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Detecting Faces in Images
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 Finding face like patterns
 How do we find if a picture has faces in it
 Where are the faces?

 A simple solution:
 Define a “typical face”
 Find the “typical face” in the image
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Finding faces in an image

Pi i l h h “ i l f ”

11755/18797

 Picture is larger than the “typical face”
 E.g. typical face is 100x100, picture is 600x800

 First convert to greyscale
 R + G + B

 Not very useful to work in color
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Finding faces in an image

G l T fi d if d h i h
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 Goal .. To find out if and where images that 
look like the “typical” face occur in the picture
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Finding faces in an image
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 Try to “match” the typical face to each 
location in the picture
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Finding faces in an image
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 Try to “match” the typical face to each 
location in the picture

 The “typical face” will explain some spots on 
the image much better than others
 These are the spots at which we probably have a 

face!
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How to “match”

 What exactly is the “match”
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 What is the match “score”
 The DOT Product

 Express the typical face as a vector
 Express the region of the image being evaluated as a vector

 But first histogram equalize the region
 Just the section being evaluated, without considering the rest of the image

 Compute the dot product of the typical face vector and the 
“region” vector
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What do we get

 The right panel shows the dot product a
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 The right panel shows the dot product a 
various loctions
 Redder is higher

 The locations of peaks indicate locations of faces!
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What do we get

 The right panel shows the dot product a various 
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g p p
loctions
 Redder is higher

 The locations of peaks indicate locations of faces!

 Correctly detects all three faces
 Likes George’s face most

 He looks most like the typical face

 Also finds a face where there is none!
 A false alarm
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Scaling and Rotation Problems

 Scaling
 Not all faces are the same size
 Some people have bigger faces
 The size of the face on the image 

changes with perspective
 Our “typical face” only represents 
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yp y p
one of these sizes

 Rotation
 The head need not always be 

upright!
 Our typical face image was 

upright
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Solution

 Create many “typical faces”
 One for each scaling factor

11755/18797

 One for each scaling factor
 One for each rotation

 How will we do this?

 Match them all

 Does this work
 Kind of .. Not well enough at all
 We need more sophisticated models
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Face Detection: A Quick Historical Perspective
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 Many more complex methods
 Use edge detectors and search for face like patterns
 Find “feature” detectors (noses, ears..) and employ them in 

complex neural networks..

 The Viola Jones method
 Boosted cascaded classifiers

 But first, what is boosting
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And even before that – what is classification?

 Given “features” describing an entity, determine the 
category it belongs to
 Walks on two legs, has no hair. Is this

 A Chimpanizee

 A Human

H l h i i 5’4” t ll i thi
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 Has long hair, is 5’4” tall, is this
 A man

 A woman

 Matches “eye” pattern with score 0.5, “mouth pattern” with 
score 0.25, “nose” pattern with score 0.1. Are we looking at
 A face

 Not a face?
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Classification

 Multi-class classification
 Many possible categories

 E.g. Sounds “AH, IY, UW, EY..”
 E.g. Images “Tree, dog, house, person..”

 Binary classification

11755/18797

y
 Only two categories

 Man vs. Woman
 Face vs. not a face..

 Face detection: Recast as binary face classification
 For each little square of the image, determine if the square 

represents a face or not
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Face Detection as Classification
For each square, run a
classifier to find out if it
is a face or not

11755/18797

 Faces can be many sizes
 They can happen anywhere in the image
 For each face size

 For each location
 Classify a rectangular region of the face size, at that location, as a 

face or not a face

 This is a series of binary classification problems
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Introduction to Boosting
 An ensemble method that sequentially combines many simple 

BINARY classifiers to construct a final complex classifier
 Simple classifiers are often called “weak” learners

 The complex classifiers are called “strong” learners

 Each weak learner focuses on instances where the previous 
classifier failed

11755/18797

 Give greater weight to instances that have been incorrectly 
classified by previous learners

 Restrictions for weak learners
 Better than 50% correct

 Final classifier is weighted sum of weak classifiers
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Boosting: A very simple idea
 One can come up with many rules to classify

 E.g. Chimpanzee vs. Human classifier:

 If arms == long, entity is chimpanzee

 If height > 5’6” entity is human

 If lives in house == entity is human

 If lives in zoo == entity is chimpanzee

11755/18797

 Each of them is a reasonable rule, but makes many mistakes
 Each rule has an intrinsic error rate

 Combine the predictions of these rules
 But not equally

 Rules that are less accurate should be given lesser weight
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Boosting and the Chimpanzee Problem

Arm length?
armlength

Height?
height

Lives in house?
house

Lives in zoo?
zoo

human human chimp chimp
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 The total confidence in all classifiers that classify the entity as a chimpanzee is

 The total confidence in all classifiers that classify it as a human is 

 If Scorechimpanzee > Scorehuman then the our belief that we have a chimpanzee is 
greater than the belief that we have a human


chimpanzeefavorsclassifier

chimpScore
   

classifier


humanfavorsclassifier

humanScore
   

classifier
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Boosting as defined by Freund
 A gambler wants to write a program to predict winning horses. His 

program must encode the expertise of his brilliant winner friend

 The friend has no single, encodable algorithm. Instead he has many 
rules of thumb

 He uses a different rule of thumb for each set of races
 E.g. “in this set, go with races that have black horses with stars on 

their foreheads”

11755/18797

 But cannot really enumerate what rules of thumbs go with 
what sets of races: he simply “knows” when he encounters  
a set
 A common problem that faces us in many situations

