
Detecting Faces in Images

11755/1879720 Sep 2011 37

Detecting Faces in Images

Fi di f lik tt Finding face like patterns
 How do we find if a picture has faces in it
 Where are the faces?

 A simple solution:
 Define a “typical face”

11755/18797

 Define a typical face
 Find the “typical face” in the image

20 Sep 2011 38

Finding faces in an image

 Picture is larger than the “typical face”
 E.g. typical face is 100x100, picture is 600x800

 First convert to greyscale
 R + G + B
 Not very useful to work in color

11755/1879720 Sep 2011 39

Finding faces in an image

 Goal .. To find out if and where images that
l k lik th “t i l” f i th i tlook like the “typical” face occur in the picture

11755/1879720 Sep 2011 40

Finding faces in an image

 Try to “match” the typical face to each
l ti i th i tlocation in the picture

11755/1879720 Sep 2011 41

Finding faces in an image

 Try to “match” the typical face to each
l ti i th i tlocation in the picture

11755/1879720 Sep 2011 42

Finding faces in an image

 Try to “match” the typical face to each
l ti i th i tlocation in the picture

11755/1879720 Sep 2011 43

Finding faces in an image

 Try to “match” the typical face to each
l ti i th i tlocation in the picture

11755/1879720 Sep 2011 44

Finding faces in an image

 Try to “match” the typical face to each
l ti i th i tlocation in the picture

11755/1879720 Sep 2011 45

Finding faces in an image

 Try to “match” the typical face to each
l ti i th i tlocation in the picture

11755/1879720 Sep 2011 46

Finding faces in an image

 Try to “match” the typical face to each
l ti i th i tlocation in the picture

11755/1879720 Sep 2011 47

Finding faces in an image

 Try to “match” the typical face to each
l ti i th i tlocation in the picture

11755/1879720 Sep 2011 48

Finding faces in an image

 Try to “match” the typical face to each
l ti i th i tlocation in the picture

11755/1879720 Sep 2011 49

Finding faces in an image

 Try to “match” the typical face to each
l ti i th i tlocation in the picture

 The “typical face” will explain some spots on
th i h b tt th ththe image much better than others
 These are the spots at which we probably have a

face!

11755/18797

face!

20 Sep 2011 50

How to “match”

 What exactly is the “match”
 What is the match “score”
The DOT Product The DOT Product
 Express the typical face as a vector
 Express the region of the image being evaluated as a vector

But first histogram equalize the region But first histogram equalize the region
 Just the section being evaluated, without considering the rest of the image

 Compute the dot product of the typical face vector and the
“region” vector

11755/18797

region vector

20 Sep 2011 51

What do we get

 The right panel shows the dot product a
various loctionsvarious loctions
 Redder is higher

 The locations of peaks indicate locations of faces!p

11755/1879720 Sep 2011 52

What do we get

 The right panel shows the dot product a various
loctions
 Redder is higher

 The locations of peaks indicate locations of faces!
 Correctly detects all three facesCo ect y detects a t ee aces

 Likes George’s face most
 He looks most like the typical face

Also finds a face where there is none!

11755/18797

 Also finds a face where there is none!
 A false alarm

20 Sep 2011 53

Scaling and Rotation Problems

 Scaling
 Not all faces are the same size Not all faces are the same size
 Some people have bigger faces
 The size of the face on the image

changes with perspectivechanges with perspective
 Our “typical face” only represents

one of these sizes

 Rotation
 The head need not always be

upright!
 Our typical face image was

upright

11755/1879720 Sep 2011 54

Solution

 Create many “typical faces”
 One for each scaling factor
 One for each rotation

 How will we do this?
 Match them all

 Does this work
 Kind of .. Not well enough at all
 We need more sophisticated models

11755/18797

 We need more sophisticated models

20 Sep 2011 55

Face Detection: A Quick Historical Perspective

 Many more complex methods
 Use edge detectors and search for face like patterns Use edge detectors and search for face like patterns
 Find “feature” detectors (noses, ears..) and employ them in

complex neural networks..

Th Vi l J h d The Viola Jones method
 Boosted cascaded classifiers

B t first hat is boosting

11755/18797

 But first, what is boosting

20 Sep 2011 56

And even before that – what is classification?

 Given “features” describing an entity, determine the
category it belongs tocategory it belongs to
 Walks on two legs, has no hair. Is this

 A Chimpanizee
 A Human

 Has long hair, is 5’4” tall, is this
 A man A man
 A woman

 Matches “eye” pattern with score 0.5, “mouth pattern” with
0 25 “ ” tt ith 0 1 A l ki tscore 0.25, “nose” pattern with score 0.1. Are we looking at

 A face
 Not a face?

11755/1879720 Sep 2011 57

Classification
 Multi-class classification

 Many possible categories Many possible categories
 E.g. Sounds “AH, IY, UW, EY..”
 E.g. Images “Tree, dog, house, person..”

 Binary classification
 Only two categories

 Man vs. Woman
 Face vs. not a face..

 Face detection: Recast as binary face classification
 For each little square of the image, determine if the square

represents a face or not

11755/18797

represents a face or not

20 Sep 2011 58

Face Detection as Classification
For each square, run a
classifier to find out if it
is a face or not

Faces can be man si es Faces can be many sizes
 They can happen anywhere in the image
 For each face size

 For each location
 Classify a rectangular region of the face size, at that location, as a

face or not a face
This is a series of binary classification problems

11755/18797

 This is a series of binary classification problems

20 Sep 2011 59

Introduction to Boosting
 An ensemble method that sequentially combines many simple

BINARY classifiers to construct a final complex classifier
 Simple classifiers are often called “weak” learners Simple classifiers are often called weak learners
 The complex classifiers are called “strong” learners

 Each weak learner focuses on instances where the previous Each weak learner focuses on instances where the previous
classifier failed
 Give greater weight to instances that have been incorrectly

classified by previous learnersclassified by previous learners

 Restrictions for weak learners
 Better than 50% correct

 Final classifier is weighted sum of weak classifiers

11755/1879720 Sep 2011 60

Boosting: A very simple idea
 One can come up with many rules to classify

 E.g. Chimpanzee vs. Human classifier:
If arms == long entity is chimpanzee If arms == long, entity is chimpanzee

 If height > 5’6” entity is human
 If lives in house == entity is human
 If lives in zoo == entity is chimpanzee

 Each of them is a reasonable rule, but makes many mistakes
 Each rule has an intrinsic error rate

 Combine the predictions of these rulesCo b e t e p ed ct o s o t ese u es
 But not equally
 Rules that are less accurate should be given lesser weight

11755/1879720 Sep 2011 61

Boosting and the Chimpanzee Problem

Arm length?
armlength

Height?
height

Lives in house?
house

Lives in zoo?
zoo

 The total confidence in all classifiers that classify the entity as a chimpanzee is

human human chimp chimp

 The total confidence in all classifiers that classify it as a human is


chimpanzeefavorsclassifier

chimpScore

classifier

 If Scorechimpanzee > Scorehuman then the our belief that we have a chimpanzee is


humanfavorsclassifier

humanScore

classifier

11755/18797

chimpanzee human
greater than the belief that we have a human

20 Sep 2011 62

Boosting as defined by Freund
 A gambler wants to write a program to predict winning horses. His

program must encode the expertise of his brilliant winner friend

 The friend has no single encodable algorithm Instead he has many The friend has no single, encodable algorithm. Instead he has many
rules of thumb
 He uses a different rule of thumb for each set of races

