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Detecting Faces in Images

Fi di f lik tt Finding face like patterns
 How do we find if a picture has faces in it
 Where are the faces?

 A simple solution:
 Define a “typical face”
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 Define a typical face
 Find the “typical face” in the image
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Finding faces in an image

 Picture is larger than the “typical face”
 E.g. typical face is 100x100, picture is 600x800

 First convert to greyscale
 R + G + B
 Not very useful to work in color
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Finding faces in an image

 Goal .. To find out if and where images that 
l k lik th “t i l” f i th i tlook like the “typical” face occur in the picture
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Finding faces in an image

 Try to “match” the typical face to each 
l ti i th i tlocation in the picture
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Finding faces in an image

 Try to “match” the typical face to each 
l ti i th i tlocation in the picture

 The “typical face” will explain some spots on 
th i h b tt th ththe image much better than others
 These are the spots at which we probably have a 

face!
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face!
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How to “match”

 What exactly is the “match”
 What is the match “score”
The DOT Product The DOT Product
 Express the typical face as a vector
 Express the region of the image being evaluated as a vector

But first histogram equalize the region But first histogram equalize the region
 Just the section being evaluated, without considering the rest of the image

 Compute the dot product of the typical face vector and the 
“region” vector
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region  vector
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What do we get

 The right panel shows the dot product a 
various loctionsvarious loctions
 Redder is higher

 The locations of peaks indicate locations of faces!p
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What do we get

 The right panel shows the dot product a various 
loctions
 Redder is higher

 The locations of peaks indicate locations of faces!
 Correctly detects all three facesCo ect y detects a t ee aces

 Likes George’s face most
 He looks most like the typical face

Also finds a face where there is none!
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 Also finds a face where there is none!
 A false alarm
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Scaling and Rotation Problems

 Scaling
 Not all faces are the same size Not all faces are the same size
 Some people have bigger faces
 The size of the face on the image 

changes with perspectivechanges with perspective
 Our “typical face” only represents 

one of these sizes

 Rotation
 The head need not always be 

upright!
 Our typical face image was 

upright
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Solution

 Create many “typical faces”
 One for each scaling factor
 One for each rotation

 How will we do this?
 Match them all

 Does this work
 Kind of .. Not well enough at all
 We need more sophisticated models
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 We need more sophisticated models
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Face Detection: A Quick Historical Perspective

 Many more complex methods
 Use edge detectors and search for face like patterns Use edge detectors and search for face like patterns
 Find “feature” detectors (noses, ears..) and employ them in 

complex neural networks..

Th Vi l J h d The Viola Jones method
 Boosted cascaded classifiers

B t first hat is boosting
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 But first, what is boosting
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And even before that – what is classification?

 Given “features” describing an entity, determine the 
category it belongs tocategory it belongs to
 Walks on two legs, has no hair. Is this

 A Chimpanizee
 A Human

 Has long hair, is 5’4” tall, is this
 A man A man
 A woman

 Matches “eye” pattern with score 0.5, “mouth pattern” with 
0 25 “ ” tt ith 0 1 A l ki tscore 0.25, “nose” pattern with score 0.1. Are we looking at

 A face
 Not a face?
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Classification
 Multi-class classification

 Many possible categories Many possible categories
 E.g. Sounds “AH, IY, UW, EY..”
 E.g. Images “Tree, dog, house, person..”

 Binary classification
 Only two categories

 Man vs. Woman
 Face vs. not a face..

 Face detection: Recast as binary face classification
 For each little square of the image, determine if the square 

represents a face or not
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represents a face or not
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Face Detection as Classification
For each square, run a
classifier to find out if it
is a face or not

Faces can be man si es Faces can be many sizes
 They can happen anywhere in the image
 For each face size

 For each location
 Classify a rectangular region of the face size, at that location, as a 

face or not a face
This is a series of binary classification problems
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 This is a series of binary classification problems
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Introduction to Boosting
 An ensemble method that sequentially combines many simple 

BINARY classifiers to construct a final complex classifier
 Simple classifiers are often called “weak” learners Simple classifiers are often called weak  learners
 The complex classifiers are called “strong” learners

 Each weak learner focuses on instances where the previous Each weak learner focuses on instances where the previous 
classifier failed
 Give greater weight to instances that have been incorrectly 

classified by previous learnersclassified by previous learners

 Restrictions for weak learners
 Better than 50% correct

 Final classifier is weighted sum of weak classifiers
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Boosting: A very simple idea
 One can come up with many rules to classify

 E.g. Chimpanzee vs. Human classifier:
If arms == long entity is chimpanzee If arms == long, entity is chimpanzee

 If height > 5’6” entity is human
 If lives in house == entity is human
 If lives in zoo == entity is chimpanzee

 Each of them is a reasonable rule, but makes many mistakes
 Each rule has an intrinsic error rate

 Combine the predictions of these rulesCo b e t e p ed ct o s o t ese u es
 But not equally
 Rules that are less accurate should be given lesser weight
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Boosting and the Chimpanzee Problem

Arm length?
armlength

Height?
height

Lives in house?
house

Lives in zoo?
zoo

 The total confidence in all classifiers that classify the entity as a chimpanzee is

human human chimp chimp

 The total confidence in all classifiers that classify it as a human is 


chimpanzeefavorsclassifier

chimpScore
   

classifier

 If Scorechimpanzee > Scorehuman then the our belief that we have a chimpanzee is 


humanfavorsclassifier

humanScore
   
classifier
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chimpanzee human
greater than the belief that we have a human
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Boosting as defined by Freund
 A gambler wants to write a program to predict winning horses. His 

program must encode the expertise of his brilliant winner friend

 The friend has no single encodable algorithm Instead he has many The friend has no single, encodable algorithm. Instead he has many 
rules of thumb
 He uses a different rule of thumb for each set of races

 E g “in this set go with races that have black horses with stars on E.g. in this set, go with races that have black horses with stars on 
their foreheads”

 But cannot really enumerate what rules of thumbs go with 
what sets of races: he simply “knows” when he encounterswhat sets of races: he simply knows  when he encounters  
a set
 A common problem that faces us in many situations

 Problem:
 How best to combine all of the friend’s rules of thumb
 What is the best set of races to present to the friend to
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 What is the best set of races to present to the friend, to 
extract the various rules of thumb

