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11-755 Machine Learning for Signal Processing

Latent Variable Models and 
Signal Separation

Class 9.  29 Sep 2011
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The Engineer and the Musician

Once upon a time a rich potentate 
discovered a previously unknown 
recording of a beautiful piece of 
music. Unfortunately it was badly 
damaged.  

He greatly wanted to find out what it would sound 
like if it were not.

So he hired an engineer and a 
musician to solve the 
problem..
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The Engineer and the Musician

The engineer worked for many 
years. He spent much money and 
published many papers.

Finally he had a somewhat scratchy y y
restoration of the music..

The musician listened to the music 
carefully for a day, transcribed it,  
broke out his trusty keyboard and 
replicated the music.
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The Prize

Who do you think won the princess?
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Sounds – an example
 A sequence of notes

 Chords from the same notes

5

 A piece of music from the same (and a few additional) notes
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Sounds – an example
 A sequence of sounds

6

 A proper speech utterance from the same 
sounds
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Template Sounds Combine to Form a Signal

 The individual component sounds “combine” to form the 
final complex sounds that we perceive
 Notes form music

 Phoneme-like structures combine in utterances

 Component sounds – notes, phonemes – too are complex

S d i l i d f h “b ildi bl k ”

7

 Sound in general is composed of such “building blocks” 
or themes
 Our definition of a building block: the entire structure occurs 

repeatedly in the process of forming the signal 

 Goal: To learn these building blocks automatically, from 
analysis of data
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Urns and balls
6 4 1 5 3 2 2 2 …

5
2

1 6 6
2

4
33

5 5 1

11755/18797

 An urn has many balls

 Each ball has a number marked on it
 Multiple balls may have the same number

 A “picker” draws balls at random..

 This is a multinomial
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Signal Separation with the Urn model

 What does the probability of drawing balls 
from Urns have to do with sounds?
 Or Images?

W h ll
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 We shall see..
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The representation

W t i l t hi ll

TIME

AMPL FREQ

TIME
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 We represent signals spectrographically
 Sequence of magnitude spectral vectors estimated from (overlapping) 

segments of signal

 Computed using the short-time Fourier transform

 Note: Only retaining the magnitude of the STFT for our operations

 We will, however need the phase later for conversion to a signal
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 A magnitude spectral vector obtained from a DFT 
represents spectral magnitude against discrete 
frequencies
 This may be viewed as a histogram of draws from a multinomial

FRAME 

HISTOGRAM

A Multinomial Model for Spectra
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FRAME 

t

f

f

HISTOGRAM

P
t
(f )

Probability distribution underlying the t-th spectral vector

Power spectrum of frame t

The balls are
marked with
discrete frequency
indices from the DFT
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 A “picker” has multiple urns

 In each draw he first selects an urn, and then a ball 
from the urn
 Overall probability of drawing f is a mixture multinomial

 Since several multinomials (urns) are combined

A more complex model

11755/18797

 Two aspects – the probability with which he selects any 
urn, and the probability of frequencies with the urns

multiple draws

HISTOGRAM

29 Sep 2011 12
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The Picker Generates a Spectrogram

 The picker has a fixed set of Urns
E h h diff t b bilit di t ib ti f

11755/18797

 Each urn has a different probability distribution over f

 He draws the spectrum for the first frame
 In which he selects urns according to some probability P0(z)

 Then draws the spectrum for the second frame
 In which he selects urns according to some probability P1(z)

 And so on, until he has constructed the entire spectrogram
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The Picker Generates a Spectrogram

 The picker has a fixed set of Urns
ff
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 Each urn has a different probability distribution over f

 He draws the spectrum for the first frame
 In which he selects urns according to some probability P0(z)

 Then draws the spectrum for the second frame
 In which he selects urns according to some probability P1(z)

 And so on, until he has constructed the entire spectrogram
 The number of draws in each frame represents the rms energy in 

that frame

29 Sep 2011 18
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The Picker Generates a Spectrogram

 The URNS are the same for every frame
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( ) ( ) ( | )t tz
P f P z P f z

y
 These are the component multinomials or bases for the source 

that generated the signal

 The only difference between frames is the probability with which 
he selects the urns

Frame(time) specific mixture weight

SOURCE specific
bases

Frame-specific
spectral distribution
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Spectral View of Component Multinomials

 Each component multinomial (urn) is actually a normalized 
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histogram over frequencies P(f |z)
 I.e. a spectrum

 Component multinomials represent latent spectral structures 
(bases) for the given sound source

 The spectrum for every analysis frame is explained as an 
additive combination of these latent spectral structures
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Spectral View of Component Multinomials
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 By “learning” the mixture multinomial model for any
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 By learning  the mixture multinomial model for any 
sound source we “discover” these latent spectral 
structures for the source