 E g “in this set go with races that have black horses with stars on E.g. in this set, go with races that have black horses with stars on
their foreheads”

 But cannot really enumerate what rules of thumbs go with
what sets of races: he simply “knows” when he encounterswhat sets of races: he simply knows when he encounters
a set
 A common problem that faces us in many situations

 Problem:
 How best to combine all of the friend’s rules of thumb
 What is the best set of races to present to the friend to

11755/18797

 What is the best set of races to present to the friend, to
extract the various rules of thumb

20 Sep 2011 63

Boosting
The basic idea: Can a “weak” learning

algorithm that performs just slightly better than g p j g y
random guessing be boosted into an arbitrarily
accurate “strong” learner
 Each of the gambler’s rules may be just better

than random guessing

This is a “meta” algorithm, that poses no
t i t th f f th k lconstraints on the form of the weak learners

themselves
The gambler’s rules of thumb can be anything

11755/18797

 The gambler’s rules of thumb can be anything

20 Sep 2011 64

Boosting: A Voting Perspective
 Boosting can be considered a form of voting

 Let a number of different classifiers classify the data
 Go with the majority
 Intuition says that as the number of classifiers increases,

the dependability of the majority vote increasesthe dependability of the majority vote increases

 The corresponding algorithms were called Boosting
by majorityby majority
 A (weighted) majority vote taken over all the classifiers
 How do we compute weights for the classifiers?
 How do we actually train the classifiers

11755/1879720 Sep 2011 65

ADA Boost: Adaptive algorithm for
learning the weights
 ADA Boost: Not named of ADA Lovelace ADA Boost: Not named of ADA Lovelace
 An adaptive algorithm that learns the weights

of each classifier sequentiallyof each classifier sequentially
 Learning adapts to the current accuracy

 Iteratively:
 Train a simple classifier from training data

It ill k t i i d t It will make errors even on training data
 Train a new classifier that focuses on the training data

points that have been misclassified

11755/1879720 Sep 2011 66

Boosting: An Example

 Red dots represent training data from Red class

11755/18797

 Blue dots represent training data from Blue class
20 Sep 2011 67

Boosting: An Example

Blue classRed class

 Very simple weak learner

11755/18797

 A line that is parallel to one of the two axes

20 Sep 2011 68

Boosting: An Example

Blue classRed class

 First weak learner makes many mistakes

11755/18797

 Errors coloured black
20 Sep 2011 69

Boosting: An Example
Blue class

R d lRed class

Blue classRed class

Second weak learner focuses on errors made by

11755/18797

first learner
20 Sep 2011 70

Boosting: An Example
BLUE

RED

RED REDRED RED

 Second strong learner: weighted combination of first and
d k l

11755/18797

second weak learners
‒ Decision boundary shown by black lines

20 Sep 2011 71

Boosting: An Example
BLUE

RED

RED REDRED RED

The second strong learner also makes
mistakes

11755/18797

mistakes
 Errors colored black

20 Sep 2011 72

Boosting: An Example

Blue class

BLUE
RED

Red class

RED REDRED RED

Third weak learner concentrates on errors

11755/18797

made by second strong learner
20 Sep 2011 73

Boosting: An Example
Blue class

Blue class

R d lRed class

Red class

Blue classRed class

 Third weak learner concentrates on errors made by
combination of previous weak learners

11755/18797

co b at o o p e ous ea ea e s

 Continue adding weak learners until….
20 Sep 2011 74

Boosting: An Example

 Voila! Final strong learner: very few errors on the

11755/18797

g y
training data

20 Sep 2011 75

Boosting: An Example

 The final strong learner has learnt a complicated

11755/18797

decision boundary
20 Sep 2011 76

Boosting: An Example

 The final strong learner has learnt a complicated The final strong learner has learnt a complicated
decision boundary

 Decision boundaries in areas with low density of training

11755/18797

 Decision boundaries in areas with low density of training
points assumed inconsequential

20 Sep 2011 77

Overall Learning Pattern
 Strong learner increasingly accurate with increasing Strong learner increasingly accurate with increasing

number of weak learners

 Residual errors increasingly difficult to correct Residual errors increasingly difficult to correct
‒ Additional weak learners less and less effective

Error of nth weak learner

Error of nth strong learner

11755/18797
number of weak learners

20 Sep 2011 78

ADABoost
 Cannot just add new classifiers that work well only

the the previously misclassified datap y

 Problem: The new classifier will make errors on the
points that the earlier classifiers got rightpoints that the earlier classifiers got right
 Not good
 On test data we have no way of knowing which points were

correctly classified by the first classifiercorrectly classified by the first classifier

 Solution: Weight the data when training the second
l ificlassifier

 Use all the data but assign them weights
 Data that are already correctly classified have less weight

11755/18797

y y g
 Data that are currently incorrectly classified have more weight

20 Sep 2011 79

ADA Boost

 The red and blue points (correctly classified) will have a weight  < 1 The red and blue points (correctly classified) will have a weight  < 1
 Black points (incorrectly classified) will have a weight  > 1
 To compute the optimal second classifier, we minimize the total

weighted errorweighted error
 Each data point contributes  or  to the total count of correctly and

incorrectly classified points
 E.g. if one of the red points is misclassified by the new classifier, the total

11755/18797

g p y ,
error of the new classifier goes up by 

20 Sep 2011 80

ADA Boost

 Each new classifier modifies the weights of the data
points based on the accuracy of the current
l ificlassifier

 The final classifier too is a weighted
combination of all component classifiers

11755/18797

combination of all component classifiers

20 Sep 2011 81

Formalizing the Boosting Concept
 Given a set of instances (x1, y1), (x2, y2),… (xN, yN)

 xi is the set of attributes of the ith instance
y is the class for the ith instance y1 is the class for the ith instance
 y1 can be 1 or -1 (binary classification only)

 Given a set of classifiers h1, h2, … , hT1 2 T

 hi classifies an instance with attributes x as hi(x)
 hi(x) is either -1 or +1 (for a binary classifier)

 y*h(x) is 1 for all correctly classified points and -1 for incorrectly
classified points

 Devise a function f (h1(x), h2(x),…, hT(x)) such that classification
based on f () is superior to classification by any hi(x)
 The function is succinctly represented as f (x)

11755/18797

 The function is succinctly represented as f (x)

20 Sep 2011 82

The Boosting Concept
 A simple combiner function: Voting

 f (x) = i hi(x)
 Classifier H(x) = sign(f (x)) = sign(i hi(x))
 Simple majority classifier

 A simple voting scheme A simple voting scheme

 A better combiner function: Boosting
 f (x) = i i hi(x)