 Problem:

 How best to combine all of the friend’s rules of thumb

 What is the best set of races to present to the friend, to 
extract the various rules of thumb
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Boosting
The basic idea: Can a “weak” learning 

algorithm that performs just slightly better than 
random guessing be boosted into an arbitrarily 
accurate “strong” learner

 Each of the gambler’s rules may be just better 

11755/18797

than random guessing

This is  a “meta” algorithm, that poses no 
constraints on the form of the weak learners 
themselves
 The gambler’s rules of thumb can be anything
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Boosting: A Voting Perspective
 Boosting can be considered a form of voting

 Let a number of different classifiers classify the data

 Go with the majority

 Intuition says that as the number of classifiers increases, 
the dependability of the majority vote increases

The corresponding algorithms were called Boosting

11755/18797

 The corresponding algorithms were called Boosting 
by majority
 A (weighted) majority vote taken over all the classifiers

 How do we compute weights for the classifiers?

 How do we actually train the classifiers
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ADA Boost: Adaptive algorithm for 
learning the weights
 ADA Boost: Not named of ADA Lovelace
 An adaptive algorithm that learns the weights 

of each classifier sequentially
 Learning adapts to the current accuracy

11755/18797

g p y

 Iteratively:
 Train a simple classifier from training data

 It will make errors even on training data
 Train a new classifier that focuses on the training data 

points that have been misclassified
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Boosting: An Example

11755/18797

 Red dots represent training data from Red class

 Blue dots represent training data from Blue class
20 Sep 2011 67

Boosting: An Example

11755/18797

 Very simple weak learner
 A line that is parallel to one of the two axes

Blue classRed class

20 Sep 2011 68

Boosting: An Example
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 First weak learner makes many mistakes
 Errors coloured black

Blue classRed class
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Blue class

Red class

Boosting: An Example

11755/18797

Second weak learner focuses on errors made by 
first learner

Blue classRed class
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BLUE
RED

Boosting: An Example

11755/18797

 Second strong  learner: weighted combination of first and 
second weak learners

‒ Decision boundary shown by black lines

RED RED
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BLUE
RED

Boosting: An Example

11755/18797

The second strong learner also makes 
mistakes
 Errors colored black

RED RED
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Blue class

R d l

BLUE
RED

Boosting: An Example
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Third weak learner concentrates on errors 
made by second strong learner

Red class

RED RED
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Blue class

Red class

Blue class

R d l

Boosting: An Example
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 Third weak learner concentrates on errors made by 
combination of previous weak learners

 Continue adding weak learners until….

Blue classRed class

Red class
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Boosting: An Example

11755/18797

 Voila! Final strong learner: very few errors on the 
training data
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Boosting: An Example

11755/18797

 The final strong learner has learnt a complicated 
decision boundary
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Boosting: An Example

11755/18797

 The final strong learner has learnt a complicated 
decision boundary

 Decision boundaries in areas with low density of training 
points assumed inconsequential
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Overall Learning Pattern
 Strong learner increasingly accurate with increasing 

number of weak learners

 Residual errors increasingly difficult to correct
‒ Additional weak learners less and less effective

11755/18797

Error of nth weak learner

Error of nth strong learner

number of weak learners
20 Sep 2011 78
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ADABoost
 Cannot just add new classifiers that work well only 

the the previously misclassified data

 Problem: The new classifier will make errors on the 
points that the earlier classifiers got right
 Not good

11755/18797

g
 On test data we have no way of knowing which points were 

correctly classified by the first classifier

 Solution: Weight the data when training the second 
classifier
 Use all the data but assign them weights

 Data that are already correctly classified have less weight
 Data that are currently incorrectly classified have more weight
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ADA Boost
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 The red and blue points (correctly classified) will have a weight  < 1
 Black points (incorrectly classified) will have a weight  > 1
 To compute the optimal second classifier, we minimize the total 

weighted error
 Each data point contributes  or  to the total count of correctly and 

incorrectly classified points
 E.g. if one of the red points is misclassified by the new classifier, the total 

error of the new classifier goes up by 
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ADA Boost
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 Each new classifier modifies the weights of the data 
points based on the accuracy of the current 
classifier

 The final classifier too is a weighted 
combination of all component classifiers
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Formalizing the Boosting Concept
 Given a set of instances (x1, y1), (x2, y2),… (xN, yN)

 xi is the set of attributes of the ith instance

 y1 is the class for the ith instance
 y1 can be 1 or -1  (binary classification only)

 Given a set of classifiers h1, h2, … , hT

 hi classifies an instance with attributes x as hi(x)

11755/18797

 hi(x) is either -1 or +1 (for a binary classifier)

 y*h(x) is 1 for all correctly classified points and -1 for incorrectly 
classified points

 Devise a function f (h1(x), h2(x),…, hT(x)) such that classification 
based on f () is superior to classification by any hi(x)
 The function is succinctly represented as f (x)
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The Boosting Concept
 A simple combiner function: Voting

 f (x) = i hi(x)

 Classifier H(x) = sign(f (x)) = sign(i hi(x))

 Simple majority classifier

 A simple voting scheme

11755/18797

 A better combiner function: Boosting
 f (x) = i i hi(x)

 Can be any real number

 Classifier H(x) = sign(f (x)) = sign(i i hi(x))

 A weighted majority classifier

 The weight i for any hi(x) is  a measure of our trust in hi(x)
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Adaptive Boosting
As before:

 y is either -1 or +1

 H(x) is +1 or -1

 If the instance is correctly classified, both y and 
H(x) will have the same sign