20 Sep 2011 63



Boosting
The basic idea: Can a “weak” learning 

algorithm that performs just slightly better than g p j g y
random guessing be boosted into an arbitrarily 
accurate “strong” learner
 Each of the gambler’s rules may be just better 

than random guessing

This is  a “meta” algorithm, that poses no 
t i t th f f th k lconstraints on the form of the weak learners 

themselves
The gambler’s rules of thumb can be anything
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 The gambler’s rules of thumb can be anything
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Boosting: A Voting Perspective
 Boosting can be considered a form of voting

 Let a number of different classifiers classify the data
 Go with the majority
 Intuition says that as the number of classifiers increases, 

the dependability of the majority vote increasesthe dependability of the majority vote increases

 The corresponding algorithms were called Boosting 
by majorityby majority
 A (weighted) majority vote taken over all the classifiers
 How do we compute weights for the classifiers?
 How do we actually train the classifiers
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ADA Boost: Adaptive algorithm for 
learning the weights
 ADA Boost: Not named of ADA Lovelace ADA Boost: Not named of ADA Lovelace
 An adaptive algorithm that learns the weights 

of each classifier sequentiallyof each classifier sequentially
 Learning adapts to the current accuracy

 Iteratively:
 Train a simple classifier from training data

It ill k t i i d t It will make errors even on training data
 Train a new classifier that focuses on the training data 

points that have been misclassified
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Boosting: An Example

 Red dots represent training data from Red class
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 Blue dots represent training data from Blue class
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Boosting: An Example

Blue classRed class

 Very simple weak learner
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 A line that is parallel to one of the two axes
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Boosting: An Example

Blue classRed class

 First weak learner makes many mistakes
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 Errors coloured black
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Boosting: An Example
Blue class

R d lRed class

Blue classRed class

Second weak learner focuses on errors made by 
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first learner
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Boosting: An Example
BLUE

RED

RED REDRED RED

 Second strong  learner: weighted combination of first and 
d k l
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second weak learners
‒ Decision boundary shown by black lines
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Boosting: An Example
BLUE

RED

RED REDRED RED

The second strong learner also makes 
mistakes
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mistakes
 Errors colored black

20 Sep 2011 72



Boosting: An Example

Blue class

BLUE
RED

Red class

RED REDRED RED

Third weak learner concentrates on errors 
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made by second strong learner
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Boosting: An Example
Blue class

Blue class

R d lRed class

Red class

Blue classRed class

 Third weak learner concentrates on errors made by 
combination of previous weak learners
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co b at o o p e ous ea ea e s

 Continue adding weak learners until….
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Boosting: An Example

 Voila! Final strong learner: very few errors on the 
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g y
training data
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Boosting: An Example

 The final strong learner has learnt a complicated 
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decision boundary
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Boosting: An Example

 The final strong learner has learnt a complicated The final strong learner has learnt a complicated 
decision boundary

 Decision boundaries in areas with low density of training
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 Decision boundaries in areas with low density of training 
points assumed inconsequential
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Overall Learning Pattern
 Strong learner increasingly accurate with increasing Strong learner increasingly accurate with increasing 

number of weak learners

 Residual errors increasingly difficult to correct Residual errors increasingly difficult to correct
‒ Additional weak learners less and less effective

Error of nth weak learner

Error of nth strong learner

11755/18797
number of weak learners
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ADABoost
 Cannot just add new classifiers that work well only 

the the previously misclassified datap y

 Problem: The new classifier will make errors on the 
points that the earlier classifiers got rightpoints that the earlier classifiers got right
 Not good
 On test data we have no way of knowing which points were 

correctly classified by the first classifiercorrectly classified by the first classifier

 Solution: Weight the data when training the second 
l ificlassifier

 Use all the data but assign them weights
 Data that are already correctly classified have less weight

11755/18797

y y g
 Data that are currently incorrectly classified have more weight
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ADA Boost

 The red and blue points (correctly classified) will have a weight  < 1 The red and blue points (correctly classified) will have a weight  < 1
 Black points (incorrectly classified) will have a weight  > 1
 To compute the optimal second classifier, we minimize the total 

weighted errorweighted error
 Each data point contributes  or  to the total count of correctly and 

incorrectly classified points
 E.g. if one of the red points is misclassified by the new classifier, the total 
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g p y ,
error of the new classifier goes up by 
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ADA Boost

 Each new classifier modifies the weights of the data 
points based on the accuracy of the current 
l ificlassifier

 The final classifier too is a weighted 
combination of all component classifiers
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combination of all component classifiers
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Formalizing the Boosting Concept
 Given a set of instances (x1, y1), (x2, y2),… (xN, yN)

 xi is the set of attributes of the ith instance
y is the class for the ith instance y1 is the class for the ith instance
 y1 can be 1 or -1  (binary classification only)

 Given a set of classifiers h1, h2, … , hT1 2 T

 hi classifies an instance with attributes x as hi(x)
 hi(x) is either -1 or +1 (for a binary classifier)

 y*h(x) is 1 for all correctly classified points and -1 for incorrectly 
classified points

 Devise a function f (h1(x), h2(x),…, hT(x)) such that classification 
based on f () is superior to classification by any hi(x)
 The function is succinctly represented as f (x)
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 The function is succinctly represented as f (x)
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The Boosting Concept
 A simple combiner function: Voting

 f (x) = i hi(x)
 Classifier H(x) = sign(f (x)) = sign(i hi(x))
 Simple majority classifier

 A simple voting scheme A simple voting scheme

 A better combiner function: Boosting
 f (x) = i i hi(x)

 Can be any real number
 Classifier H(x) = sign(f (x)) = sign(i i hi(x)) Classifier H(x)  sign(f (x))  sign(i i hi(x))
 A weighted majority classifier

 The weight i for any hi(x) is  a measure of our trust in hi(x)
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Adaptive Boosting
As before:

 y is either -1 or +1
 H(x) is +1 or -1
 If the instance is correctly classified, both y and 

H(x) will have the same sign
 The product y.H(x) is 1
 For incorrectly classified instances the product is 1 For incorrectly classified instances the product is -1

Define the error for x : ½(1 – yH(x))Define the error for x : ½(1 yH(x))
 For a correctly classified instance, this is 0
 For an incorrectly classified instance, this is 1
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o a co ec y c ass ed s a ce, s s
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The ADABoost Algorithm
Given: a set (x1, y1), … (xN, yN) of training 

instances
 xi is the set of attributes for the ith instance
 yi is the class for the ith instance and can be either 