 Can be any real number
 Classifier H(x) = sign(f (x)) = sign(i i hi(x)) Classifier H(x) sign(f (x)) sign(i i hi(x))
 A weighted majority classifier

 The weight i for any hi(x) is a measure of our trust in hi(x)

11755/1879720 Sep 2011 83

Adaptive Boosting
As before:

 y is either -1 or +1
 H(x) is +1 or -1
 If the instance is correctly classified, both y and

H(x) will have the same sign
 The product y.H(x) is 1
 For incorrectly classified instances the product is 1 For incorrectly classified instances the product is -1

Define the error for x : ½(1 – yH(x))Define the error for x : ½(1 yH(x))
 For a correctly classified instance, this is 0
 For an incorrectly classified instance, this is 1

11755/18797

o a co ec y c ass ed s a ce, s s

20 Sep 2011 84

The ADABoost Algorithm
Given: a set (x1, y1), … (xN, yN) of training

instances
 xi is the set of attributes for the ith instance
 yi is the class for the ith instance and can be either

+1 or 1+1 or -1

11755/1879720 Sep 2011 85

The ADABoost Algorithm
 Initialize D1(xi) = 1/N
For t = 1, …, T, ,

 Train a weak classifier ht using distribution Dt
 Compute total error on training data

 t = Sum {½ (1 – yi ht(xi))}
 Set t = ½ ln ((1 – t) / t)
 For i = 1 N For i = 1… N

 set Dt+1(xi) = Dt(xi) exp(- t yi ht(xi))
 Normalize Dt+1 to make it a distributiont+1

The final classifier is
 H(x) = sign(t t ht(x))

11755/1879720 Sep 2011 86

First, some example data

E

= 0.3 E1 - 0.6 E2

= 0.5 E1 - 0.5 E2

= 0.2 E1 + 0.4 E2

= -0.8 E1 - 0.1 E2
E1

= 0.7 E1 - 0.1 E2

= 0.6 E1 - 0.4 E2

= 0.4 E1 - 0.9 E2

= 0.2 E1 + 0.5 E2

E2Image = a*E1 + b*E2  a = Image.E1/|Image|

 Face detection with multiple Eigen faces
 Step 0: Derived top 2 Eigen faces from eigen face training data

St 1 O (diff t) t f l h i Step 1: On a (different) set of examples, express each image as a
linear combination of Eigen faces
 Examples include both faces and non faces
 Even the non face images will are explained in terms of the eigen faces

11755/18797

 Even the non-face images will are explained in terms of the eigen faces

20 Sep 2011 87

Training Data
= 0.3 E1 - 0.6 E2

= 0.5 E1 - 0.5 E2

= 0.2 E1 + 0.4 E2

= -0.8 E1 - 0.1 E2

= 0.7 E1 - 0.1 E2

= 0.6 E1 - 0.4 E2

= 0.4 E1 - 0.9 E2

= 0.2 E1 + 0.5 E2

ID E1 E2. Class
A 0 3 -0 6 +1 1A 0.3 -0.6 +1
B 0.5 -0.5 +1
C 0.7 -0.1 +1
D 0.6 -0.4 +1
E 0.2 0.4 -1

Face = +1
Non-face = -1

F -0.8 -0.1 -1
G 0.4 -0.9 -1
H 0.2 0.5 -1

11755/1879720 Sep 2011 88

The ADABoost Algorithm
 Initialize D1(xi) = 1/N
For t = 1, …, T, ,

 Train a weak classifier ht using distribution Dt
 Compute total error on training data

 t = Sum {Dt (xi) ½(1 – yi ht(xi))}
 Set t = ½ ln ((1 – t) / t)
 For i = 1 N For i = 1… N

 set Dt+1(xi) = Dt(xi) exp(- t yi ht(xi))
 Normalize Dt+1 to make it a distributiont+1

The final classifier is
 H(x) = sign(t t ht(x))

11755/1879720 Sep 2011 89

Training Data
= 0.3 E1 - 0.6 E2

= 0.5 E1 - 0.5 E2

= 0.2 E1 + 0.4 E2

= -0.8 E1 - 0.1 E2

= 0.7 E1 - 0.1 E2

= 0.6 E1 - 0.4 E2

= 0.4 E1 - 0.9 E2

= 0.2 E1 + 0.5 E2

ID E1 E2. Class Weight
A 0 3 -0 6 +1 1/8A 0.3 -0.6 +1 1/8
B 0.5 -0.5 +1 1/8
C 0.7 -0.1 +1 1/8
D 0.6 -0.4 +1 1/8
E 0.2 0.4 -1 1/8
F -0.8 -0.1 -1 1/8
G 0.4 -0.9 -1 1/8
H 0.2 0.5 -1 1/8

11755/1879720 Sep 2011 90

The ADABoost Algorithm
 Initialize D1(xi) = 1/N
For t = 1, …, T, ,

 Train a weak classifier ht using distribution Dt
 Compute total error on training data

 t = Sum {Dt (xi) ½(1 – yi ht(xi))}
 Set t = ½ ln (t /(1 – t))
 For i = 1 N For i = 1… N

 set Dt+1(xi) = Dt(xi) exp(- t yi ht(xi))
 Normalize Dt+1 to make it a distributiont+1

The final classifier is
 H(x) = sign(t t ht(x))

11755/1879720 Sep 2011 91

The E1“Stump”
Classifier based on E1:

0.3 0.5 0.6 0.70.2-0.8 0.40.2
F E H A G B C D

1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8

if (sign*wt(E1) > thresh) > 0)
face = true

sign = +1 or -11/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 sign = +1 or -1

Sign = +1, error = 3/8
threshold

ID E1 E2. Class Weight
A 0 3 -0 6 +1 1/8

g ,
Sign = -1, error = 5/8

A 0.3 -0.6 +1 1/8
B 0.5 -0.5 +1 1/8
C 0.7 -0.1 +1 1/8
D 0.6 -0.4 +1 1/8
E 0.2 0.4 -1 1/8
F -0.8 -0.1 -1 1/8
G 0.4 -0.9 -1 1/8
H 0.2 0.5 -1 1/8

11755/1879720 Sep 2011 92

The E1 “Stump”
Classifier based on E1:

0.3 0.5 0.6 0.70.2-0.8 0.40.2
F E H A G B C D

1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8

if (sign*wt(E1) > thresh) > 0)
face = true

sign = +1 or -11/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 sign = +1 or -1

Sign = +1, error = 2/8
threshold

ID E1 E2. Class Weight
A 0 3 -0 6 +1 1/8

g ,
Sign = -1, error = 6/8

A 0.3 -0.6 +1 1/8
B 0.5 -0.5 +1 1/8
C 0.7 -0.1 +1 1/8
D 0.6 -0.4 +1 1/8
E 0.2 0.4 -1 1/8
F -0.8 -0.1 -1 1/8
G 0.4 -0.9 -1 1/8
H 0.2 0.5 -1 1/8

11755/1879720 Sep 2011 93

The E1 “Stump”
Classifier based on E1:

0.3 0.5 0.6 0.70.2-0.8 0.40.2
F E H A G B C D

1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8

if (sign*wt(E1) > thresh) > 0)
face = true

sign = +1 or -11/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 sign = +1 or -1

Sign = +1, error = 1/8
threshold

ID E1 E2. Class Weight
A 0 3 -0 6 +1 1/8

g ,
Sign = -1, error = 7/8

A 0.3 -0.6 +1 1/8
B 0.5 -0.5 +1 1/8
C 0.7 -0.1 +1 1/8
D 0.6 -0.4 +1 1/8
E 0.2 0.4 -1 1/8
F -0.8 -0.1 -1 1/8
G 0.4 -0.9 -1 1/8
H 0.2 0.5 -1 1/8

11755/1879720 Sep 2011 94

The E1 “Stump”
Classifier based on E1:

0.3 0.5 0.6 0.70.2-0.8 0.40.2
F E H A G B C D

1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8

if (sign*wt(E1) > thresh) > 0)
face = true

sign = +1 or -11/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 sign = +1 or -1

Sign = +1, error = 2/8
threshold

ID E1 E2. Class Weight
A 0 3 -0 6 +1 1/8

g ,
Sign = -1, error = 6/8

A 0.3 -0.6 +1 1/8
B 0.5 -0.5 +1 1/8
C 0.7 -0.1 +1 1/8
D 0.6 -0.4 +1 1/8
E 0.2 0.4 -1 1/8
F -0.8 -0.1 -1 1/8
G 0.4 -0.9 -1 1/8
H 0.2 0.5 -1 1/8

11755/1879720 Sep 2011 95

The E1 “Stump”
Classifier based on E1:

0.3 0.5 0.6 0.70.2-0.8 0.40.2
F E H A G B C D

1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8

if (sign*wt(E1) > thresh) > 0)
face = true

sign = +1 or -11/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 sign = +1 or -1

Sign = +1, error = 1/8
threshold

ID E1 E2. Class Weight
A 0 3 -0 6 +1 1/8

g ,
Sign = -1, error = 7/8

A 0.3 -0.6 +1 1/8
B 0.5 -0.5 +1 1/8
C 0.7 -0.1 +1 1/8
D 0.6 -0.4 +1 1/8
E 0.2 0.4 -1 1/8
F -0.8 -0.1 -1 1/8
G 0.4 -0.9 -1 1/8
H 0.2 0.5 -1 1/8

11755/1879720 Sep 2011 96

The E1 “Stump”
Classifier based on E1:

0.3 0.5 0.6 0.70.2-0.8 0.40.2
F E H A G B C D

1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8

if (sign*wt(E1) > thresh) > 0)
face = true

sign = +1 or -11/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 sign = +1 or -1

Sign = +1, error = 2/8
threshold

ID E1 E2. Class Weight
A 0 3 -0 6 +1 1/8

g ,
Sign = -1, error = 6/8

A 0.3 -0.6 +1 1/8
B 0.5 -0.5 +1 1/8
C 0.7 -0.1 +1 1/8
D 0.6 -0.4 +1 1/8
E 0.2 0.4 -1 1/8
F -0.8 -0.1 -1 1/8
G 0.4 -0.9 -1 1/8
H 0.2 0.5 -1 1/8

11755/1879720 Sep 2011 97

The Best E1 “Stump”

0.3 0.5 0.6 0.70.2-0.8 0.40.2
F E H A G B C D

1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8

Classifier based on E1:
if (sign*wt(E1) > thresh) > 0)

face = true1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 face = true

Sign = +1
Threshold = 0.45Sign = +1, error = 1/8

threshold

ID E1 E2. Class Weight
A 0 3 -0 6 +1 1/8

g ,

A 0.3 -0.6 +1 1/8
B 0.5 -0.5 +1 1/8
C 0.7 -0.1 +1 1/8
D 0.6 -0.4 +1 1/8
E 0.2 0.4 -1 1/8
F -0.8 -0.1 -1 1/8
G 0.4 -0.9 -1 1/8
H 0.2 0.5 -1 1/8

11755/1879720 Sep 2011 98

The E2“Stump”
Classifier based on E2:

-0.4 -0.1 0.4 0.5-0.6-0.9 -0.1-0.5
G A B D C F E H

1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8

if (sign*wt(E2) > thresh) > 0)
face = true

sign = +1 or -1

Note order

1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 sign = +1 or -1

Sign = +1, error = 3/8
threshold

ID E1 E2. Class Weight
A 0 3 -0 6 +1 1/8

g ,
Sign = -1, error = 5/8

A 0.3 -0.6 +1 1/8
B 0.5 -0.5 +1 1/8
C 0.7 -0.1 +1 1/8
D 0.6 -0.4 +1 1/8
E 0.2 0.4 -1 1/8
F -0.8 -0.1 -1 1/8
G 0.4 -0.9 -1 1/8
H 0.2 0.5 -1 1/8

11755/1879720 Sep 2011 99

The Best E2“Stump”
Classifier based on E2:

-0.4 -0.1 0.4 0.5-0.6-0.9 -0.1-0.5
1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8

if (sign*wt(E2) > thresh) > 0)
face = true

sign = -1

G A B D C F E H

1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 sign = -1
Threshold = 0.15

Sign = -1, error = 2/8
threshold

ID E1 E2. Class Weight
A 0 3 -0 6 +1 1/8

g ,

A 0.3 -0.6 +1 1/8
B 0.5 -0.5 +1 1/8
C 0.7 -0.1 +1 1/8
D 0.6 -0.4 +1 1/8
E 0.2 0.4 -1 1/8
F -0.8 -0.1 -1 1/8
G 0.4 -0.9 -1 1/8
H 0.2 0.5 -1 1/8

11755/1879720 Sep 2011 100

The Best “Stump”

0.3 0.5 0.6 0.70.2-0.8 0.40.2
F E H A G B C D

1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8

The Best overall classifier
based on a single feature is
based on E11/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 based on E1

If (wt(E1) > 0.45)  Face
Sign = +1, error = 1/8

threshold

ID E1 E2. Class Weight
A 0 3 -0 6 +1 1/8

g ,

A 0.3 -0.6 +1 1/8
B 0.5 -0.5 +1 1/8
C 0.7 -0.1 +1 1/8
D 0.6 -0.4 +1 1/8
E 0.2 0.4 -1 1/8
F -0.8 0.1 -1 1/8
G 0.4 -0.9 -1 1/8
H 0.2 0.5 -1 1/8

11755/1879720 Sep 2011 101

The ADABoost Algorithm
 Initialize D1(xi) = 1/N
For t = 1, …, T, ,

 Train a weak classifier ht using distribution Dt
 Compute total error on training data

 t = Sum {Dt (xi) ½(1 – yi ht(xi))}
 Set t = ½ ln (t /(1 – t))
 For i = 1 N For i = 1… N

 set Dt+1(xi) = Dt(xi) exp(- t yi ht(xi))
 Normalize Dt+1 to make it a distributiont+1