Th d t H( ) i 1
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 The product y.H(x) is 1

 For incorrectly classified instances the product is -1

Define the error for x : ½(1 – yH(x))
 For a correctly classified instance, this is 0

 For an incorrectly classified instance, this is 1
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The ADABoost Algorithm
Given: a set (x1, y1), … (xN, yN) of training 

instances
 xi is the set of attributes for the ith instance
 yi is the class for the ith instance and can be either 

+1 or -1

11755/1879720 Sep 2011 85

The ADABoost Algorithm
 Initialize D1(xi) = 1/N
For t = 1, …, T

 Train a weak classifier ht using distribution Dt

 Compute total error on training data
 t = Sum {½ (1 – yi ht(xi))}

Set ½ ln ((1 ) / )

11755/18797

 Set t = ½ ln ((1 – t) / t)
 For i = 1… N 

 set Dt+1(xi) = Dt(xi) exp(- t yi ht(xi))

 Normalize Dt+1 to make it a distribution

The final classifier is
 H(x) = sign(t t ht(x))
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First, some example data

E1

E2

= 0.3 E1 - 0.6 E2

= 0.5 E1 - 0.5 E2

= 0.7 E1 - 0.1 E2

= 0.6 E1 - 0.4 E2

= 0.2 E1 + 0.4 E2

= -0.8 E1 - 0.1 E2

= 0.4 E1 - 0.9 E2

= 0.2 E1 + 0.5 E2

I *E1 + b*E2 I E1/|I |

11755/18797

 Face detection with multiple Eigen faces

 Step 0: Derived top 2 Eigen faces from eigen face training data

 Step 1: On a (different) set of examples, express each image as a 
linear combination of Eigen faces
 Examples include both faces and non faces

 Even the non-face images will are explained in terms of the eigen faces

E2Image = a*E1 + b*E2  a = Image.E1/|Image|
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Training Data
= 0.3 E1 - 0.6 E2

= 0.5 E1 - 0.5 E2

= 0.7 E1 - 0.1 E2

= 0.6 E1 - 0.4 E2

= 0.2 E1 + 0.4 E2

= -0.8 E1 - 0.1 E2

= 0.4 E1 - 0.9 E2

= 0.2 E1 + 0.5 E2

11755/18797

ID E1 E2. Class

A 0.3 -0.6 +1

B 0.5 -0.5 +1

C 0.7 -0.1 +1

D 0.6 -0.4 +1

E 0.2 0.4 -1

F -0.8 -0.1 -1

G 0.4 -0.9 -1

H 0.2 0.5 -1

Face = +1
Non-face = -1
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The ADABoost Algorithm
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 Set t = ½ ln ((1 – t) / t)
 For i = 1… N 

 set Dt+1(xi) = Dt(xi) exp(- t yi ht(xi))
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The final classifier is
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Training Data
= 0.3 E1 - 0.6 E2

= 0.5 E1 - 0.5 E2

= 0.7 E1 - 0.1 E2

= 0.6 E1 - 0.4 E2

= 0.2 E1 + 0.4 E2

= -0.8 E1 - 0.1 E2

= 0.4 E1 - 0.9 E2

= 0.2 E1 + 0.5 E2
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ID E1 E2. Class Weight

A 0.3 -0.6 +1 1/8

B 0.5 -0.5 +1 1/8

C 0.7 -0.1 +1 1/8

D 0.6 -0.4 +1 1/8

E 0.2 0.4 -1 1/8

F -0.8 -0.1 -1 1/8

G 0.4 -0.9 -1 1/8

H 0.2 0.5 -1 1/8
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 Initialize D1(xi) = 1/N
For t = 1, …, T

 Train a weak classifier ht using distribution Dt

 Compute total error on training data
 t = Sum {Dt (xi) ½(1 – yi ht(xi))}

Set ½ ln ( /(1 ))

The ADABoost Algorithm
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 Set t = ½ ln (t /(1 – t))
 For i = 1… N 

 set Dt+1(xi) = Dt(xi) exp(- t yi ht(xi))

 Normalize Dt+1 to make it a distribution

The final classifier is
 H(x) = sign(t t ht(x))
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The E1“Stump”

0.3 0.5 0.6 0.70.2-0.8 0.40.2

F E H A G B C D

1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8

Classifier based on E1:
if ( sign*wt(E1) > thresh) > 0) 

face = true

sign = +1 or -1

Sign = +1, error = 3/8
Sign = -1, error = 5/8

threshold

11755/18797

ID E1 E2. Class Weight

A 0.3 -0.6 +1 1/8

B 0.5 -0.5 +1 1/8

C 0.7 -0.1 +1 1/8

D 0.6 -0.4 +1 1/8

E 0.2 0.4 -1 1/8

F -0.8 -0.1 -1 1/8

G 0.4 -0.9 -1 1/8

H 0.2 0.5 -1 1/8
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ID E1 E2. Class Weight
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D 0.6 -0.4 +1 1/8
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face = true
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Sign = +1, error = 2/8
Sign = -1, error = 6/8

threshold
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ID E1 E2. Class Weight

A 0.3 -0.6 +1 1/8

B 0.5 -0.5 +1 1/8

C 0.7 -0.1 +1 1/8

D 0.6 -0.4 +1 1/8

E 0.2 0.4 -1 1/8

F -0.8 -0.1 -1 1/8

G 0.4 -0.9 -1 1/8

H 0.2 0.5 -1 1/8
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The Best E1 “Stump”

