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The Engineer and the Musician
Once upon a time a rich potentate 
discovered a previously unknown p y
recording of a beautiful piece of 
music. Unfortunately it was badly 
damaged.  

He greatly wanted to find out what it would soundHe greatly wanted to find out what it would sound 
like if it were not.

S h hi d i dSo he hired an engineer and a 
musician to solve the 
problem..p
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The Engineer and the Musician

The engineer worked for many 
years. He spent much money andyears. He spent much money and 
published many papers.

Finally he had a somewhat scratchy 
restoration of the music..

The musician listened to the music 
carefully for a day, transcribed it,  
b k t hi t t k b d dbroke out his trusty keyboard and 
replicated the music.
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The Prize

Who do you think won the princess?
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Sounds – an example
 A sequence of notes

 Chords from the same notes

 A piece of music from the same (and a few additional) notes
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Sounds – an example
 A sequence of sounds

 A proper speech utterance from the same p p p
sounds
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Template Sounds Combine to Form a Signal
 The individual component sounds “combine” to form the 

final complex sounds that we perceive
N t f i Notes form music

 Phoneme-like structures combine in utterances
 Component sounds – notes, phonemes – too are complexp , p p

 Sound in general is composed of such “building blocks” 
or themesor themes
 Our definition of a building block: the entire structure occurs 

repeatedly in the process of forming the signal 

 Goal: To learn these building blocks automatically, from 
analysis of data

7

y
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Urns and balls
6 4 1 5 3 2 2 2 …

5
2

1 6 6
2

4
33

5 5 1

 An urn has many balls
 Each ball has a number marked on it

 Multiple balls may have the same number
 A “picker” draws balls at random..
 This is a multinomial
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Signal Separation with the Urn model

 What does the probability of drawing balls 
f U h t d ith d ?from Urns have to do with sounds?
 Or Images?

 We shall see..
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The representation

TIME
AMPL FREQ

TIME

 We represent signals spectrographically
 Sequence of magnitude spectral vectors estimated from (overlapping)

TIME TIME

 Sequence of magnitude spectral vectors estimated from (overlapping) 
segments of signal

 Computed using the short-time Fourier transform

 Note: Only retaining the magnitude of the STFT for our operations

11755/18797

 We will, however need the phase later for conversion to a signal
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A Multinomial Model for Spectra
 A magnitude spectral vector obtained from a DFT 

represents spectral magnitude against discrete

p

represents spectral magnitude against discrete 
frequencies
 This may be viewed as a histogram of draws from a multinomial

f

FRAME 
HISTOGRAM

Pt (f )

Th  b ll  

FRAME 

t f

Power spectrum of frame t

The balls are
marked with
discrete frequency
indices from the DFT

11755/18797

Probability distribution underlying the t-th spectral vector

indices from the DFT

29 Sep 2011 11



A more complex model
 A “picker” has multiple urns

I h d h fi t l t d th b ll

p

 In each draw he first selects an urn, and then a ball 
from the urn
 Overall probability of drawing f is a mixture multinomial Overall probability of drawing f is a mixture multinomial

 Since several multinomials (urns) are combined
 Two aspects – the probability with which he selects any 

urn and the probability of frequencies with the urnsurn, and the probability of frequencies with the urns

HISTOGRAM

multiple draws
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The Picker Generates a Spectrogram

 The picker has a fixed set of Urns
 Each urn has a different probability distribution over f

 He draws the spectrum for the first frame
 In which he selects urns according to some probability P0(z)

 Then draws the spectrum for the second frame
 In which he selects urns according to some probability P1(z)

11755/18797

 And so on, until he has constructed the entire spectrogram
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The Picker Generates a Spectrogram

 The picker has a fixed set of Urns
 Each urn has a different probability distribution over f

 He draws the spectrum for the first frame He draws the spectrum for the first frame
 In which he selects urns according to some probability P0(z)

 Then draws the spectrum for the second frame
 In which he selects urns according to some probability P1(z)

 And so on, until he has constructed the entire spectrogram
 The number of draws in each frame represents the rms energy in 

11755/18797

p gy
that frame
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The Picker Generates a Spectrogram

 The URNS are the same for every frame
 These are the component multinomials or bases for the source 

that generated the signalthat generated the signal

 The only difference between frames is the probability with which 
he selects the urns

( ) ( ) ( | )t tz
P f P z P f z SOURCE specific

basesFrame-specific
spectral distribution

11755/18797

Frame(time) specific mixture weight
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Spectral View of Component Multinomials

5
1583996

81444811645 598 1
14722436947224991327274453 1

147201737111371387520453 91
127246947720351510127411501502

 Each component multinomial (urn) is actually a normalized 
histogram over frequencies P(f |z)

I t I.e. a spectrum

 Component multinomials represent latent spectral structures 
(b ) f th i d(bases) for the given sound source

 The spectrum for every analysis frame is explained as an 
dditi bi ti f th l t t t l t t