The final classifier is
 H(x) = sign(t t ht(x))

11755/1879720 Sep 2011 102

The Best Error

0.3 0.5 0.6 0.70.2-0.8 0.40.2
F E H A G B C D

1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8

The Error of the classifier
is the sum of the weights of
the misclassified instances1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 the misclassified instances

Sign = +1, error = 1/8
threshold

ID E1 E2. Class Weight
A 0 3 -0 6 +1 1/8

g ,

A 0.3 -0.6 +1 1/8
B 0.5 -0.5 +1 1/8
C 0.7 -0.1 +1 1/8
D 0.6 -0.4 +1 1/8
E 0.2 0.4 -1 1/8
F -0.8 0.1 -1 1/8
G 0.4 -0.9 -1 1/8
H 0.2 0.5 -1 1/8

11755/18797

NOTE: THE ERROR IS THE SUM OF THE WEIGHTS OF MISCLASSIFIED
INSTANCES
20 Sep 2011 103

The ADABoost Algorithm
 Initialize D1(xi) = 1/N
For t = 1, …, T, ,

 Train a weak classifier ht using distribution Dt
 Compute total error on training data

 t = Sum {Dt (xi) ½(1 – yi ht(xi))}
 Set t = ½ ln ((1 – t) / t)
 For i = 1 N For i = 1… N

 set Dt+1(xi) = Dt(xi) exp(- t yi ht(xi))
 Normalize Dt+1 to make it a distributiont+1

The final classifier is
 H(x) = sign(t t ht(x))

11755/1879720 Sep 2011 104

Computing Alpha

0.3 0.5 0.6 0.70.2-0.8 0.40.2
F E H A G B C D

1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8

Alpha = 0.5ln((1-1/8) / (1/8))

= 0 5 ln(7) = 0 97 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 = 0.5 ln(7) = 0.97

Sign = +1, error = 1/8
threshold

g ,

11755/1879720 Sep 2011 105

The Boosted Classifier Thus Far

0.3 0.5 0.6 0.70.2-0.8 0.40.2
F E H A G B C D

1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8

Alpha = 0.5ln((1-1/8) / (1/8))

= 0 5 ln(7) = 0 97 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 = 0.5 ln(7) = 0.97

Sign = +1, error = 1/8
threshold

g ,

h1(X) = wt(E1) > 0.45 ? +1 : -1

H(X) = sign(0.97 * h1(X))

It’s the same as h1(x)

11755/1879720 Sep 2011 106

The ADABoost Algorithm
 Initialize D1(xi) = 1/N
For t = 1, …, T, ,

 Train a weak classifier ht using distribution Dt
 Compute total error on training data

 t = Average {½ (1 – yi ht(xi))}
 Set t = ½ ln ((1 – t) / t)
 For i = 1 N For i = 1… N

 set Dt+1(xi) = Dt(xi) exp(- t yi ht(xi))
 Normalize Dt+1 to make it a distributiont+1

The final classifier is
 H(x) = sign(t t ht(x))

11755/1879720 Sep 2011 107

The Best Error

0.3 0.5 0.6 0.70.2-0.8 0.40.2
F E H A G B C D

1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8

Dt+1(xi) = Dt(xi) exp(- t yi ht (xi))

ID E1 E2 Class Weight Weight

1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8

threshold
exp(t) = exp(0.97) = 2.63
exp(-t) = exp(-0.97) = 0.38

ID E1 E2. Class Weight Weight
A 0.3 -0.6 +1 1/8 * 2.63 0.33
B 0.5 -0.5 +1 1/8 * 0.38 0.05
C 0.7 -0.1 +1 1/8 * 0.38 0.05
D 0.6 -0.4 +1 1/8 * 0.38 0.05
E 0.2 0.4 -1 1/8 * 0.38 0.05
F -0.8 0.1 -1 1/8 * 0.38 0.05
G 0.4 -0.9 -1 1/8 * 0.38 0.05
H 0.2 0.5 -1 1/8 * 0.38 0.05

Multiply the correctly classified instances by 0.38
Multiply incorrectly classified instances by 2.63

11755/1879720 Sep 2011 108

The ADABoost Algorithm
 Initialize D1(xi) = 1/N
For t = 1, …, T, ,

 Train a weak classifier ht using distribution Dt
 Compute total error on training data

 t = Average {½ (1 – yi ht(xi))}
 Set t = ½ ln ((1 – t) / t)
 For i = 1 N For i = 1… N

 set Dt+1(xi) = Dt(xi) exp(- t yi ht(xi))
 Normalize Dt+1 to make it a distributiont+1

The final classifier is
 H(x) = sign(t t ht(x))

11755/1879720 Sep 2011 109

The Best Error

0.3 0.5 0.6 0.70.2-0.8 0.40.2
F E H A G B C D

1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8

D’ = D / sum(D)

ID E1 E2 Class Weight Weight Weight

1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8

threshold

ID E1 E2. Class Weight Weight Weight
A 0.3 -0.6 +1 1/8 * 2.63 0.33 0.48
B 0.5 -0.5 +1 1/8 * 0.38 0.05 0.074
C 0.7 -0.1 +1 1/8 * 0.38 0.05 0.074
D 0.6 -0.4 +1 1/8 * 0.38 0.05 0.074
E 0.2 0.4 -1 1/8 * 0.38 0.05 0.074
F -0.8 0.1 -1 1/8 * 0.38 0.05 0.074
G 0.4 -0.9 -1 1/8 * 0.38 0.05 0.074
H 0.2 0.5 -1 1/8 * 0.38 0.05 0.074

Multiply the correctly classified instances by 0.38
Multiply incorrectly classified instances by 2.63
Normalize to sum to 1 0

11755/18797

Normalize to sum to 1.0

20 Sep 2011 110

The Best Error

0.3 0.5 0.6 0.70.2-0.8 0.40.2
F E H A G B C D

1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8

D’ = D / sum(D)

ID E1 E2 Class Weight

1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8

threshold

ID E1 E2. Class Weight
A 0.3 -0.6 +1 0.48
B 0.5 -0.5 +1 0.074
C 0.7 -0.1 +1 0.074
D 0.6 -0.4 +1 0.074
E 0.2 0.4 -1 0.074
F -0.8 0.1 -1 0.074
G 0.4 -0.9 -1 0.074
H 0.2 0.5 -1 0.074

Multiply the correctly classified instances by 0.38
Multiply incorrectly classified instances by 2.63
Normalize to sum to 1 0

11755/18797

Normalize to sum to 1.0

20 Sep 2011 111

The ADABoost Algorithm
 Initialize D1(xi) = 1/N
For t = 1, …, T, ,

 Train a weak classifier ht using distribution Dt
 Compute total error on training data

 t = Average {½ (1 – yi ht(xi))}
 Set t = ½ ln (t /(1 – t))
 For i = 1 N For i = 1… N

 set Dt+1(xi) = Dt(xi) exp(- t yi ht(xi))
 Normalize Dt+1 to make it a distributiont+1

The final classifier is
 H(x) = sign(t t ht(x))