0.3 0.5 0.6 0.70.2-0.8 0.40.2

F E H A G B C D

1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8

Classifier based on E1:
if ( sign*wt(E1) > thresh) > 0) 

face = true

Sign = +1
Threshold = 0.45Sign = +1, error = 1/8

threshold

11755/18797

ID E1 E2. Class Weight

A 0.3 -0.6 +1 1/8

B 0.5 -0.5 +1 1/8

C 0.7 -0.1 +1 1/8

D 0.6 -0.4 +1 1/8

E 0.2 0.4 -1 1/8

F -0.8 -0.1 -1 1/8

G 0.4 -0.9 -1 1/8

H 0.2 0.5 -1 1/8
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The E2“Stump”

-0.4 -0.1 0.4 0.5-0.6-0.9 -0.1-0.5

G A B D C F E H

1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8

Classifier based on E2:
if ( sign*wt(E2) > thresh) > 0) 

face = true

sign = +1 or -1

Sign = +1, error = 3/8
Sign = -1, error = 5/8

threshold

Note order

11755/18797

ID E1 E2. Class Weight

A 0.3 -0.6 +1 1/8

B 0.5 -0.5 +1 1/8

C 0.7 -0.1 +1 1/8

D 0.6 -0.4 +1 1/8

E 0.2 0.4 -1 1/8

F -0.8 -0.1 -1 1/8

G 0.4 -0.9 -1 1/8

H 0.2 0.5 -1 1/8
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The Best E2“Stump”

-0.4 -0.1 0.4 0.5-0.6-0.9 -0.1-0.5

1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8

Classifier based on E2:
if ( sign*wt(E2) > thresh) > 0) 

face = true

sign = -1
Threshold = 0.15

Sign = -1, error = 2/8

threshold

G A B D C F E H

11755/18797

ID E1 E2. Class Weight

A 0.3 -0.6 +1 1/8

B 0.5 -0.5 +1 1/8

C 0.7 -0.1 +1 1/8

D 0.6 -0.4 +1 1/8

E 0.2 0.4 -1 1/8

F -0.8 -0.1 -1 1/8

G 0.4 -0.9 -1 1/8

H 0.2 0.5 -1 1/8
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The Best “Stump”

0.3 0.5 0.6 0.70.2-0.8 0.40.2

F E H A G B C D

1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8

The Best overall classifier
based on a single feature is
based on E1

If (wt(E1) > 0.45)  Face
Sign = +1, error = 1/8

threshold

11755/18797

ID E1 E2. Class Weight

A 0.3 -0.6 +1 1/8

B 0.5 -0.5 +1 1/8

C 0.7 -0.1 +1 1/8

D 0.6 -0.4 +1 1/8

E 0.2 0.4 -1 1/8

F -0.8 0.1 -1 1/8

G 0.4 -0.9 -1 1/8

H 0.2 0.5 -1 1/8
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 Initialize D1(xi) = 1/N
For t = 1, …, T

 Train a weak classifier ht using distribution Dt

 Compute total error on training data
 t = Sum {Dt (xi) ½(1 – yi ht(xi))}

Set ½ ln ( /(1 ))

The ADABoost Algorithm

11755/18797

 Set t = ½ ln (t /(1 – t))
 For i = 1… N 

 set Dt+1(xi) = Dt(xi) exp(- t yi ht(xi))

 Normalize Dt+1 to make it a distribution

The final classifier is
 H(x) = sign(t t ht(x))
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The Best Error

0.3 0.5 0.6 0.70.2-0.8 0.40.2

F E H A G B C D

1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8

The Error of the classifier
is the sum of the weights of
the misclassified instances

Sign = +1, error = 1/8

threshold

11755/18797

ID E1 E2. Class Weight

A 0.3 -0.6 +1 1/8

B 0.5 -0.5 +1 1/8

C 0.7 -0.1 +1 1/8

D 0.6 -0.4 +1 1/8

E 0.2 0.4 -1 1/8

F -0.8 0.1 -1 1/8

G 0.4 -0.9 -1 1/8

H 0.2 0.5 -1 1/8

NOTE: THE ERROR IS THE SUM OF THE WEIGHTS OF MISCLASSIFIED
INSTANCES
20 Sep 2011 103

 Initialize D1(xi) = 1/N
For t = 1, …, T

 Train a weak classifier ht using distribution Dt

 Compute total error on training data
 t = Sum {Dt (xi) ½(1 – yi ht(xi))}

Set ½ ln ((1 ) / )

The ADABoost Algorithm

11755/18797

 Set t = ½ ln ((1 – t) / t)
 For i = 1… N 

 set Dt+1(xi) = Dt(xi) exp(- t yi ht(xi))

 Normalize Dt+1 to make it a distribution

The final classifier is
 H(x) = sign(t t ht(x))
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Computing Alpha

0.3 0.5 0.6 0.70.2-0.8 0.40.2

F E H A G B C D

1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8

Alpha = 0.5ln((1-1/8) / (1/8))

= 0.5 ln(7) = 0.97 

Sign = +1, error = 1/8

threshold

11755/1879720 Sep 2011 105

The Boosted Classifier Thus Far

0.3 0.5 0.6 0.70.2-0.8 0.40.2

F E H A G B C D

1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8

Alpha = 0.5ln((1-1/8) / (1/8))

= 0.5 ln(7) = 0.97 

Sign = +1, error = 1/8

threshold

11755/18797

h1(X) = wt(E1) > 0.45 ? +1 : -1

H(X) = sign(0.97 * h1(X))