+1 or 1+1 or -1
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The ADABoost Algorithm
 Initialize D1(xi) = 1/N
For t = 1, …, T, ,

 Train a weak classifier ht using distribution Dt
 Compute total error on training data

 t = Sum {½ (1 – yi ht(xi))}
 Set t = ½ ln ((1 – t) / t)
 For i = 1 N For i = 1… N 

 set Dt+1(xi) = Dt(xi) exp(- t yi ht(xi))
 Normalize Dt+1 to make it a distributiont+1 

The final classifier is
 H(x) = sign(t t ht(x))
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First, some example data

E

= 0.3 E1 - 0.6 E2

= 0.5 E1 - 0.5 E2

= 0.2 E1 + 0.4 E2

= -0.8 E1 - 0.1 E2
E1

= 0.7 E1 - 0.1 E2

= 0.6 E1 - 0.4 E2

= 0.4 E1 - 0.9 E2

= 0.2 E1 + 0.5 E2

E2Image = a*E1 + b*E2  a = Image.E1/|Image|

 Face detection with multiple Eigen faces
 Step 0: Derived top 2 Eigen faces from eigen face training data

St 1 O (diff t) t f l h i Step 1: On a (different) set of examples, express each image as a 
linear combination of Eigen faces
 Examples include both faces and non faces
 Even the non face images will are explained in terms of the eigen faces
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 Even the non-face images will are explained in terms of the eigen faces
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Training Data
= 0.3 E1 - 0.6 E2

= 0.5 E1 - 0.5 E2

= 0.2 E1 + 0.4 E2

= -0.8 E1 - 0.1 E2

= 0.7 E1 - 0.1 E2

= 0.6 E1 - 0.4 E2

= 0.4 E1 - 0.9 E2

= 0.2 E1 + 0.5 E2

ID E1 E2. Class
A 0 3 -0 6 +1 1A 0.3 -0.6 +1
B 0.5 -0.5 +1
C 0.7 -0.1 +1
D 0.6 -0.4 +1
E 0.2 0.4 -1

Face = +1
Non-face = -1

F -0.8 -0.1 -1
G 0.4 -0.9 -1
H 0.2 0.5 -1
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The ADABoost Algorithm
 Initialize D1(xi) = 1/N
For t = 1, …, T, ,

 Train a weak classifier ht using distribution Dt
 Compute total error on training data

 t = Sum {Dt (xi) ½(1 – yi ht(xi))}
 Set t = ½ ln ((1 – t) / t)
 For i = 1 N For i = 1… N 

 set Dt+1(xi) = Dt(xi) exp(- t yi ht(xi))
 Normalize Dt+1 to make it a distributiont+1 

The final classifier is
 H(x) = sign(t t ht(x))
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Training Data
= 0.3 E1 - 0.6 E2

= 0.5 E1 - 0.5 E2

= 0.2 E1 + 0.4 E2

= -0.8 E1 - 0.1 E2

= 0.7 E1 - 0.1 E2

= 0.6 E1 - 0.4 E2

= 0.4 E1 - 0.9 E2

= 0.2 E1 + 0.5 E2

ID E1 E2. Class Weight
A 0 3 -0 6 +1 1/8A 0.3 -0.6 +1 1/8
B 0.5 -0.5 +1 1/8
C 0.7 -0.1 +1 1/8
D 0.6 -0.4 +1 1/8
E 0.2 0.4 -1 1/8
F -0.8 -0.1 -1 1/8
G 0.4 -0.9 -1 1/8
H 0.2 0.5 -1 1/8
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The ADABoost Algorithm
 Initialize D1(xi) = 1/N
For t = 1, …, T, ,

 Train a weak classifier ht using distribution Dt
 Compute total error on training data

 t = Sum {Dt (xi) ½(1 – yi ht(xi))}
 Set t = ½ ln (t /(1 – t))
 For i = 1 N For i = 1… N 

 set Dt+1(xi) = Dt(xi) exp(- t yi ht(xi))
 Normalize Dt+1 to make it a distributiont+1 

The final classifier is
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The E1“Stump”
Classifier based on E1:

0.3 0.5 0.6 0.70.2-0.8 0.40.2
F E H A G B C D

1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8

if ( sign*wt(E1) > thresh) > 0) 
face = true

sign = +1 or -11/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 sign = +1 or -1

Sign = +1, error = 3/8
threshold

ID E1 E2. Class Weight
A 0 3 -0 6 +1 1/8

g ,
Sign = -1, error = 5/8

A 0.3 -0.6 +1 1/8
B 0.5 -0.5 +1 1/8
C 0.7 -0.1 +1 1/8
D 0.6 -0.4 +1 1/8
E 0.2 0.4 -1 1/8
F -0.8 -0.1 -1 1/8
G 0.4 -0.9 -1 1/8
H 0.2 0.5 -1 1/8
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The E1 “Stump”
Classifier based on E1:

0.3 0.5 0.6 0.70.2-0.8 0.40.2
F E H A G B C D

1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8

if ( sign*wt(E1) > thresh) > 0) 
face = true

sign = +1 or -11/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 sign = +1 or -1

Sign = +1, error = 2/8
threshold

ID E1 E2. Class Weight
A 0 3 -0 6 +1 1/8

g ,
Sign = -1, error = 6/8

A 0.3 -0.6 +1 1/8
B 0.5 -0.5 +1 1/8
C 0.7 -0.1 +1 1/8
D 0.6 -0.4 +1 1/8
E 0.2 0.4 -1 1/8
F -0.8 -0.1 -1 1/8
G 0.4 -0.9 -1 1/8
H 0.2 0.5 -1 1/8
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The E1 “Stump”
Classifier based on E1:

0.3 0.5 0.6 0.70.2-0.8 0.40.2
F E H A G B C D

1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8

if ( sign*wt(E1) > thresh) > 0) 
face = true

sign = +1 or -11/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 sign = +1 or -1

Sign = +1, error = 1/8
threshold

ID E1 E2. Class Weight
A 0 3 -0 6 +1 1/8

g ,
Sign = -1, error = 7/8

A 0.3 -0.6 +1 1/8
B 0.5 -0.5 +1 1/8
C 0.7 -0.1 +1 1/8
D 0.6 -0.4 +1 1/8
E 0.2 0.4 -1 1/8
F -0.8 -0.1 -1 1/8
G 0.4 -0.9 -1 1/8
H 0.2 0.5 -1 1/8
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The E1 “Stump”
Classifier based on E1:

0.3 0.5 0.6 0.70.2-0.8 0.40.2
F E H A G B C D

1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8

if ( sign*wt(E1) > thresh) > 0) 
face = true

sign = +1 or -11/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 sign = +1 or -1

Sign = +1, error = 2/8
threshold

ID E1 E2. Class Weight
A 0 3 -0 6 +1 1/8

g ,
Sign = -1, error = 6/8

A 0.3 -0.6 +1 1/8
B 0.5 -0.5 +1 1/8
C 0.7 -0.1 +1 1/8
D 0.6 -0.4 +1 1/8
E 0.2 0.4 -1 1/8
F -0.8 -0.1 -1 1/8
G 0.4 -0.9 -1 1/8
H 0.2 0.5 -1 1/8
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The E1 “Stump”
Classifier based on E1:

0.3 0.5 0.6 0.70.2-0.8 0.40.2
F E H A G B C D

1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8

if ( sign*wt(E1) > thresh) > 0) 
face = true

sign = +1 or -11/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 sign = +1 or -1

Sign = +1, error = 1/8
threshold

ID E1 E2. Class Weight
A 0 3 -0 6 +1 1/8

g ,
Sign = -1, error = 7/8

A 0.3 -0.6 +1 1/8
B 0.5 -0.5 +1 1/8
C 0.7 -0.1 +1 1/8
D 0.6 -0.4 +1 1/8
E 0.2 0.4 -1 1/8
F -0.8 -0.1 -1 1/8
G 0.4 -0.9 -1 1/8
H 0.2 0.5 -1 1/8
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The E1 “Stump”
Classifier based on E1:

0.3 0.5 0.6 0.70.2-0.8 0.40.2
F E H A G B C D

1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8

if ( sign*wt(E1) > thresh) > 0) 
face = true

sign = +1 or -11/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 sign = +1 or -1

Sign = +1, error = 2/8
threshold

ID E1 E2. Class Weight
A 0 3 -0 6 +1 1/8

g ,
Sign = -1, error = 6/8

A 0.3 -0.6 +1 1/8
B 0.5 -0.5 +1 1/8
C 0.7 -0.1 +1 1/8
D 0.6 -0.4 +1 1/8
E 0.2 0.4 -1 1/8
F -0.8 -0.1 -1 1/8
G 0.4 -0.9 -1 1/8
H 0.2 0.5 -1 1/8
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The Best E1 “Stump”

0.3 0.5 0.6 0.70.2-0.8 0.40.2
F E H A G B C D

1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8

Classifier based on E1:
if ( sign*wt(E1) > thresh) > 0) 

face = true1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 face = true

Sign = +1
Threshold = 0.45Sign = +1, error = 1/8

threshold

ID E1 E2. Class Weight
A 0 3 -0 6 +1 1/8

g ,

A 0.3 -0.6 +1 1/8
B 0.5 -0.5 +1 1/8
C 0.7 -0.1 +1 1/8
D 0.6 -0.4 +1 1/8
E 0.2 0.4 -1 1/8
F -0.8 -0.1 -1 1/8
G 0.4 -0.9 -1 1/8
H 0.2 0.5 -1 1/8

11755/1879720 Sep 2011 98



The E2“Stump”
Classifier based on E2:

-0.4 -0.1 0.4 0.5-0.6-0.9 -0.1-0.5
G A B D C F E H

1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8

if ( sign*wt(E2) > thresh) > 0) 
face = true

sign = +1 or -1

Note order

1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 sign = +1 or -1

Sign = +1, error = 3/8
threshold

ID E1 E2. Class Weight
A 0 3 -0 6 +1 1/8

g ,
Sign = -1, error = 5/8

A 0.3 -0.6 +1 1/8
B 0.5 -0.5 +1 1/8
C 0.7 -0.1 +1 1/8
D 0.6 -0.4 +1 1/8
E 0.2 0.4 -1 1/8
F -0.8 -0.1 -1 1/8
G 0.4 -0.9 -1 1/8
H 0.2 0.5 -1 1/8
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The Best E2“Stump”
Classifier based on E2:

-0.4 -0.1 0.4 0.5-0.6-0.9 -0.1-0.5
1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8

if ( sign*wt(E2) > thresh) > 0) 
face = true

sign = -1

G A B D C F E H

1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 sign = -1
Threshold = 0.15

Sign = -1, error = 2/8
threshold

ID E1 E2. Class Weight
A 0 3 -0 6 +1 1/8

g ,

A 0.3 -0.6 +1 1/8
B 0.5 -0.5 +1 1/8
C 0.7 -0.1 +1 1/8
D 0.6 -0.4 +1 1/8
E 0.2 0.4 -1 1/8
F -0.8 -0.1 -1 1/8
G 0.4 -0.9 -1 1/8
H 0.2 0.5 -1 1/8
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The Best “Stump”

0.3 0.5 0.6 0.70.2-0.8 0.40.2
F E H A G B C D

1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8

The Best overall classifier
based on a single feature is
based on E11/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 based on E1

If (wt(E1) > 0.45)  Face
Sign = +1, error = 1/8

threshold

ID E1 E2. Class Weight
A 0 3 -0 6 +1 1/8

g ,

A 0.3 -0.6 +1 1/8
B 0.5 -0.5 +1 1/8
C 0.7 -0.1 +1 1/8
D 0.6 -0.4 +1 1/8
E 0.2 0.4 -1 1/8
F -0.8 0.1 -1 1/8
G 0.4 -0.9 -1 1/8
H 0.2 0.5 -1 1/8
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The ADABoost Algorithm
 Initialize D1(xi) = 1/N
For t = 1, …, T, ,

 Train a weak classifier ht using distribution Dt
 Compute total error on training data

 t = Sum {Dt (xi) ½(1 – yi ht(xi))}
 Set t = ½ ln (t /(1 – t))
 For i = 1 N For i = 1… N 

 set Dt+1(xi) = Dt(xi) exp(- t yi ht(xi))
 Normalize Dt+1 to make it a distributiont+1 

The final classifier is
 H(x) = sign(t t ht(x))
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The Best Error

0.3 0.5 0.6 0.70.2-0.8 0.40.2
F E H A G B C D

1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8

The Error of the classifier
is the sum of the weights of
the misclassified instances1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 the misclassified instances