11755/1879720 Sep 2011 112

E1 classifier
Classifier based on E1:

0.3 0.5 0.6 0.70.2-0.8 0.40.2
F E H A G B C D

074 074 074 48 074 074 074 074

if (sign*wt(E1) > thresh) > 0)
face = true

sign = +1 or -1.074 .074 .074 .48 .074 .074 .074 .074

threshold

sign = +1 or -1

Sign = +1 error = 0 222

ID E1 E2 Class Weight

Sign = +1, error = 0.222
Sign = -1, error = 0.778

ID E1 E2. Class Weight
A 0.3 -0.6 +1 0.48
B 0.5 -0.5 +1 0.074
C 0.7 -0.1 +1 0.074
D 0.6 -0.4 +1 0.074
E 0.2 0.4 -1 0.074
F -0.8 0.1 -1 0.074
G 0.4 -0.9 -1 0.074
H 0.2 0.5 -1 0.074

11755/1879720 Sep 2011 113

E1 classifier
Classifier based on E1:

0.3 0.5 0.6 0.70.2-0.8 0.40.2
F E H A G B C D

074 074 074 074 074 074

if (sign*wt(E1) > thresh) > 0)
face = true

sign = +1 or -148 074.074 .074 .074 .074 .074 .074

threshold

sign = +1 or -1

Sign = +1 error = 0 148

.48 .074

ID E1 E2 Class Weight

Sign = +1, error = 0.148
Sign = -1, error = 0.852

ID E1 E2. Class Weight
A 0.3 -0.6 +1 0.48
B 0.5 -0.5 +1 0.074
C 0.7 -0.1 +1 0.074
D 0.6 -0.4 +1 0.074
E 0.2 0.4 -1 0.074
F -0.8 0.1 -1 0.074
G 0.4 -0.9 -1 0.074
H 0.2 0.5 -1 0.074

11755/1879720 Sep 2011 114

The Best E1 classifier
Classifier based on E1:

0.3 0.5 0.6 0.70.2-0.8 0.40.2
F E H A G B C D

074 074 074 074 074 074

if (sign*wt(E1) > thresh) > 0)
face = true

sign = +1 or -148 074.074 .074 .074 .074 .074 .074

threshold

sign = +1 or -1

Sign = +1 error = 0 074

.48 .074

ID E1 E2 Class Weight

Sign = +1, error = 0.074

ID E1 E2. Class Weight
A 0.3 -0.6 +1 0.48
B 0.5 -0.5 +1 0.074
C 0.7 -0.1 +1 0.074
D 0.6 -0.4 +1 0.074
E 0.2 0.4 -1 0.074
F -0.8 0.1 -1 0.074
G 0.4 -0.9 -1 0.074
H 0.2 0.5 -1 0.074

11755/1879720 Sep 2011 115

The Best E2 classifier
Classifier based on E2:

-0.4 -0.1 0.4 0.5-0.6-0.9 -0.1-0.5
G A B D C F E H

074 48 074 074 074 074 074 074

if (sign*wt(E2) > thresh) > 0)
face = true

sign = +1 or -1.074 .48 .074 .074 .074 .074 .074 .074

threshold

sign = +1 or -1

Si 1 0 148

ID E1 E2 Class Weight

Sign = -1, error = 0.148

ID E1 E2. Class Weight
A 0.3 -0.6 +1 0.48
B 0.5 -0.5 +1 0.074
C 0.7 -0.1 +1 0.074
D 0.6 -0.4 +1 0.074
E 0.2 0.4 -1 0.074
F -0.8 -0.1 -1 0.074
G 0.4 -0.9 -1 0.074
H 0.2 0.5 -1 0.074

11755/1879720 Sep 2011 116

The Best Classifier

0.3 0.5 0.6 0.70.2-0.8 0.40.2
F E H A G B C D

074 074 074 074 074 074

Classifier based on E1:
if (wt(E1) > 0.45) face = true

48 074.074 .074 .074 .074 .074 .074

threshold

Sign = +1 error = 0 074

.48 .074
Alpha = 0.5ln((1-0.074) / 0.074)

= 1.26

ID E1 E2 Class Weight

Sign = +1, error = 0.074

ID E1 E2. Class Weight
A 0.3 -0.6 +1 0.48
B 0.5 -0.5 +1 0.074
C 0.7 -0.1 +1 0.074
D 0.6 -0.4 +1 0.074
E 0.2 0.4 -1 0.074
F -0.8 0.1 -1 0.074
G 0.4 -0.9 -1 0.074
H 0.2 0.5 -1 0.074

11755/1879720 Sep 2011 117

The Boosted Classifier Thus Far

0.3 0.5 0.6 0.70.2-0.8 0.40.2
F E H A G B C D

074 074 074 074 074 07448 074

h1(X) = wt(E1) > 0.45 ? +1 : -1

.074 .074 .074 .074 .074 .074

threshold

.48 .074

threshold

h2(X) = wt(E1) > 0.25 ? +1 : -1

H(X) = sign(0.97 * h1(X) + 1.26 * h2(X))

11755/1879720 Sep 2011 118

Reweighting the Data

0.3 0.5 0.6 0.70.2-0.8 0.40.2
F E H A G B C D

074 074 074 074 074 07448 074.074 .074 .074 .074 .074 .074

threshold

Sign = +1 error = 0 074

.48 .074
Exp(alpha) = exp(1.26) = 3.5
Exp(-alpha) = exp(-1.26) = 0.28

ID E1 E2 Class Weight

Sign = +1, error = 0.074

ID E1 E2. Class Weight
A 0.3 -0.6 +1 0.48*0.28 0.32
B 0.5 -0.5 +1 0.074*0.28 0.05
C 0.7 -0.1 +1 0.074*0.28 0.05
D 0.6 -0.4 +1 0.074*0.28 0.05
E 0.2 0.4 -1 0.074*0.28 0.05
F -0.8 0.1 -1 0.074*0.28 0.05
G 0.4 -0.9 -1 0.074*3.5 0.38
H 0.2 0.5 -1 0.074*0.28 0.05

11755/18797
RENORMALIZE

20 Sep 2011 119

Reweighting the Data

0.3 0.5 0.6 0.70.2-0.8 0.40.2
F E H A G B C D

074 074 074 074 074 07448 074

NOTE: THE WEIGHT OF “G”
WHICH WAS MISCLASSIFIED
BY THE SECOND CLASSIFIER

.074 .074 .074 .074 .074 .074

threshold

Sign = +1 error = 0 074

.48 .074 IS NOW SUDDENLY HIGH

Sign = +1, error = 0.074

ID E1 E2 Class WeightID E1 E2. Class Weight
A 0.3 -0.6 +1 0.48*0.28 0.32
B 0.5 -0.5 +1 0.074*0.28 0.05
C 0.7 -0.1 +1 0.074*0.28 0.05
D 0.6 -0.4 +1 0.074*0.28 0.05
E 0.2 0.4 -1 0.074*0.28 0.05
F -0.8 0.1 -1 0.074*0.28 0.05
G 0.4 -0.9 -1 0.074*3.5 0.38
H 0.2 0.5 -1 0.074*0.28 0.05