It’s the same as h1(x)
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 Initialize D1(xi) = 1/N
For t = 1, …, T

 Train a weak classifier ht using distribution Dt

 Compute total error on training data
 t = Average {½ (1 – yi ht(xi))}

Set ½ ln ((1 ) / )

The ADABoost Algorithm

11755/18797

 Set t = ½ ln ((1 – t) / t)
 For i = 1… N 

 set Dt+1(xi) = Dt(xi) exp(- t yi ht(xi))

 Normalize Dt+1 to make it a distribution

The final classifier is
 H(x) = sign(t t ht(x))
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The Best Error

ID E1 E2. Class Weight Weight

A 0.3 -0.6 +1 1/8  * 2.63 0.33

B 0.5 -0.5 +1 1/8 * 0.38 0.05

0.3 0.5 0.6 0.70.2-0.8 0.40.2

F E H A G B C D

1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8

threshold

Dt+1(xi) = Dt(xi) exp(- t yi ht (xi))

exp(t) = exp(0.97) = 2.63
exp(-t) = exp(-0.97) = 0.38

11755/18797

C 0.7 -0.1 +1 1/8 * 0.38 0.05

D 0.6 -0.4 +1 1/8 * 0.38 0.05

E 0.2 0.4 -1 1/8 * 0.38 0.05

F -0.8 0.1 -1 1/8 * 0.38 0.05

G 0.4 -0.9 -1 1/8 * 0.38 0.05

H 0.2 0.5 -1 1/8 * 0.38 0.05

Multiply the correctly classified instances by 0.38
Multiply incorrectly classified instances by 2.63
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 Initialize D1(xi) = 1/N
For t = 1, …, T

 Train a weak classifier ht using distribution Dt

 Compute total error on training data
 t = Average {½ (1 – yi ht(xi))}

Set ½ ln ((1 ) / )

The ADABoost Algorithm

11755/18797

 Set t = ½ ln ((1 – t) / t)
 For i = 1… N 

 set Dt+1(xi) = Dt(xi) exp(- t yi ht(xi))

 Normalize Dt+1 to make it a distribution

The final classifier is
 H(x) = sign(t t ht(x))

20 Sep 2011 109

The Best Error

ID E1 E2. Class Weight Weight Weight

A 0.3 -0.6 +1 1/8  * 2.63 0.33 0.48

B 0.5 -0.5 +1 1/8 * 0.38 0.05 0.074

0.3 0.5 0.6 0.70.2-0.8 0.40.2

F E H A G B C D

1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8

threshold

D’ = D / sum(D)

11755/18797

C 0.7 -0.1 +1 1/8 * 0.38 0.05 0.074

D 0.6 -0.4 +1 1/8 * 0.38 0.05 0.074

E 0.2 0.4 -1 1/8 * 0.38 0.05 0.074

F -0.8 0.1 -1 1/8 * 0.38 0.05 0.074

G 0.4 -0.9 -1 1/8 * 0.38 0.05 0.074

H 0.2 0.5 -1 1/8 * 0.38 0.05 0.074

Multiply the correctly classified instances by 0.38
Multiply incorrectly classified instances by 2.63
Normalize to sum to 1.0
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The Best Error

ID E1 E2. Class Weight

A 0.3 -0.6 +1 0.48

B 0.5 -0.5 +1 0.074

0.3 0.5 0.6 0.70.2-0.8 0.40.2

F E H A G B C D

1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8

threshold

D’ = D / sum(D)

11755/18797

C 0.7 -0.1 +1 0.074

D 0.6 -0.4 +1 0.074

E 0.2 0.4 -1 0.074

F -0.8 0.1 -1 0.074

G 0.4 -0.9 -1 0.074

H 0.2 0.5 -1 0.074

Multiply the correctly classified instances by 0.38
Multiply incorrectly classified instances by 2.63
Normalize to sum to 1.0
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 Initialize D1(xi) = 1/N
For t = 1, …, T

 Train a weak classifier ht using distribution Dt

 Compute total error on training data
 t = Average {½ (1 – yi ht(xi))}

Set ½ ln ( /(1 ))

The ADABoost Algorithm

11755/18797

 Set t = ½ ln (t /(1 – t))
 For i = 1… N 

 set Dt+1(xi) = Dt(xi) exp(- t yi ht(xi))

 Normalize Dt+1 to make it a distribution

The final classifier is
 H(x) = sign(t t ht(x))
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E1 classifier

0.3 0.5 0.6 0.70.2-0.8 0.40.2

F E H A G B C D

.074 .074 .074 .48 .074 .074 .074 .074

threshold

Classifier based on E1:
if ( sign*wt(E1) > thresh) > 0) 

face = true

sign = +1 or -1

Sign = +1, error = 0.222
Sign = -1, error = 0.778

11755/18797

ID E1 E2. Class Weight

A 0.3 -0.6 +1 0.48

B 0.5 -0.5 +1 0.074

C 0.7 -0.1 +1 0.074

D 0.6 -0.4 +1 0.074

E 0.2 0.4 -1 0.074

F -0.8 0.1 -1 0.074

G 0.4 -0.9 -1 0.074

H 0.2 0.5 -1 0.074
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E1 classifier