Sign = +1, error = 1/8
threshold

ID E1 E2. Class Weight
A 0 3 -0 6 +1 1/8

g ,

A 0.3 -0.6 +1 1/8
B 0.5 -0.5 +1 1/8
C 0.7 -0.1 +1 1/8
D 0.6 -0.4 +1 1/8
E 0.2 0.4 -1 1/8
F -0.8 0.1 -1 1/8
G 0.4 -0.9 -1 1/8
H 0.2 0.5 -1 1/8

11755/18797

NOTE: THE ERROR IS THE SUM OF THE WEIGHTS OF MISCLASSIFIED
INSTANCES
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The ADABoost Algorithm
 Initialize D1(xi) = 1/N
For t = 1, …, T, ,

 Train a weak classifier ht using distribution Dt
 Compute total error on training data

 t = Sum {Dt (xi) ½(1 – yi ht(xi))}
 Set t = ½ ln ((1 – t) / t)
 For i = 1 N For i = 1… N 

 set Dt+1(xi) = Dt(xi) exp(- t yi ht(xi))
 Normalize Dt+1 to make it a distributiont+1 

The final classifier is
 H(x) = sign(t t ht(x))
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Computing Alpha

0.3 0.5 0.6 0.70.2-0.8 0.40.2
F E H A G B C D

1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8

Alpha = 0.5ln((1-1/8) / (1/8))

= 0 5 ln(7) = 0 97 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 = 0.5 ln(7) = 0.97 

Sign = +1, error = 1/8
threshold

g ,
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The Boosted Classifier Thus Far

0.3 0.5 0.6 0.70.2-0.8 0.40.2
F E H A G B C D

1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8

Alpha = 0.5ln((1-1/8) / (1/8))

= 0 5 ln(7) = 0 97 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 = 0.5 ln(7) = 0.97 

Sign = +1, error = 1/8
threshold

g ,

h1(X) = wt(E1) > 0.45 ? +1 : -1

H(X) = sign(0.97 * h1(X))

It’s the same as h1(x)
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The ADABoost Algorithm
 Initialize D1(xi) = 1/N
For t = 1, …, T, ,

 Train a weak classifier ht using distribution Dt
 Compute total error on training data

 t = Average {½ (1 – yi ht(xi))}
 Set t = ½ ln ((1 – t) / t)
 For i = 1 N For i = 1… N 

 set Dt+1(xi) = Dt(xi) exp(- t yi ht(xi))
 Normalize Dt+1 to make it a distributiont+1 

The final classifier is
 H(x) = sign(t t ht(x))
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The Best Error

0.3 0.5 0.6 0.70.2-0.8 0.40.2
F E H A G B C D

1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8

Dt+1(xi) = Dt(xi) exp(- t yi ht (xi))

ID E1 E2 Class Weight Weight

1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8

threshold
exp(t) = exp(0.97) = 2.63
exp(-t) = exp(-0.97) = 0.38

ID E1 E2. Class Weight Weight
A 0.3 -0.6 +1 1/8  * 2.63 0.33
B 0.5 -0.5 +1 1/8 * 0.38 0.05
C 0.7 -0.1 +1 1/8 * 0.38 0.05
D 0.6 -0.4 +1 1/8 * 0.38 0.05
E 0.2 0.4 -1 1/8 * 0.38 0.05
F -0.8 0.1 -1 1/8 * 0.38 0.05
G 0.4 -0.9 -1 1/8 * 0.38 0.05
H 0.2 0.5 -1 1/8 * 0.38 0.05

Multiply the correctly classified instances by 0.38
Multiply incorrectly classified instances by 2.63
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The ADABoost Algorithm
 Initialize D1(xi) = 1/N
For t = 1, …, T, ,

 Train a weak classifier ht using distribution Dt
 Compute total error on training data

 t = Average {½ (1 – yi ht(xi))}
 Set t = ½ ln ((1 – t) / t)
 For i = 1 N For i = 1… N 

 set Dt+1(xi) = Dt(xi) exp(- t yi ht(xi))
 Normalize Dt+1 to make it a distributiont+1 

The final classifier is
 H(x) = sign(t t ht(x))
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The Best Error

0.3 0.5 0.6 0.70.2-0.8 0.40.2
F E H A G B C D

1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8

D’ = D / sum(D)

ID E1 E2 Class Weight Weight Weight

1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8

threshold

ID E1 E2. Class Weight Weight Weight
A 0.3 -0.6 +1 1/8  * 2.63 0.33 0.48
B 0.5 -0.5 +1 1/8 * 0.38 0.05 0.074
C 0.7 -0.1 +1 1/8 * 0.38 0.05 0.074
D 0.6 -0.4 +1 1/8 * 0.38 0.05 0.074
E 0.2 0.4 -1 1/8 * 0.38 0.05 0.074
F -0.8 0.1 -1 1/8 * 0.38 0.05 0.074
G 0.4 -0.9 -1 1/8 * 0.38 0.05 0.074
H 0.2 0.5 -1 1/8 * 0.38 0.05 0.074

Multiply the correctly classified instances by 0.38
Multiply incorrectly classified instances by 2.63
Normalize to sum to 1 0

11755/18797

Normalize to sum to 1.0
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The Best Error

0.3 0.5 0.6 0.70.2-0.8 0.40.2
F E H A G B C D

1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8

D’ = D / sum(D)

ID E1 E2 Class Weight

1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8

threshold

ID E1 E2. Class Weight
A 0.3 -0.6 +1 0.48
B 0.5 -0.5 +1 0.074
C 0.7 -0.1 +1 0.074
D 0.6 -0.4 +1 0.074
E 0.2 0.4 -1 0.074
F -0.8 0.1 -1 0.074
G 0.4 -0.9 -1 0.074
H 0.2 0.5 -1 0.074

Multiply the correctly classified instances by 0.38
Multiply incorrectly classified instances by 2.63
Normalize to sum to 1 0

11755/18797

Normalize to sum to 1.0
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The ADABoost Algorithm
 Initialize D1(xi) = 1/N
For t = 1, …, T, ,

 Train a weak classifier ht using distribution Dt
 Compute total error on training data

 t = Average {½ (1 – yi ht(xi))}
 Set t = ½ ln (t /(1 – t))
 For i = 1 N For i = 1… N 

 set Dt+1(xi) = Dt(xi) exp(- t yi ht(xi))
 Normalize Dt+1 to make it a distributiont+1 