11755/18797
RENORMALIZE

20 Sep 2011 120

AdaBoost
 In this example both of our first two classifiers were

based on E1based on E1
 Additional classifiers may switch to E2

 In general, the reweighting of the data will result in a ge e a , t e e e g t g o t e data esu t a
different feature being picked for each classifier

 This also automatically gives us a feature selection
strategy

I hi d h (E1) i h i f In this data the wt(E1) is the most important feature

11755/1879720 Sep 2011 121

AdaBoost
 NOT required to go with the best classifier so far

For instance for our second classifier we might use For instance, for our second classifier, we might use
the best E2 classifier, even though its worse than the
E1 classifier
 So long as its right more than 50% of the time

 We can continue to add classifiers even after we get
100% classification of the training data

Because the weights of the data keep changing Because the weights of the data keep changing
 Adding new classifiers beyond this point is often a

good thing to do

11755/18797

g g

20 Sep 2011 122

ADA Boost
= 0.4 E1 - 0.4 E2

E1 E2

 The final classifier is
 H(x) = sign(t t ht(x))

 The output is 1 if the total weight of all weak
l th t l if 1 i t thlearners that classify x as 1 is greater than
the total weight of all weak learners that
classify it as -1

11755/18797

classify it as 1

20 Sep 2011 123

Boosting and Face Detection

 Boosting forms the basis of the most
t h i f f d t ti t dcommon technique for face detection today:

The Viola-Jones algorithm.

11755/1879720 Sep 2011 124

The problem of face detection
 1. Defining Features

 Should we be searching for noses eyes eyebrows etc ? Should we be searching for noses, eyes, eyebrows etc.?
 Nice, but expensive

 Or something simpler

 2. Selecting Features
Of all the possible features we can think of which ones Of all the possible features we can think of, which ones
make sense

 3. Classification: Combining evidence
 How does one combine the evidence from the different

features?

11755/18797

features?

20 Sep 2011 125

Features: The Viola Jones Method

B B B B B BB1 B2 B3 B4 B5 B6

...Im 332211  BwBwBwage

 Integral Features!!
 Like the Checkerboard Like the Checkerboard

 The same principle as we used to decompose images in terms of
checkerboards:
 The image of any object has changes at various scales The image of any object has changes at various scales
 These can be represented coarsely by a checkerboard pattern

 The checkerboard patterns must however now be localized

11755/18797

 Stay within the region of the face

20 Sep 2011 126

Features
 Checkerboard Patterns to represent facial features

 The white areas are subtracted from the black ones The white areas are subtracted from the black ones.
 Each checkerboard explains a localized portion of the

image
F t f h k b d tt (l) Four types of checkerboard patterns (only)

20 Sep 2011 12711755/18797

Explaining a portion of the face with a
checker..

 How much is the difference in average intensity of the image in
the black and white regions
 Sum(pixel values in white region) – Sum(pixel values in black

i)region)
 This is actually the dot product of the region of the face covered

by the rectangle and the checkered pattern itself
White 1 Black 1

11755/18797

 White = 1, Black = -1

20 Sep 2011 128

“Integral” features

 Each checkerboard has the following characteristics Each checkerboard has the following characteristics
 Length
 Width
 Type

 Specifies the number and arrangement of bands

11755/18797

 The four checkerboards above are the four used by Viola and Jones

20 Sep 2011 129

Integral imagesg g
 Summed area tables

 For each pixel store the sum of ALL pixels to the left of and p p
above it.

20 Sep 2011 13011755/18797

Fast Computation of Pixel Sums

11755/1879720 Sep 2011 131

A Fast Way to Compute the Feature
A B

D

F
C

E

 Store pixel table for every pixel in the image

E

 Store pixel table for every pixel in the image
 The sum of all pixel values to the left of and above the pixel

 Let A, B, C, D, E, F be the pixel table values at the locations
shownshown
 Total pixel value of black area = D + A – B – C
 Total pixel value of white area = F + C – D – E

11755/18797

 Feature value = (F + C – D – E) – (D + A – B – C)

20 Sep 2011 132

How many features?

PxH MxNPxH

 Each checker board of width P and height H can start at g
 (0,0), (0,1),(0,2), … (0, N-P)
 (1,0), (1,1),(1,2), … (1, N-P)
 ..
 (M-H,0), (M-H,1), (M-H,2), … (M-H, N-P)

 (M-H)*(N-P) possible starting locations
 Each is a unique checker feature

11755/18797

 E.g. at one location it may measure the forehead, at another the chin

20 Sep 2011 133

How many features

 Each feature can have many sizes
 Width from (min) to (max) pixels
 Height from (min ht) to (max ht) pixels

 At each size, there can be many starting locations
 Total number of possible checkerboards of one type: Total number of possible checkerboards of one type:

No. of possible sizes x No. of possible locations
 There are four types of checkerboards

T t l f ibl h k b d VERY VERY LARGE!

11755/18797

 Total no. of possible checkerboards: VERY VERY LARGE!

20 Sep 2011 134

Learning: No. of features

 Analysis performed on images of 24x24
i l lpixels only

 Reduces the no. of possible features to about
180000180000

 Restrict checkerboard size
Minimum of 8 pixels wide Minimum of 8 pixels wide

 Minimum of 8 pixels high
 Other limits e g 4 pixels may be used too Other limits, e.g. 4 pixels may be used too

 Reduces no. of checkerboards to about 50000

11755/1879720 Sep 2011 135

No. of features

F1 F2 F3 F4 ….. F180000

7 9 2 -1 127 9 2 -1 ….. 12

-11 3 19 17 ….. 2

 Each possible checkerboard gives us one feature
 A total of up to 180000 features derived from a 24x24 image!
 Every 24x24 image is now represented by a set of 180000 Every 24x24 image is now represented by a set of 180000

numbers
 This is the set of features we will use for classifying if it is a face

or not!

11755/18797

or not!

20 Sep 2011 136

The Classifier
 The Viola-Jones algorithm uses a simple Boosting

based classifierbased classifier
 Each “weak learner” is a simple threshold
 At each stage find the best feature to classify the At each stage find the best feature to classify the

data with
 I.e the feature that gives us the best classification of all the

training data
 Training data includes many examples of faces and non-face

images
 The classification rule is of the kind

 If feature > threshold, face (or if feature < threshold, face)
 The optimal value of “threshold” must also be determined

11755/18797

 The optimal value of threshold must also be determined.

