

B1 B2 B3 B4 B5 B6

...Im 332211  BwBwBwage

11755/18797

 Integral Features!!
 Like the Checkerboard

 The same principle as we used to decompose images in terms of
checkerboards:
 The image of any object has changes at various scales

 These can be represented coarsely by a checkerboard pattern

 The checkerboard patterns must however now be localized
 Stay within the region of the face

20 Sep 2011 126

9/20/2011

16

Features
 Checkerboard Patterns to represent facial features

 The white areas are subtracted from the black ones.
 Each checkerboard explains a localized portion of the

image
 Four types of checkerboard patterns (only)

20 Sep 2011 12711755/18797

Explaining a portion of the face with a
checker..

11755/18797

 How much is the difference in average intensity of the image in
the black and white regions
 Sum(pixel values in white region) – Sum(pixel values in black

region)
 This is actually the dot product of the region of the face covered

by the rectangle and the checkered pattern itself
 White = 1, Black = -1

20 Sep 2011 128

“Integral” features

11755/18797

 Each checkerboard has the following characteristics
 Length

 Width

 Type
 Specifies the number and arrangement of bands

 The four checkerboards above are the four used by Viola and Jones

20 Sep 2011 129

Integral images
 Summed area tables

 For each pixel store the sum of ALL pixels to the left of and
above it.

20 Sep 2011 13011755/18797

Fast Computation of Pixel Sums

11755/1879720 Sep 2011 131

A Fast Way to Compute the Feature

A B

D

F
C

E

11755/18797

 Store pixel table for every pixel in the image
 The sum of all pixel values to the left of and above the pixel

 Let A, B, C, D, E, F be the pixel table values at the locations
shown
 Total pixel value of black area = D + A – B – C

 Total pixel value of white area = F + C – D – E

 Feature value = (F + C – D – E) – (D + A – B – C)

20 Sep 2011 132

9/20/2011

17

How many features?

MxN
PxH

11755/18797

 Each checker board of width P and height H can start at
 (0,0), (0,1),(0,2), … (0, N-P)

 (1,0), (1,1),(1,2), … (1, N-P)

 ..

 (M-H,0), (M-H,1), (M-H,2), … (M-H, N-P)

 (M-H)*(N-P) possible starting locations
 Each is a unique checker feature

 E.g. at one location it may measure the forehead, at another the chin

20 Sep 2011 133

How many features

 Each feature can have many sizes

11755/18797

 Each feature can have many sizes
 Width from (min) to (max) pixels

 Height from (min ht) to (max ht) pixels

 At each size, there can be many starting locations
 Total number of possible checkerboards of one type:

No. of possible sizes x No. of possible locations

 There are four types of checkerboards
 Total no. of possible checkerboards: VERY VERY LARGE!

20 Sep 2011 134

Learning: No. of features

 Analysis performed on images of 24x24
pixels only
 Reduces the no. of possible features to about

180000

 Restrict checkerboard size

11755/18797

 Restrict checkerboard size
 Minimum of 8 pixels wide

 Minimum of 8 pixels high
 Other limits, e.g. 4 pixels may be used too

 Reduces no. of checkerboards to about 50000

20 Sep 2011 135

No. of features

F1 F2 F3 F4 ….. F180000

7 9 2 -1 ….. 12

11 3 19 17 2

11755/18797

 Each possible checkerboard gives us one feature

 A total of up to 180000 features derived from a 24x24 image!

 Every 24x24 image is now represented by a set of 180000
numbers
 This is the set of features we will use for classifying if it is a face

or not!

-11 3 19 17 ….. 2

20 Sep 2011 136

The Classifier

 The Viola-Jones algorithm uses a simple Boosting
based classifier

 Each “weak learner” is a simple threshold

 At each stage find the best feature to classify the
data with

11755/18797

 I.e the feature that gives us the best classification of all the
training data
 Training data includes many examples of faces and non-face

images

 The classification rule is of the kind
 If feature > threshold, face (or if feature < threshold, face)

 The optimal value of “threshold” must also be determined.

20 Sep 2011 137

The Weak Learner

 Training (for each weak learner):
 For each feature f (of all 180000 features)

 Find a threshold f and polarity p(f) (p(f) = -1 or p(f) = 1) such that (f
> p(f)*f) performs the best classification of faces
 Lowest overall error in classifying all training data

 Error counted over weighted samples

 Let the optimal overall error for f be error(f)

11755/18797

 Let the optimal overall error for f be error(f)

 Find the feature f’ such that error(f’) is lowest

 The weak learner is the test (f’ > p(f’)*f’face

 Note that the procedure for learning weak learners also identifies
the most useful features for face recognition

20 Sep 2011 138

9/20/2011

18

The Viola Jones Classifier
 A boosted threshold-based classifier

 First weak learner: Find the best feature, and
its optimal threshold
 Second weak learner: Find the best feature, for

the weighted training data, and its threshold

11755/18797

(weighting from one weak learner)
 Third weak learner: Find the best feature for the

weighted data and its optimal threshold (weighting from
two weak learners)
 Fourth weak learner: Find the best feature for the weighted

data and its optimal threhsold (weighting from three weak
learners)

 ..