The final classifier is
 H(x) = sign(t t ht(x))

11755/1879720 Sep 2011 112



E1 classifier
Classifier based on E1:

0.3 0.5 0.6 0.70.2-0.8 0.40.2
F E H A G B C D

074 074 074 48 074 074 074 074

if ( sign*wt(E1) > thresh) > 0) 
face = true

sign = +1 or -1.074 .074 .074 .48 .074 .074 .074 .074

threshold

sign = +1 or -1

Sign = +1 error = 0 222

ID E1 E2 Class Weight

Sign = +1, error = 0.222
Sign = -1, error = 0.778

ID E1 E2. Class Weight
A 0.3 -0.6 +1 0.48
B 0.5 -0.5 +1 0.074
C 0.7 -0.1 +1 0.074
D 0.6 -0.4 +1 0.074
E 0.2 0.4 -1 0.074
F -0.8 0.1 -1 0.074
G 0.4 -0.9 -1 0.074
H 0.2 0.5 -1 0.074

11755/1879720 Sep 2011 113



E1 classifier
Classifier based on E1:

0.3 0.5 0.6 0.70.2-0.8 0.40.2
F E H A G B C D

074 074 074 074 074 074

if ( sign*wt(E1) > thresh) > 0) 
face = true

sign = +1 or -148 074.074 .074 .074 .074 .074 .074

threshold

sign = +1 or -1

Sign = +1 error = 0 148

.48 .074

ID E1 E2 Class Weight

Sign = +1, error = 0.148
Sign = -1, error = 0.852

ID E1 E2. Class Weight
A 0.3 -0.6 +1 0.48
B 0.5 -0.5 +1 0.074
C 0.7 -0.1 +1 0.074
D 0.6 -0.4 +1 0.074
E 0.2 0.4 -1 0.074
F -0.8 0.1 -1 0.074
G 0.4 -0.9 -1 0.074
H 0.2 0.5 -1 0.074
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The Best E1 classifier
Classifier based on E1:

0.3 0.5 0.6 0.70.2-0.8 0.40.2
F E H A G B C D

074 074 074 074 074 074

if ( sign*wt(E1) > thresh) > 0) 
face = true

sign = +1 or -148 074.074 .074 .074 .074 .074 .074

threshold

sign = +1 or -1

Sign = +1 error = 0 074

.48 .074

ID E1 E2 Class Weight

Sign = +1, error = 0.074

ID E1 E2. Class Weight
A 0.3 -0.6 +1 0.48
B 0.5 -0.5 +1 0.074
C 0.7 -0.1 +1 0.074
D 0.6 -0.4 +1 0.074
E 0.2 0.4 -1 0.074
F -0.8 0.1 -1 0.074
G 0.4 -0.9 -1 0.074
H 0.2 0.5 -1 0.074
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The Best E2 classifier
Classifier based on E2:

-0.4 -0.1 0.4 0.5-0.6-0.9 -0.1-0.5
G A B D C F E H

074 48 074 074 074 074 074 074

if ( sign*wt(E2) > thresh) > 0) 
face = true

sign = +1 or -1.074 .48 .074 .074 .074 .074 .074 .074

threshold

sign = +1 or -1

Si 1 0 148

ID E1 E2 Class Weight

Sign = -1, error = 0.148

ID E1 E2. Class Weight
A 0.3 -0.6 +1 0.48
B 0.5 -0.5 +1 0.074
C 0.7 -0.1 +1 0.074
D 0.6 -0.4 +1 0.074
E 0.2 0.4 -1 0.074
F -0.8 -0.1 -1 0.074
G 0.4 -0.9 -1 0.074
H 0.2 0.5 -1 0.074
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The Best Classifier

0.3 0.5 0.6 0.70.2-0.8 0.40.2
F E H A G B C D

074 074 074 074 074 074

Classifier based on E1:
if (wt(E1) > 0.45) face = true

48 074.074 .074 .074 .074 .074 .074

threshold

Sign = +1 error = 0 074

.48 .074
Alpha = 0.5ln((1-0.074) / 0.074)

= 1.26 

ID E1 E2 Class Weight

Sign = +1, error = 0.074

ID E1 E2. Class Weight
A 0.3 -0.6 +1 0.48
B 0.5 -0.5 +1 0.074
C 0.7 -0.1 +1 0.074
D 0.6 -0.4 +1 0.074
E 0.2 0.4 -1 0.074
F -0.8 0.1 -1 0.074
G 0.4 -0.9 -1 0.074
H 0.2 0.5 -1 0.074
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The Boosted Classifier Thus Far

0.3 0.5 0.6 0.70.2-0.8 0.40.2
F E H A G B C D

074 074 074 074 074 07448 074

h1(X) = wt(E1) > 0.45 ? +1 : -1

.074 .074 .074 .074 .074 .074

threshold

.48 .074

threshold

h2(X) = wt(E1) > 0.25 ? +1 : -1

H(X) = sign(0.97 * h1(X) + 1.26 * h2(X))
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Reweighting the Data

0.3 0.5 0.6 0.70.2-0.8 0.40.2
F E H A G B C D

074 074 074 074 074 07448 074.074 .074 .074 .074 .074 .074

threshold

Sign = +1 error = 0 074

.48 .074
Exp(alpha) = exp(1.26) = 3.5
Exp(-alpha) = exp(-1.26) = 0.28

ID E1 E2 Class Weight

Sign = +1, error = 0.074

ID E1 E2. Class Weight
A 0.3 -0.6 +1 0.48*0.28 0.32
B 0.5 -0.5 +1 0.074*0.28 0.05
C 0.7 -0.1 +1 0.074*0.28 0.05
D 0.6 -0.4 +1 0.074*0.28 0.05
E 0.2 0.4 -1 0.074*0.28 0.05
F -0.8 0.1 -1 0.074*0.28 0.05
G 0.4 -0.9 -1 0.074*3.5 0.38
H 0.2 0.5 -1 0.074*0.28 0.05

11755/18797
RENORMALIZE
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Reweighting the Data