 The model can be learnt from spectrograms of a 
small amount of audio from the source using the EM 
algorithm
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EM learning of bases

 Initialize bases
 P(f|z) for all z, for all f

 Must decide on the number of urns 

 For each frame
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 For each frame
 Initialize Pt(z)
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Learning the Bases

 Simple EM solution
 Except bases are learned from all frames
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ICASSP 2011 Tutorial: Applications of  Topic 
Models for Signal Processing – Smaragdis, 
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Speech Signal bases Basis-specific spectrograms
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P(f|z)

Pt(z)

From Bach’s Fugue in Gm
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Given Bases Find Composition

 Iterative process:
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 Iterative process:
 Compute a posteriori probability of the zth topic for 

each frequency f in the t-th spectrum

 Compute mixture weight of zth basis
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Bag of Frequencies vs. Bag of 
Spectrograms
 The PLCA model described is a “bag of frequencies” 

model
 Similar to “bag of words”

 Composes spectrogram one frame at a time
 Contribution of bases to a frame does not affect other frames

 Random Variables: 
 Frequency
 Possibly also the total number of draws in a frame

Z f

Pt(Z)

Nt

Bag of Frequencies PLCA model
time

T=0: P0(Z) T=1: P1(Z) T=k: Pk(Z)

 Bases are simple distributions over frequencies
 Manner of selection of urns/components varies 

from analysis frame to analysis frame
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P(f|z)
Z=0 Z=1 Z=2 Z=M

Bag of Spectrograms PLCA Model

C th ti t ll t

Z=1 Z=2 Z=M

P(T|Z) P(F|Z) P(T|Z) P(F|Z) P(T|Z) P(F|Z)

 Compose the entire spectrogram all at once

 Complex “super pots” include two sub pots
 One pot has a distribution over frequencies: these are our bases

 The second has a distribution over time

 Each draw:
 Select a superpot

 Draw “F” from frequency pot

 Draw “T” from time pot

 Increment histogram at (T,F)
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The bag of spectrograms
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f

 Drawing procedure
 Fundamentally equivalent to bag of frequencies model 

 With some minor differences in estimation
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Estimating the bag of spectrograms

Z=1 Z=2 Z=M
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 EM update rules
 Can learn all parameters
 Can learn P(T|Z) and P(Z) only given P(f|Z)
 Can learn only P(Z)
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Bag of frequencies vs. bag of spectrograms
 Fundamentally equivalent

 Difference in estimation
 Bag of spectrograms: For a given total  N and P(Z), the 

total “energy” assigned to a basis is determined
 increasing its energy at one time will necessarily decrease its 

energy elsewhere

 No such constraint for bag of frequencies
 More unconstrained

 Can also be used to assign temporal patterns for 
components

 Bag of frequencies more amenable to imposition of 
a priori distributions

 Bag of spectrograms a more natural fit for other 
models

The PLCA Tensor Model

Z

P(A|Z) P(B|Z) P(C|Z)

Z

P(A|Z) P(B|Z) P(C|Z)

 The bag of spectrograms can be extended to 
multivariate data

 EM update rules are essentially identical to 
bivariate case

)|(...)|()|()(),...,( zcPzbPzaPzPcbaP
Z


How meaningful are these structures

 If bases capture data structure they must
 Allow prediction of data

 Hearing only the low-frequency components of a 
note, we can still know the note

 Which means we can predict its higher frequencies

11755/18797

 Be resolvable in complex sounds
 Must be able to pull them out of complex mixtures

 Denoising

 Signal Separation from Monaural Recordings
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The musician vs. the signal processor

 Some badly damaged music is given to a signal processing whiz 
and a musician
 They must “repair” it.  What do they do?

 Signal processing :
 Invents many complex algorithms

W it l f t t Writes proposals for government grants

 Spends $1000,000 

 Develops an algorithm that results in less scratchy sounding music

 Musician:
 Listens to the music and transcribes it

 Plays it out on his keyboard/piano

11755/1879729 Sep 2011 34

Prediction
 Bandwidth Expansion

 Problem: A given speech signal only has frequencies in the 
300Hz-3.5Khz range
 Telephone quality speech

 Can we estimate the rest of the frequencies

11755/18797

 The full basis is known

 The presence of the basis is 
identified from the observation
of a part of it

 The obscured remaining spectral
pattern can be guessed

29 Sep 2011 35

Bandwidth Expansion
 The picker has drawn the histograms for every frame in the 

signal

11755/1879729 Sep 2011 36
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Bandwidth Expansion
 The picker has drawn the histograms for every frame in the 

signal
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Bandwidth Expansion
 The picker has drawn the histograms for every 

frame in the signal

11755/18797

 However, we are only able to observe the number 
of draws of some frequencies and not the others