0.3 0.5 0.6 0.70.2-0.8 0.40.2

F E H A G B C D

.074 .074 .074 .074 .074 .074

threshold

Classifier based on E1:
if ( sign*wt(E1) > thresh) > 0) 

face = true

sign = +1 or -1

Sign = +1, error = 0.148
Sign = -1, error = 0.852

.48 .074

11755/18797

ID E1 E2. Class Weight

A 0.3 -0.6 +1 0.48

B 0.5 -0.5 +1 0.074

C 0.7 -0.1 +1 0.074

D 0.6 -0.4 +1 0.074

E 0.2 0.4 -1 0.074

F -0.8 0.1 -1 0.074

G 0.4 -0.9 -1 0.074

H 0.2 0.5 -1 0.074
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The Best E1 classifier

0.3 0.5 0.6 0.70.2-0.8 0.40.2

F E H A G B C D

.074 .074 .074 .074 .074 .074

threshold

Classifier based on E1:
if ( sign*wt(E1) > thresh) > 0) 

face = true

sign = +1 or -1

Sign = +1, error = 0.074

.48 .074

11755/18797

ID E1 E2. Class Weight

A 0.3 -0.6 +1 0.48

B 0.5 -0.5 +1 0.074

C 0.7 -0.1 +1 0.074

D 0.6 -0.4 +1 0.074

E 0.2 0.4 -1 0.074

F -0.8 0.1 -1 0.074

G 0.4 -0.9 -1 0.074

H 0.2 0.5 -1 0.074
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The Best E2 classifier

-0.4 -0.1 0.4 0.5-0.6-0.9 -0.1-0.5

G A B D C F E H

.074 .48 .074 .074 .074 .074 .074 .074

threshold

Classifier based on E2:
if ( sign*wt(E2) > thresh) > 0) 

face = true

sign = +1 or -1

Sign = -1, error = 0.148

11755/18797

ID E1 E2. Class Weight

A 0.3 -0.6 +1 0.48

B 0.5 -0.5 +1 0.074

C 0.7 -0.1 +1 0.074

D 0.6 -0.4 +1 0.074

E 0.2 0.4 -1 0.074

F -0.8 -0.1 -1 0.074

G 0.4 -0.9 -1 0.074

H 0.2 0.5 -1 0.074
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The Best Classifier

0.3 0.5 0.6 0.70.2-0.8 0.40.2

F E H A G B C D

.074 .074 .074 .074 .074 .074

threshold

Classifier based on E1:
if (wt(E1) > 0.45) face = true

Sign = +1, error = 0.074

.48 .074

Alpha = 0.5ln((1-0.074) / 0.074)
= 1.26 

11755/18797

ID E1 E2. Class Weight

A 0.3 -0.6 +1 0.48

B 0.5 -0.5 +1 0.074

C 0.7 -0.1 +1 0.074

D 0.6 -0.4 +1 0.074

E 0.2 0.4 -1 0.074

F -0.8 0.1 -1 0.074

G 0.4 -0.9 -1 0.074

H 0.2 0.5 -1 0.074
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The Boosted Classifier Thus Far

h1(X) = wt(E1) > 0.45 ? +1 : -1

h2(X) = wt(E1) > 0.25 ? +1 : -1

0.3 0.5 0.6 0.70.2-0.8 0.40.2

F E H A G B C D

.074 .074 .074 .074 .074 .074

threshold

.48 .074

threshold

11755/18797

H(X) = sign(0.97 * h1(X) + 1.26 * h2(X))
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Reweighting the Data

0.3 0.5 0.6 0.70.2-0.8 0.40.2

F E H A G B C D

.074 .074 .074 .074 .074 .074

threshold

Sign = +1, error = 0.074

.48 .074

Exp(alpha) = exp(1.26) = 3.5
Exp(-alpha) = exp(-1.26) = 0.28

11755/18797

ID E1 E2. Class Weight

A 0.3 -0.6 +1 0.48*0.28 0.32

B 0.5 -0.5 +1 0.074*0.28 0.05

C 0.7 -0.1 +1 0.074*0.28 0.05

D 0.6 -0.4 +1 0.074*0.28 0.05

E 0.2 0.4 -1 0.074*0.28 0.05

F -0.8 0.1 -1 0.074*0.28 0.05

G 0.4 -0.9 -1 0.074*3.5 0.38

H 0.2 0.5 -1 0.074*0.28 0.05

RENORMALIZE
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Reweighting the Data

0.3 0.5 0.6 0.70.2-0.8 0.40.2

F E H A G B C D

.074 .074 .074 .074 .074 .074

threshold

Sign = +1, error = 0.074

.48 .074

NOTE: THE WEIGHT OF “G”
WHICH WAS MISCLASSIFIED
BY THE SECOND CLASSIFIER
IS NOW SUDDENLY HIGH

11755/18797
RENORMALIZE
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ID E1 E2. Class Weight

A 0.3 -0.6 +1 0.48*0.28 0.32

B 0.5 -0.5 +1 0.074*0.28 0.05

C 0.7 -0.1 +1 0.074*0.28 0.05

D 0.6 -0.4 +1 0.074*0.28 0.05

E 0.2 0.4 -1 0.074*0.28 0.05

F -0.8 0.1 -1 0.074*0.28 0.05

G 0.4 -0.9 -1 0.074*3.5 0.38

H 0.2 0.5 -1 0.074*0.28 0.05
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AdaBoost

 In this example both of our first two classifiers were 
based on E1
 Additional classifiers may switch to E2

 In general, the reweighting of the data will result in a 
different feature being picked for each classifier

11755/18797

 This also automatically gives us a feature selection 
strategy
 In this data the wt(E1) is the most important feature
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AdaBoost

 NOT required to go with the best classifier so far

 For instance, for our second classifier, we might use 
the best E2 classifier, even though its worse than the 
E1 classifier
 So long as its right more than 50% of the time

11755/18797

 We can continue to add classifiers even after we get 
100% classification of the training data
 Because the weights of the data keep changing

 Adding new classifiers beyond this point is often a 
good thing to do
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ADA Boost

 The final classifier is

E1 E2

= 0.4 E1 - 0.4 E2

11755/18797

 H(x) = sign(t t ht(x))

 The output is 1 if the total weight of all weak 
learners that classify x as 1 is greater than 
the total weight of all weak learners that 
classify it as -1

20 Sep 2011 123

Boosting and Face Detection

 Boosting forms the basis of the most 
common technique for face detection today:  
The Viola-Jones algorithm.