20 Sep 2011 139

To Train

 Collect a large number of histogram
equalized facial images
 Resize all of them to 24x24
 These are our “face” training set

11755/18797

 Collect a much much much larger set of
24x24 non-face images of all kinds
 Each of them is histogram equalized
 These are our “non-face” training set

 Train a boosted classifier

20 Sep 2011 140

The Viola Jones Classifier

 During tests:
 Given any new 24x24 image

R (f (f))

11755/18797

 R = f f (f > pf (f))
 Only a small number of features (f < 100) typically used

 Problems:
 Only classifies 24 x 24 images entirely as faces or non-faces

 Typical pictures are much larger
 They may contain many faces
 Faces in pictures can be much larger or smaller

 Not accurate enough

20 Sep 2011 141

Multiple faces in the picture

11755/18797

 Scan the image
 Classify each 24x24 rectangle from the photo
 All rectangles that get classified as having a face indicate the

location of a face
 For an NxM picture, we will perform (N-24)*(M-24) classifications
 If overlapping 24x24 rectangles are found to have faces, merge

them

20 Sep 2011 142

Multiple faces in the picture

11755/18797

 Scan the image
 Classify each 24x24 rectangle from the photo
 All rectangles that get classified as having a face indicate the

location of a face
 For an NxM picture, we will perform (N-24)*(M-24) classifications
 If overlapping 24x24 rectangles are found to have faces, merge

them

20 Sep 2011 143

Multiple faces in the picture

11755/18797

 Scan the image
 Classify each 24x24 rectangle from the photo
 All rectangles that get classified as having a face indicate the

location of a face
 For an NxM picture, we will perform (N-24)*(M-24) classifications
 If overlapping 24x24 rectangles are found to have faces, merge

them

20 Sep 2011 144

9/20/2011

19

Multiple faces in the picture

11755/18797

 Scan the image
 Classify each 24x24 rectangle from the photo
 All rectangles that get classified as having a face indicate the

location of a face
 For an NxM picture, we will perform (N-24)*(M-24) classifications
 If overlapping 24x24 rectangles are found to have faces, merge

them

20 Sep 2011 145

Picture size solution
 We already have a

classifier
 That uses weak

learners

 Scale each classifier

2x

f, 

f, 2

11755/18797

 Every weak learner
 Scale its size up by

factor . Scale the
threshold up to .

 Do this for many
scaling factors

20 Sep 2011 146

Overall solution

11755/18797

 Scan the picture with classifiers of size 24x24
 Scale the classifier to 26x26 and scan
 Scale to 28x28 and scan etc.

 Faces of different sizes will be found at different
scales

20 Sep 2011 147

False Rejection vs. False detection

 False Rejection: There’s a face in the image, but the classifier
misses it
 Rejects the hypothesis that there’s a face

 False detection: Recognizes a face when there is none.

 Classifier:

11755/18797

 Standard boosted classifier: H(x) = sign(t t ht(x))

 Modified classifier H(x) = sign(t t ht(x) + Y)
 t t ht(x) is a measure of certainty

 The higher it is, the more certain we are that we found a face

 If Y is large, then we assume the presence of a face even when we
are not sure

 By increasing Y, we can reduce false rejection, while increasing
false detection

20 Sep 2011 148

ROC

vsfalse neg determined by

% False detection

%
Fa

ls
e

R
ej

ec
tin

0 100

 1
00

As Y increases

11755/18797

 Ideally false rejection will be 0%, false detection will
also be 0%

 As Y increaases, we reject faces less and less
 But accept increasing amounts of garbage as faces

 Can set Y so that we rarely miss a face

0

20 Sep 2011 149

Problem: Not accurate enough, too slow

Classifier 1

Not a face

Classifier 2

Not a face

11755/18797

 If we set Y high enough, we will never miss a
face
 But will classify a lot of junk as faces

 Solution: Classify the output of the first
classifier with a second classifier
 And so on.

20 Sep 2011 150

9/20/2011

20

Problem: Not accurate enough, too slow

11755/18797

 If we set Y high enough, we will never miss a
face
 But will classify a lot of junk as faces

 Solution: Classify the output of the first
classifier with a second classifier
 And so on.

20 Sep 2011 151

Useful Features Learned by Boosting

11755/1879720 Sep 2011 152

A Cascade of Classifiers

11755/1879720 Sep 2011 153

Detection in Real Images
 Basic classifier operates on 24 x 24 subwindows

 Scaling:
 Scale the detector (rather than the images)
 Features can easily be evaluated at any scale
 Scale by factors of 1.25

11755/18797

 Location:
 Move detector around the image (e.g., 1 pixel increments)

 Final Detections
 A real face may result in multiple nearby detections
 Postprocess detected subwindows to combine overlapping

detections into a single detection

20 Sep 2011 154

Training
 In paper, 24x24 images of faces and non faces (positive and

negative examples).

20 Sep 2011 15511755/18797

Sample results using the Viola-Jones

Detector
 Notice detection at multiple scales

20 Sep 2011 15611755/18797

9/20/2011

21

More Detection Examples

11755/1879720 Sep 2011 157

Practical implementation

 Details discussed in Viola-Jones paper

 Training time = weeks (with 5k faces and 9.5k non-
faces)

11755/18797

 Final detector has 38 layers in the cascade, 6060
features

 700 Mhz processor:
 Can process a 384 x 288 image in 0.067 seconds (in 2003

when paper was written)

20 Sep 2011 158