20 Sep 2011 137

The Weak Learner
 Training (for each weak learner):

 For each feature f (of all 180000 features) For each feature f (of all 180000 features)
 Find a threshold f and polarity p(f) (p(f) = -1 or p(f) = 1) such that (f

> p(f)*f) performs the best classification of faces
 Lowest overall error in classifying all training data

 Error counted over weighted samples
 Let the optimal overall error for f be error(f)

 Find the feature f’ such that error(f’) is lowest
 The weak learner is the test (f’ > p(f’)*f’face

 Note that the procedure for learning weak learners also identifies Note that the procedure for learning weak learners also identifies
the most useful features for face recognition

11755/1879720 Sep 2011 138

The Viola Jones Classifier
 A boosted threshold-based classifier
 First weak learner: Find the best feature, and ,

its optimal threshold
 Second weak learner: Find the best feature, for ,

the weighted training data, and its threshold
(weighting from one weak learner)

Thi d k l Fi d th b t f t f th Third weak learner: Find the best feature for the
weighted data and its optimal threshold (weighting from
two weak learners)
 Fourth weak learner: Find the best feature for the weighted

data and its optimal threhsold (weighting from three weak
learners)

11755/18797

 ..

20 Sep 2011 139

To Train
 Collect a large number of histogram

equalized facial imagesequalized facial images
 Resize all of them to 24x24
 These are our “face” training set These are our face training set

 Collect a much much much larger set of
24x24 non-face images of all kinds
 Each of them is histogram equalized

Th “ f ” t i i t These are our “non-face” training set

 Train a boosted classifier

11755/18797

 Train a boosted classifier

20 Sep 2011 140

The Viola Jones Classifier

 During tests: During tests:
 Given any new 24x24 image

 R = f f (f > pf (f))
 Only a small number of features (f < 100) typically used

 Problems:
 Only classifies 24 x 24 images entirely as faces or non-faces

T i l i t h l Typical pictures are much larger
 They may contain many faces
 Faces in pictures can be much larger or smaller

 Not accurate enough

11755/18797

 Not accurate enough

20 Sep 2011 141

Multiple faces in the picture

 Scan the image
Classify each 24x24 rectangle from the photo Classify each 24x24 rectangle from the photo

 All rectangles that get classified as having a face indicate the
location of a face

 For an NxM picture we will perform (N 24)*(M 24) classifications For an NxM picture, we will perform (N-24) (M-24) classifications
 If overlapping 24x24 rectangles are found to have faces, merge

them

11755/1879720 Sep 2011 142

Multiple faces in the picture

 Scan the image
Classify each 24x24 rectangle from the photo Classify each 24x24 rectangle from the photo

 All rectangles that get classified as having a face indicate the
location of a face

 For an NxM picture we will perform (N 24)*(M 24) classifications For an NxM picture, we will perform (N-24) (M-24) classifications
 If overlapping 24x24 rectangles are found to have faces, merge

them

11755/1879720 Sep 2011 143

Multiple faces in the picture

 Scan the image
Classify each 24x24 rectangle from the photo Classify each 24x24 rectangle from the photo

 All rectangles that get classified as having a face indicate the
location of a face

 For an NxM picture we will perform (N 24)*(M 24) classifications For an NxM picture, we will perform (N-24) (M-24) classifications
 If overlapping 24x24 rectangles are found to have faces, merge

them

11755/1879720 Sep 2011 144

Multiple faces in the picture

 Scan the image
Classify each 24x24 rectangle from the photo Classify each 24x24 rectangle from the photo

 All rectangles that get classified as having a face indicate the
location of a face

 For an NxM picture we will perform (N 24)*(M 24) classifications For an NxM picture, we will perform (N-24) (M-24) classifications
 If overlapping 24x24 rectangles are found to have faces, merge

them

11755/1879720 Sep 2011 145

Picture size solution
 We already have a

classifier
f, 

classifier
 That uses weak

learners

2x

 Scale each classifier
 Every weak learner

S l it i b

f, 2

 Scale its size up by
factor . Scale the
threshold up to .p

 Do this for many
scaling factors

11755/1879720 Sep 2011 146

Overall solution

 Scan the picture with classifiers of size 24x24
 Scale the classifier to 26x26 and scan
 Scale to 28x28 and scan etc Scale to 28x28 and scan etc.

 Faces of different sizes will be found at different
scales

11755/18797

scales

20 Sep 2011 147

False Rejection vs. False detectionj
 False Rejection: There’s a face in the image, but the classifier

misses it
 Rejects the hypothesis that there’s a face

 False detection: Recognizes a face when there is none.

 Classifier:
 Standard boosted classifier: H(x) = sign(t t ht(x))

M difi d l ifi H() i ( h () Y) Modified classifier H(x) = sign(t t ht(x) + Y)
 t t ht(x) is a measure of certainty

 The higher it is, the more certain we are that we found a face
If Y i l th th f f h If Y is large, then we assume the presence of a face even when we
are not sure

 By increasing Y, we can reduce false rejection, while increasing
false detection

11755/18797

false detection

20 Sep 2011 148

ROC

f l d t i d b

% False detection
0 100

10
0

vsfalse neg determined by

ls
e

R
ej

ec
tin

1

As Y increases

%
Fa

l

0

 Ideally false rejection will be 0%, false detection will
also be 0%
As Y increaases we reject faces less and less As Y increaases, we reject faces less and less
 But accept increasing amounts of garbage as faces

 Can set Y so that we rarely miss a face

11755/18797

 Can set Y so that we rarely miss a face

20 Sep 2011 149

Problem: Not accurate enough, too slow

Cl ifi 1 Cl ifi 2Classifier 1

Not a face

Classifier 2

Not a face

 If we set Y high enough, we will never miss a
face
 But will classify a lot of junk as faces
S l ti Cl if th t t f th fi t Solution: Classify the output of the first
classifier with a second classifier
 And so on

11755/18797

 And so on.

20 Sep 2011 150

Problem: Not accurate enough, too slow

 If we set Y high enough, we will never miss a
face
 But will classify a lot of junk as faces
S l ti Cl if th t t f th fi t Solution: Classify the output of the first
classifier with a second classifier
 And so on

11755/18797

 And so on.

20 Sep 2011 151

Useful Features Learned by Boosting

11755/1879720 Sep 2011 152

A Cascade of Classifiers

11755/1879720 Sep 2011 153

Detection in Real Images
 Basic classifier operates on 24 x 24 subwindows

 Scaling:
 Scale the detector (rather than the images)
 Features can easily be evaluated at any scale Features can easily be evaluated at any scale
 Scale by factors of 1.25

 Location: Location:
 Move detector around the image (e.g., 1 pixel increments)

 Final Detections Final Detections
 A real face may result in multiple nearby detections
 Postprocess detected subwindows to combine overlapping

detections into a single detection

11755/18797

detections into a single detection

20 Sep 2011 154

Trainingg
 In paper, 24x24 images of faces and non faces (positive and

negative examples).

20 Sep 2011 15511755/18797

Sample results using the Viola-Jones
DDetector
 Notice detection at multiple scales

20 Sep 2011 15611755/18797

More Detection Examples

11755/1879720 Sep 2011 157

Practical implementation
 Details discussed in Viola-Jones paper

 Training time = weeks (with 5k faces and 9.5k non-
faces)faces)

 Final detector has 38 layers in the cascade 6060 Final detector has 38 layers in the cascade, 6060
features

 700 Mhz processor:
 Can process a 384 x 288 image in 0.067 seconds (in 2003

h itt)

11755/18797

when paper was written)

20 Sep 2011 158