11755/1879720 Sep 2011 124

The problem of face detection

 1. Defining Features
 Should we be searching for noses, eyes, eyebrows etc.?

 Nice, but expensive

 Or something simpler

2 S l ti F t

11755/18797

 2. Selecting Features
 Of all the possible features we can think of, which ones 

make sense

 3. Classification: Combining evidence
 How does one combine the evidence from the different 

features?
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Features: The Viola Jones Method

Integral Features!!

B1 B2 B3 B4 B5 B6

...Im 332211  BwBwBwage

11755/18797

 Integral Features!!
 Like the Checkerboard

 The same principle as we used to decompose images in terms of 
checkerboards:
 The image of any object has changes at various scales

 These can be represented coarsely by a checkerboard pattern

 The checkerboard patterns must however now be localized
 Stay within the region of the face

20 Sep 2011 126
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Features
 Checkerboard Patterns to represent facial features

 The white areas are subtracted from the black ones.
 Each checkerboard explains a localized portion of the 

image
 Four types of checkerboard patterns (only)

20 Sep 2011 12711755/18797

Explaining a portion of the face with a 
checker..

11755/18797

 How much is the difference in average intensity of the image in 
the black and white regions
 Sum(pixel values in white region) – Sum(pixel values in black 

region)
 This is actually the dot product of the region of the face covered 

by the rectangle and the checkered pattern itself
 White = 1, Black = -1

20 Sep 2011 128

“Integral” features

11755/18797

 Each checkerboard has the following characteristics
 Length

 Width

 Type
 Specifies the number and arrangement of bands

 The four checkerboards above are the four used by Viola and Jones

20 Sep 2011 129

Integral images
 Summed area tables

 For each pixel store the sum of ALL pixels to the left of and 
above it.

20 Sep 2011 13011755/18797

Fast Computation of Pixel Sums

11755/1879720 Sep 2011 131

A Fast Way to Compute the Feature

A B

D

F
C

E

11755/18797

 Store pixel table for every pixel in the image
 The sum of all pixel values to the left of and above the pixel

 Let A, B, C, D, E, F be the pixel table values at the locations 
shown
 Total pixel value of black area = D + A – B – C

 Total pixel value of white area = F + C – D – E

 Feature value = (F + C – D – E) – (D + A – B – C) 

20 Sep 2011 132
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How many features?

MxN
PxH

11755/18797

 Each checker board of width P and height H can start at 
 (0,0),  (0,1),(0,2), …  (0, N-P)

 (1,0),  (1,1),(1,2), …  (1, N-P)

 ..

 (M-H,0), (M-H,1), (M-H,2), … ( M-H, N-P)

 (M-H)*(N-P) possible starting locations
 Each is a unique checker feature

 E.g. at one location it may measure the forehead, at another the chin

20 Sep 2011 133

How many features

 Each feature can have many sizes

11755/18797

 Each feature can have many sizes
 Width from (min) to (max) pixels

 Height from (min ht) to (max ht) pixels

 At each size, there can be many starting locations
 Total number of possible checkerboards of one type:  

No. of possible sizes x No. of possible locations 

 There are four types of checkerboards
 Total no. of possible checkerboards:   VERY VERY LARGE!

20 Sep 2011 134

Learning:  No. of features

 Analysis performed on images of 24x24 
pixels only
 Reduces the no. of possible features to about 

180000

 Restrict checkerboard size

11755/18797

 Restrict checkerboard size
 Minimum of 8 pixels wide

 Minimum of 8 pixels high
 Other limits, e.g. 4 pixels may be used too

 Reduces no. of checkerboards to about 50000

20 Sep 2011 135

No. of features

F1 F2 F3 F4 ….. F180000

7 9 2 -1 ….. 12

11 3 19 17 2

11755/18797

 Each possible checkerboard gives us one feature

 A total of up to 180000 features derived from a 24x24 image!

 Every 24x24 image is now represented by a set of 180000 
numbers
 This is the set of features we will use for classifying if it is a face 

or not!