11755/18797

additive combination of these latent spectral structures
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Spectral View of Component Multinomials

5
1583996

81444811645 598 1
14722436947224991327274453 1

147201737111371387520453 91
127246947720351510127411501502

 By “learning” the mixture multinomial model for any 
sound source we “discover” these latent spectral p
structures for the source

Th d l b l t f t f The model can be learnt from spectrograms of a 
small amount of audio from the source using the EM 
algorithm

11755/18797

algorithm
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EM learning of bases

 Initialize bases
(f| ) f f f 5 5 598 1 274453 1 7520453 91411501502

 P(f|z) for all z, for all f
 Must decide on the number of urns 

5
1583996

81444811645 598 1
14722436947224991327274453 1

147201737111371387520453 91
127246947720351510127411501502

 For each frame
 Initialize P (z) Initialize Pt(z)
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Learning the Bases

 Simple EM solution
 Except bases are learned from all frames Except bases are learned from all frames
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Learning Structures
Speech Signal bases Basis-specific spectrogramsSpeech Signal Basis-specific spectrograms

5158399681444811645598 114722436947224991327274453 1147201737111371387520453 91127246947720351510127411501502

P(f|z) From Bach’s Fugue in Gm
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Time 

Pt(z)
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Given Bases Find Composition

( ) ( ) ( | )t tz
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 Iterative process:
 Compute a posteriori probability of the zth topic for Compute a posteriori probability of the z topic for 

each frequency f in the t-th spectrum
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Bag of Frequencies vs. Bag of 
SpectrogramsSpectrograms
 The PLCA model described is a “bag of frequencies” 

modelmodel
 Similar to “bag of words”

 Composes spectrogram one frame at a timeCo poses spect og a o e a e at a t e
 Contribution of bases to a frame does not affect other frames

 Random Variables: 
 Frequency
 Possibly also the total number of draws in a frame

Z f

Nt

Pt(Z)

Nt



Bag of Frequencies PLCA model
time

T=0: P (Z) T=1: P (Z) T=k: P (Z)T=0: P0(Z) T=1: P1(Z) T=k: Pk(Z)

5
5

8

5 1
7

4

4 1 1
7

4

1

8 4 4

P(f|z)
Z=0 Z=1 Z=2 Z=M

 Bases are simple distributions over frequencies
 Manner of selection of urns/components varies 

f l i f t l i ffrom analysis frame to analysis frame



Bag of Spectrograms PLCA Model

Z 1 Z 2 Z M

P(T|Z) P(F|Z) P(T|Z) P(F|Z) P(T|Z) P(F|Z)

 Compose the entire spectrogram all at once
 Complex “super pots” include two sub pots

Z=1 Z=2 Z=M

 Complex super pots  include two sub pots
 One pot has a distribution over frequencies: these are our bases
 The second has a distribution over time

 Each draw: Each draw:
 Select a superpot
 Draw “F” from frequency pot

D “T” f ti t


Z

zfPztPzPftP )|()|()(),(

 Draw “T” from time pot
 Increment histogram at (T,F)



The bag of spectrograms

( | ) ( | ) ( | ) ( | ) ( | ) ( | )
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 Drawing procedure
 Fundamentally equivalent to bag of frequencies model

Repeat N times
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 Fundamentally equivalent to bag of frequencies model 
 With some minor differences in estimation



Estimating the bag of spectrograms
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 EM update rules
 Can learn all parameters
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Bag of frequencies vs. bag of spectrograms
 Fundamentally equivalent
 Difference in estimation

 Bag of spectrograms: For a given total  N and P(Z), the 
total “energy” assigned to a basis is determined

increasing its energy at one time will necessarily decrease its increasing its energy at one time will necessarily decrease its 
energy elsewhere

 No such constraint for bag of frequencies
 More unconstrained More unconstrained

 Can also be used to assign temporal patterns for 
components

 Bag of frequencies more amenable to imposition of 
a priori distributions
B f t t l fit f th Bag of spectrograms a more natural fit for other 
models



The PLCA Tensor Model

Z

P(A|Z) P(B|Z) P(C|Z)

Z

P(A|Z) P(B|Z) P(C|Z)

 The bag of spectrograms can be extended to 
multivariate data

)|(...)|()|()(),...,( zcPzbPzaPzPcbaP
Z


 EM update rules are essentially identical to 
bivariate case

Z



How meaningful are these structures

 If bases capture data structure they must
f Allow prediction of data

 Hearing only the low-frequency components of a 
note, we can still know the notenote, we can still know the note

 Which means we can predict its higher frequencies

 Be resolvable in complex sounds
 Must be able to pull them out of complex mixtures

 Denoising Denoising
 Signal Separation from Monaural Recordings
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The musician vs. the signal processor
 Some badly damaged music is given to a signal processing whiz 

and a musician
 They must “repair” it.  What do they do?