0.3 0.5 0.6 0.70.2-0.8 0.40.2
F E H A G B C D

074 074 074 074 074 07448 074

NOTE: THE WEIGHT OF “G”
WHICH WAS MISCLASSIFIED
BY THE SECOND CLASSIFIER

.074 .074 .074 .074 .074 .074

threshold

Sign = +1 error = 0 074

.48 .074 IS NOW SUDDENLY HIGH

Sign = +1, error = 0.074

ID E1 E2 Class WeightID E1 E2. Class Weight
A 0.3 -0.6 +1 0.48*0.28 0.32
B 0.5 -0.5 +1 0.074*0.28 0.05
C 0.7 -0.1 +1 0.074*0.28 0.05
D 0.6 -0.4 +1 0.074*0.28 0.05
E 0.2 0.4 -1 0.074*0.28 0.05
F -0.8 0.1 -1 0.074*0.28 0.05
G 0.4 -0.9 -1 0.074*3.5 0.38
H 0.2 0.5 -1 0.074*0.28 0.05

11755/18797
RENORMALIZE
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AdaBoost
 In this example both of our first two classifiers were 

based on E1based on E1
 Additional classifiers may switch to E2

 In general, the reweighting of the data will result in a ge e a , t e e e g t g o t e data esu t a
different feature being picked for each classifier

 This also automatically gives us a feature selection 
strategy

I hi d h (E1) i h i f In this data the wt(E1) is the most important feature
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AdaBoost
 NOT required to go with the best classifier so far

For instance for our second classifier we might use For instance, for our second classifier, we might use 
the best E2 classifier, even though its worse than the 
E1 classifier
 So long as its right more than 50% of the time

 We can continue to add classifiers even after we get 
100% classification of the training data

Because the weights of the data keep changing Because the weights of the data keep changing
 Adding new classifiers beyond this point is often a 

good thing to do
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g g
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ADA Boost
= 0.4 E1 - 0.4 E2

E1 E2

 The final classifier is
 H(x) = sign(t t ht(x))

 The output is 1 if the total weight of all weak 
l th t l if 1 i t thlearners that classify x as 1 is greater than 
the total weight of all weak learners that 
classify it as -1
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classify it as 1

20 Sep 2011 123



Boosting and Face Detection

 Boosting forms the basis of the most 
t h i f f d t ti t dcommon technique for face detection today:  

The Viola-Jones algorithm.
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The problem of face detection
 1. Defining Features

 Should we be searching for noses eyes eyebrows etc ? Should we be searching for noses, eyes, eyebrows etc.?
 Nice, but expensive

 Or something simpler

 2. Selecting Features
Of all the possible features we can think of which ones Of all the possible features we can think of, which ones 
make sense

 3. Classification: Combining evidence
 How does one combine the evidence from the different 

features?

11755/18797

features?
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Features: The Viola Jones Method

B B B B B BB1 B2 B3 B4 B5 B6

...Im 332211  BwBwBwage

 Integral Features!!
 Like the Checkerboard Like the Checkerboard

 The same principle as we used to decompose images in terms of 
checkerboards:
 The image of any object has changes at various scales The image of any object has changes at various scales
 These can be represented coarsely by a checkerboard pattern

 The checkerboard patterns must however now be localized

11755/18797

 Stay within the region of the face
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Features
 Checkerboard Patterns to represent facial features

 The white areas are subtracted from the black ones The white areas are subtracted from the black ones.
 Each checkerboard explains a localized portion of the 

image
F t f h k b d tt ( l ) Four types of checkerboard patterns (only)
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Explaining a portion of the face with a 
checker..

 How much is the difference in average intensity of the image in 
the black and white regions
 Sum(pixel values in white region) – Sum(pixel values in black 

i )region)
 This is actually the dot product of the region of the face covered 

by the rectangle and the checkered pattern itself
White 1 Black 1
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 White = 1, Black = -1
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“Integral” features

 Each checkerboard has the following characteristics Each checkerboard has the following characteristics
 Length
 Width
 Type

 Specifies the number and arrangement of bands
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 The four checkerboards above are the four used by Viola and Jones
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Integral imagesg g
 Summed area tables

 For each pixel store the sum of ALL pixels to the left of and p p
above it.
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Fast Computation of Pixel Sums
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A Fast Way to Compute the Feature
A B

D

F
C

E

 Store pixel table for every pixel in the image

E

 Store pixel table for every pixel in the image
 The sum of all pixel values to the left of and above the pixel

 Let A, B, C, D, E, F be the pixel table values at the locations 
shownshown
 Total pixel value of black area = D + A – B – C
 Total pixel value of white area = F + C – D – E
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 Feature value = (F + C – D – E) – (D + A – B – C) 
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How many features?

PxH MxNPxH

 Each checker board of width P and height H can start at g
 (0,0),  (0,1),(0,2), …  (0, N-P)
 (1,0),  (1,1),(1,2), …  (1, N-P)
 ..
 (M-H,0), (M-H,1), (M-H,2), … ( M-H, N-P)

 (M-H)*(N-P) possible starting locations
 Each is a unique checker feature
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 E.g. at one location it may measure the forehead, at another the chin
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How many features

 Each feature can have many sizes
 Width from (min) to (max) pixels
 Height from (min ht) to (max ht) pixels

 At each size, there can be many starting locations
 Total number of possible checkerboards of one type: Total number of possible checkerboards of one type:  

No. of possible sizes x No. of possible locations 
 There are four types of checkerboards

T t l f ibl h k b d VERY VERY LARGE!
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 Total no. of possible checkerboards:   VERY VERY LARGE!
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Learning:  No. of features

 Analysis performed on images of 24x24 
i l lpixels only

 Reduces the no. of possible features to about 
180000180000

 Restrict checkerboard size
Minimum of 8 pixels wide Minimum of 8 pixels wide

 Minimum of 8 pixels high
 Other limits e g 4 pixels may be used too Other limits, e.g. 4 pixels may be used too

 Reduces no. of checkerboards to about 50000
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No. of features

F1 F2 F3 F4 ….. F180000

7 9 2 -1 127 9 2 -1 ….. 12

-11 3 19 17 ….. 2

 Each possible checkerboard gives us one feature
 A total of up to 180000 features derived from a 24x24 image!
 Every 24x24 image is now represented by a set of 180000 Every 24x24 image is now represented by a set of 180000 

numbers
 This is the set of features we will use for classifying if it is a face 

or not!
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or not!
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The Classifier
 The Viola-Jones algorithm uses a simple Boosting 

based classifierbased classifier
 Each “weak learner” is a simple threshold
 At each stage find the best feature to classify the At each stage find the best feature to classify the 

data with
 I.e the feature that gives us the best classification of all the 

training data
 Training data includes many examples of faces and non-face 

images
 The classification rule is of the kind

 If feature > threshold, face  (or if feature < threshold, face)
 The optimal value of “threshold” must also be determined
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 The optimal value of threshold  must also be determined.
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The Weak Learner
 Training (for each weak learner):