-11 3 19 17 ….. 2
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The Classifier

 The Viola-Jones algorithm uses a simple Boosting 
based classifier

 Each “weak learner” is a simple threshold

 At each stage find the best feature to classify the 
data with

11755/18797

 I.e the feature that gives us the best classification of all the 
training data
 Training data includes many examples of faces and non-face 

images

 The classification rule is of the kind
 If feature > threshold, face  (or if feature < threshold, face)

 The optimal value of “threshold” must also be determined.
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The Weak Learner

 Training (for each weak learner):
 For each feature f (of all 180000 features)

 Find a threshold f and polarity p(f) (p(f) = -1 or p(f) = 1) such that (f 
> p(f)*f) performs the best classification of faces
 Lowest overall error in classifying all training data

 Error counted over weighted samples

 Let the optimal overall error for f be error(f)
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 Let the optimal overall error for f be error(f)

 Find the feature f’ such that error(f’) is lowest

 The weak learner is the test (f’ > p(f’)*f’face

 Note that the procedure for learning weak learners also identifies 
the most useful features for face recognition
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The Viola Jones Classifier
 A boosted threshold-based classifier

 First weak learner:  Find the best feature, and 
its optimal threshold
 Second weak learner: Find the best feature, for 

the weighted training data, and its threshold 

11755/18797

(weighting from one weak learner)
 Third weak learner: Find the best feature for the 

weighted data and its optimal threshold (weighting from 
two weak learners)
 Fourth weak learner: Find the best feature for the weighted 

data and its optimal threhsold (weighting from three weak 
learners)

 ..
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To Train

 Collect a large number of histogram 
equalized facial images
 Resize all of them to 24x24
 These are our “face” training set
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 Collect a much much much larger set of 
24x24 non-face images of all kinds
 Each of them is histogram equalized
 These are our “non-face” training set

 Train a boosted classifier
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The Viola Jones Classifier

 During tests:
 Given any new 24x24 image

R (f (f))
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 R =  f f (f > pf (f))
 Only a small number of features (f < 100) typically used

 Problems:
 Only classifies 24 x 24 images entirely as faces or non-faces

 Typical pictures are much larger
 They may contain many faces
 Faces in pictures can be much larger or smaller

 Not accurate enough
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Multiple faces in the picture
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 Scan the image
 Classify each 24x24 rectangle from the photo
 All rectangles that get classified as having a face indicate the 

location of a face
 For an NxM picture, we will perform (N-24)*(M-24) classifications
 If overlapping 24x24 rectangles are found to have faces, merge 

them
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Multiple faces in the picture
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 Scan the image
 Classify each 24x24 rectangle from the photo
 All rectangles that get classified as having a face indicate the 

location of a face
 For an NxM picture, we will perform (N-24)*(M-24) classifications
 If overlapping 24x24 rectangles are found to have faces, merge 

them

20 Sep 2011 143

Multiple faces in the picture
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 Scan the image
 Classify each 24x24 rectangle from the photo
 All rectangles that get classified as having a face indicate the 

location of a face
 For an NxM picture, we will perform (N-24)*(M-24) classifications
 If overlapping 24x24 rectangles are found to have faces, merge 

them
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Multiple faces in the picture

11755/18797

 Scan the image
 Classify each 24x24 rectangle from the photo
 All rectangles that get classified as having a face indicate the 

location of a face
 For an NxM picture, we will perform (N-24)*(M-24) classifications
 If overlapping 24x24 rectangles are found to have faces, merge 

them
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Picture size solution
 We already have a 

classifier
 That uses weak 

learners

 Scale each classifier

2x

f, 

f, 2
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 Every weak learner
 Scale its size up by 

factor . Scale the 
threshold up to .

 Do this for many 
scaling factors
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Overall solution

11755/18797

 Scan the picture with classifiers of size 24x24
 Scale the classifier to 26x26 and scan
 Scale to 28x28 and scan etc.

 Faces of different sizes will be found at different 
scales
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False Rejection vs. False detection

 False Rejection: There’s a face in the image, but the classifier 
misses it
 Rejects the hypothesis that there’s a face

 False detection: Recognizes a face when there is none.

 Classifier: 
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 Standard boosted classifier: H(x) = sign(t t ht(x))

 Modified classifier H(x) = sign(t t ht(x) + Y)
 t t ht(x) is a measure of certainty

 The higher it is, the more certain we are that we found a face

 If Y is large, then we assume the presence of a face even when we 
are not sure

 By increasing Y, we can reduce false rejection, while increasing 
false detection
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ROC
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 Ideally false rejection will be 0%, false detection will 
also be 0%

 As Y increaases, we reject faces less and less
 But accept increasing amounts of garbage as faces

 Can set Y so that we rarely miss a face

0 
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Problem: Not accurate enough, too slow

Classifier 1

Not a face

Classifier 2

Not a face
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 If we set Y high enough, we will never miss a 
face
 But will classify a lot of junk as faces

 Solution:  Classify the output of the first 
classifier with a second classifier
 And so on.
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Problem: Not accurate enough, too slow

11755/18797

 If we set Y high enough, we will never miss a 
face
 But will classify a lot of junk as faces

 Solution:  Classify the output of the first 
classifier with a second classifier
 And so on.
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Useful Features Learned by Boosting

11755/1879720 Sep 2011 152

A Cascade of Classifiers
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Detection in Real Images
 Basic classifier operates on 24 x 24 subwindows

 Scaling:
 Scale the detector (rather than the images)
 Features can easily be evaluated at any scale
 Scale by factors of 1.25

11755/18797

 Location:
 Move detector around the image (e.g., 1 pixel increments)

 Final Detections
 A real face may result in multiple nearby detections  
 Postprocess detected subwindows to combine overlapping 

detections into a single detection
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Training
 In paper, 24x24 images of faces and non faces (positive and 

negative examples).
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Sample results using the Viola-Jones 

Detector
 Notice detection at multiple scales 
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More Detection Examples
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Practical implementation

 Details discussed in Viola-Jones paper

 Training time = weeks  (with 5k faces and 9.5k non-
faces)
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 Final detector has 38 layers in the cascade, 6060 
features

 700 Mhz processor:
 Can process a 384 x 288 image in 0.067 seconds (in 2003 

when paper was written)
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