 We must estimate the number of draws of the 
unseen frequencies 40

Bandwidth Expansion: Step 1 – Learning

 From a collection of full-bandwidth training 
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g
data that are similar to the bandwidth-
reduced data, learn spectral bases
 Using the procedure described earlier
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Bandwidth Expansion: Step 2 – Estimation

P1(z) P2(z) Pt(z)
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 Using only the observed frequencies in the 
bandwidth-reduced data, estimate mixture 
weights for the bases learned in step 1.

5
15

83996
81
444

81164
5 5 98 1

147
22436947

224
99

1327
2 74453 1

147
2017 37

111
37

138
7520453 91

127
2469477

203
515

10127
411501502

29 Sep 2011 42



8

Step 2
 Iterative process:
 Compute a posteriori probability of the zth urn for 

the speaker for each f

C t i t i ht f th f h f t
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 Compute mixture weight of zth urn for each frame t

 P(f|z) was obtained from training data and will not 
be reestimated
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Step 3 and Step 4
 Compose the complete probability distribution for each 

frame, using the mixture weights estimated in Step 2


z
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 Note that we are using mixture weights estimated from 
the reduced set of observed frequencies
 This also gives us estimates of the probabilities of the 

unobserved frequencies

 Use the complete probability distribution Pt (f  ) to predict 
the unobserved frequencies!
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Predicting from Pt(f ): Simplified Example

 A single Urn with only red and blue balls

11755/18797

 Given that out an unknown number of draws, 
exactly m were red, how many were blue?

 One Simple solution:
 Total number of draws N = m / P(red)
 The number of tails drawn = N*P(blue)
 Actual multinomial solution is only slightly more complex
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The inverse multinomial
• Given P(Z) for all bases

• Observed n1, n2 .. nk

• What is nk+1, nk+2…
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 No is the total number of observed counts
 n1 + n2 + …

 Po is the total probability of observed events
 P(f1) + P(f2) + …
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Estimating unobserved frequencies

 Expected value of the number of draws: 
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 s)frequencie(observed  f

 Estimated spectrum in unobserved 
frequencies

)(ˆ)(ˆ fPNfS ttt 
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Overall Solution
 Learn the “urns” for the signal source 

from broadband training data

 For each frame of the reduced 
bandwidth test utterance, find mixture 
weights for the urns 
 Ignore (marginalize) the unseen 

5158399681444811645598 114722436947224991327274453 1147201737111371387520453 91127246947720351510127411501502

Pt(z)
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g ( g )
frequencies

 Given the complete mixture multinomial 
distribution for each frame, estimate 
spectrum (histogram) at unseen 
frequencies
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t( )
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Pt(z)
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Prediction of Audio

 Some frequency components are missing (left panel)

 We know the bases P(f|z)
 But not the mixture weights for any particular spectral frame

 We must “fill in” the hole in the image
 To obtain the one to the right

 Easy to do – as explained

29 Sep 2011 4911755/18797

A more fun example

•Bases learned from this

•Reduced BW data

50

•Bandwidth expanded version
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Signal Separation from Monaural 
Recordings
 The problem:
 Multiple sources are producing sound 

simultaneously

 The combined signals are recorded over a single 

11755/18797

microphone

 The goal is to selectively separate out the signal 
for a target source in the mixture
 Or at least to enhance the signals from a selected 

source
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Problem Specification
 The mixed signal contains 

components from multiple 
sources

 Each source has its own “bases”

 In each frame
 Each source draws from its own 

collection of bases to compose a 

+ =a b

11755/18797

p
spectrum
 Bases are selected with a frame 

specific mixture weight

 The overall spectrum is a mixture 
of the spectra of individual 
sources
 I.e. a histogram combining draws 

from both sources

 Underlying model: Spectra are 
histograms over frequencies

5158399681444811645598 114722436947224991327274453 1147201737111371387520453 91127246947720351510127411501502 5158399681444811645598 114722436947224991327274453 1147201737111371387520453 91127246947720351510127411501502
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Ball-and-urn model for a mixed signal
The caller!!