 For each feature f (of all 180000 features) For each feature f (of all 180000 features)
 Find a threshold f and polarity p(f) (p(f) = -1 or p(f) = 1) such that (f 

> p(f)*f) performs the best classification of faces
 Lowest overall error in classifying all training data

 Error counted over weighted samples
 Let the optimal overall error for f be error(f)

 Find the feature f’ such that error(f’) is lowest
 The weak learner is the test (f’ > p(f’)*f’face

 Note that the procedure for learning weak learners also identifies Note that the procedure for learning weak learners also identifies 
the most useful features for face recognition
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The Viola Jones Classifier
 A boosted threshold-based classifier
 First weak learner:  Find the best feature, and ,

its optimal threshold
 Second weak learner: Find the best feature, for ,

the weighted training data, and its threshold 
(weighting from one weak learner)

Thi d k l Fi d th b t f t f th Third weak learner: Find the best feature for the 
weighted data and its optimal threshold (weighting from 
two weak learners)
 Fourth weak learner: Find the best feature for the weighted 

data and its optimal threhsold (weighting from three weak 
learners)
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 ..
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To Train
 Collect a large number of histogram 

equalized facial imagesequalized facial images
 Resize all of them to 24x24
 These are our “face” training set These are our face  training set

 Collect a much much much larger set of 
24x24 non-face images of all kinds
 Each of them is histogram equalized

Th “ f ” t i i t These are our “non-face” training set

 Train a boosted classifier
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 Train a boosted classifier
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The Viola Jones Classifier

 During tests: During tests:
 Given any new 24x24 image

 R =  f f (f > pf (f))
 Only a small number of features (f < 100) typically used

 Problems:
 Only classifies 24 x 24 images entirely as faces or non-faces

T i l i t h l Typical pictures are much larger
 They may contain many faces
 Faces in pictures can be much larger or smaller

 Not accurate enough

11755/18797

 Not accurate enough
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Multiple faces in the picture

 Scan the image
Classify each 24x24 rectangle from the photo Classify each 24x24 rectangle from the photo

 All rectangles that get classified as having a face indicate the 
location of a face

 For an NxM picture we will perform (N 24)*(M 24) classifications For an NxM picture, we will perform (N-24) (M-24) classifications
 If overlapping 24x24 rectangles are found to have faces, merge 

them
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Multiple faces in the picture

 Scan the image
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Multiple faces in the picture

 Scan the image
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Multiple faces in the picture

 Scan the image
Classify each 24x24 rectangle from the photo Classify each 24x24 rectangle from the photo

 All rectangles that get classified as having a face indicate the 
location of a face

 For an NxM picture we will perform (N 24)*(M 24) classifications For an NxM picture, we will perform (N-24) (M-24) classifications
 If overlapping 24x24 rectangles are found to have faces, merge 

them
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Picture size solution
 We already have a 

classifier
f, 

classifier
 That uses weak 

learners

2x

 Scale each classifier
 Every weak learner

S l it i b

f, 2

 Scale its size up by 
factor . Scale the 
threshold up to .p

 Do this for many 
scaling factors
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Overall solution

 Scan the picture with classifiers of size 24x24
 Scale the classifier to 26x26 and scan
 Scale to 28x28 and scan etc Scale to 28x28 and scan etc.

 Faces of different sizes will be found at different 
scales
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scales
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False Rejection vs. False detectionj
 False Rejection: There’s a face in the image, but the classifier 

misses it
 Rejects the hypothesis that there’s a face

 False detection: Recognizes a face when there is none.

 Classifier: 
 Standard boosted classifier: H(x) = sign(t t ht(x))

M difi d l ifi H( ) i ( h ( ) Y) Modified classifier H(x) = sign(t t ht(x) + Y)
 t t ht(x) is a measure of certainty

 The higher it is, the more certain we are that we found a face
If Y i l th th f f h If Y is large, then we assume the presence of a face even when we 
are not sure

 By increasing Y, we can reduce false rejection, while increasing 
false detection
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false detection
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ROC
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 Ideally false rejection will be 0%, false detection will 
also be 0%
As Y increaases we reject faces less and less As Y increaases, we reject faces less and less
 But accept increasing amounts of garbage as faces

 Can set Y so that we rarely miss a face
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 Can set Y so that we rarely miss a face
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Problem: Not accurate enough, too slow

Cl ifi 1 Cl ifi 2Classifier 1

Not a face

Classifier 2

Not a face

 If we set Y high enough, we will never miss a 
face
 But will classify a lot of junk as faces
S l ti Cl if th t t f th fi t Solution:  Classify the output of the first 
classifier with a second classifier
 And so on

11755/18797

 And so on.
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Problem: Not accurate enough, too slow

 If we set Y high enough, we will never miss a 
face
 But will classify a lot of junk as faces
S l ti Cl if th t t f th fi t Solution:  Classify the output of the first 
classifier with a second classifier
 And so on
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 And so on.
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Useful Features Learned by Boosting
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A Cascade of Classifiers
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Detection in Real Images
 Basic classifier operates on 24 x 24 subwindows

 Scaling:
 Scale the detector (rather than the images)
 Features can easily be evaluated at any scale Features can easily be evaluated at any scale
 Scale by factors of 1.25

 Location: Location:
 Move detector around the image (e.g., 1 pixel increments)

 Final Detections Final Detections
 A real face may result in multiple nearby detections  
 Postprocess detected subwindows to combine overlapping 

detections into a single detection
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detections into a single detection
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Trainingg
 In paper, 24x24 images of faces and non faces (positive and 

negative examples).
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Sample results using the Viola-Jones 
DDetector
 Notice detection at multiple scales 
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More Detection Examples
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Practical implementation
 Details discussed in Viola-Jones paper

 Training time = weeks  (with 5k faces and 9.5k non-
faces)faces)

 Final detector has 38 layers in the cascade 6060 Final detector has 38 layers in the cascade, 6060 
features

 700 Mhz processor:
 Can process a 384 x 288 image in 0.067 seconds (in 2003 

h itt )
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when paper was written)
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