11755/18797

 Each sound source is represented by its own picker and urns
 Urns represent the distinctive spectral structures for that source
 Assumed to be known beforehand (learned from some separate training data)

 The caller selects a picker at random
 The picker selects an urn randomly and draws a ball
 The caller calls out the frequency on the ball

 A spectrum is a histogram of frequencies called out
 The total number of draws of any frequency includes contributions from both sources
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 Goal: Estimate number of draws from each source
 The probability distribution for the mixed signal is a linear 

combination of the distribution of the individual sources

 The individual distributions are mixture multinomials

 And the urns are known

Separating the sources

11755/18797
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 Goal: Estimate number of draws from each source
 The probability distribution for the mixed signal is a linear 

combination of the distribution of the individual sources

 The individual distributions are mixture multinomials

 And the urns are known

Separating the sources
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 Goal: Estimate number of draws from each source
 The probability distribution for the mixed signal is a linear 

combination of the distribution of the individual sources
 The individual distributions are mixture multinomials
 And the urns are known
 Estimate remaining terms using EM

Separating the sources

11755/18797
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Algorithm
 For each frame:

 Initialize Pt(s)
 The fraction of balls obtained from source s

 Alternately, the fraction of energy in that frame from source s

 Initialize Pt(z|s)
 The mixture weights of the urns in frame t for source s

11755/18797

 The mixture weights of the urns in frame t for source s

 Reestimate the above two iteratively

 Note:  P(f|z,s) is not frame dependent
 It is also not re-estimated

 Since it is assumed to have been learned from separately 
obtained unmixed training data for the source
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Iterative algorithm
 Iterative process:

 Compute a posteriori probability of the combination of 
speaker s and the zth urn for each speaker for each f

 Compute the a priori weight of speaker s
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 Compute the a priori weight of speaker s

 Compute mixture weight of zth urn for speaker s 
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What is Pt(s,z|f)
 Compute how each ball (frequency) is split between the urns of 

the various sources

 The ball is first split between the sources

 The fraction of the ball attributed to any source s is split between
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 The fraction of the ball attributed to any source s is split between 
its urns:

 The portion attributed to any urn of any source is a product of the 
two
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Reestimation
 The reestimate of source weights is simply 

the proportion of all balls that was attributed 
to the sources
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 The reestimate of mixture weights is the 
proportion of all balls attributed to each urn
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Separating the Sources

 For each frame:

 Given
 St(f) – The spectrum at frequency f of the mixed 

signal

E ti t
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 Estimate
 St,i(f) – The spectrum of the separated signal for 

the i-th source at frequency f

 A simple maximum a posteriori estimator
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If we have only have bases for one source?

 Only the bases for one of the two sources is 
given
 Or, more generally, for N-1 of N sources
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If we have only have bases for one source?

 Only the bases for one of the two sources is given
 Or, more generally, for N-1 of N sources

 The unknown bases for the remaining source must also be 
estimated!
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Partial information: bases for one source 
unknown

 P(f|z,s) must be initialized for the additional 
source

 Estimation procedure now estimates bases 
along with mixture weights and source
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along with mixture weights and source 
probabilities
 From the mixed signal itself

 The final separation is done as before
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Iterative algorithm
 Iterative process:

 Compute a posteriori probability of the combination of 
speaker s and the zth urn for the speaker for each f

 Compute the a priori weight of speaker s and mixture
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 Compute the a priori weight of speaker s and mixture 
weights

 Compute unknown bases
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Partial information: bases for one source 
unknown

 P(f|z,s) must be initialized for the additional 
source

 Estimation procedure now estimates bases 
along with mixture weights and source
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along with mixture weights and source 
probabilities
 From the mixed signal itself

 The final separation is done as before
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Separating Mixed Signals: Examples
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 “Raise my rent” by David 
Gilmour

 Background music “bases” 
learnt from 5-seconds of 
music-only segments within 
the song

 Lead guitar “bases” bases 
learnt from the rest of the song

 Norah Jones singing “Sunrise”

 A more difficult problem:
 Original audio clipped!

 Background music bases 
learnt from 5 seconds of 
music-only segments
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Where it works

 When the spectral structures of the two 
sound sources are distinct
 Don’t look much like one another

 E.g. Vocals and music

E L d it d i
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 E.g. Lead guitar and music

 Not as effective when the sources are similar
 Voice on voice
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Separate overlapping speech
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 Bases for both speakers learnt from 5 second 
recordings of individual speakers

 Shows improvement of about 5dB in Speaker-to-
Speaker ratio for both speakers
 Improvements are worse for same-gender mixtures
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How about non-speech data

 We can use the same model to represent other data

19x19 images = 361 dimensional vectors
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p

 Images: 
 Every face in a collection is a histogram

 Each histogram is composed from a mixture of a fixed number of 
multinomials
 All faces are composed from the same multinomials, but the manner in which the 

multinomials are selected differs from face to face

 Each component multinomial is also an image
 And can be learned from a collection of faces

 Component multinomials are observed to be parts of faces
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