 Signal processing :g p g
 Invents many complex algorithms
 Writes proposals for government grants
 Spends $1000,000 p ,
 Develops an algorithm that results in less scratchy sounding music

 Musician:
 Listens to the music and transcribes it
 Plays it out on his keyboard/piano
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Prediction
 Bandwidth Expansion

 Problem: A given speech signal only has frequencies in the 
300Hz-3.5Khz range
 Telephone quality speech

 Can we estimate the rest of the frequencies

 The full basis is known The full basis is known
 The presence of the basis is 

identified from the observationidentified from the observation
of a part of it

 The obscured remaining spectral

11755/18797

pattern can be guessed
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Bandwidth Expansion
 The picker has drawn the histograms for every frame in the 

signal
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Bandwidth Expansion
 The picker has drawn the histograms for every frame in the 

signal
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Bandwidth Expansion
 The picker has drawn the histograms for every frame in the 

signal
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Bandwidth Expansion
 The picker has drawn the histograms for every 

frame in the signal

 However, we are only able to observe the number 
of draws of some frequencies and not the others

11755/18797

of draws of some frequencies and not the others
 We must estimate the number of draws of the 

unseen frequencies 40



Bandwidth Expansion: Step 1 – Learning

5 4445 5 98 1 992 74453 1 377520453 91 515411501502
15

83996
81
444

81164
5 98

147
22436947

224
99

1327
53

147
2017 37

111
37

138
53

127
2469477

203
515

10127
50

 From a collection of full-bandwidth training 
data that are similar to the bandwidth-
reduced data, learn spectral bases
 Using the procedure described earlier
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Bandwidth Expansion: Step 2 – Estimation

P ( ) P (z) P ( )P1(z)

5
15 81

444
81164

5 5 98 1
147 224

99
1327

2 74453 1
147 111

37
138

7520453 91
127 203

515
10127

411501502

P2(z) Pt(z)

 Using only the observed frequencies in the

15
83996

8181164 147
22436947

2241327 147
2017 37

111138 127
2469477

20310127

 Using only the observed frequencies in the 
bandwidth-reduced data, estimate mixture 
weights for the bases learned in step 1.
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weights for the bases learned in step 1.
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Step 2
 Iterative process:
 Compute a posteriori probability of the zth urn for 

th k f h fthe speaker for each f
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t
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( | ) g
be reestimated
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Step 3 and Step 4
 Compose the complete probability distribution for each 

frame, using the mixture weights estimated in Step 2, g g p

 tt zfPzPfP )|()()(

N t th t i i t i ht ti t d f

z

 Note that we are using mixture weights estimated from 
the reduced set of observed frequencies
 This also gives us estimates of the probabilities of the 

unobserved frequencies

 Use the complete probability distribution Pt (f  ) to predict 
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p p y t ( ) p
the unobserved frequencies!
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Predicting from Pt(f ): Simplified Example

 A single Urn with only red and blue balls

 Given that out an unknown number of draws Given that out an unknown number of draws, 
exactly m were red, how many were blue?

O Si l l ti One Simple solution:
 Total number of draws N = m / P(red)
 The number of tails drawn = N*P(blue)

11755/18797

( )
 Actual multinomial solution is only slightly more complex
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The inverse multinomial
• Given P(Z) for all bases
• Observed n1, n2 .. nk1 2 k

• What is nk+1, nk+2…
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 No is the total number of observed counts
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fo n)N(

 n1 + n2 + …
 Po is the total probability of observed events

 P(f1) + P(f2) + …



Estimating unobserved frequencies

 Expected value of the number of draws: 




 s)frequencie (observed  

)(
ˆ f

t

t

fS

N


 s)frequencie (observed  

)(
f

t
t

fP

 Estimated spectrum in unobserved 
frequencies
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Overall Solution
 Learn the “urns” for the signal source 

from broadband training data
5158399681444811645598 114722436947224991327274453 1147201737111371387520453 91127246947720351510127411501502

 For each frame of the reduced 
bandwidth test utterance, find mixture 
weights for the urnsweights for the urns 
 Ignore (marginalize) the unseen 

frequencies
Pt(z)

 Given the complete mixture multinomial 
di t ib ti f h f ti t

5158399681444811645598 114722436947224991327274453 1147201737111371387520453 91127246947720351510127411501502

distribution for each frame, estimate 
spectrum (histogram) at unseen 
frequencies Pt(z)

11755/18797

5158399681444811645598 114722436947224991327274453 1147201737111371387520453 91127246947720351510127411501502
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Prediction of Audio

 Some frequency components are missing (left panel)
W k th b P(f| ) We know the bases P(f|z)
 But not the mixture weights for any particular spectral frame

 We must “fill in” the hole in the image
T bt i th t th i ht To obtain the one to the right

 Easy to do – as explained
29 Sep 2011 4911755/18797



A more fun example
•Reduced BW data

•Bases learned from this

•Bandwidth expanded version

5029 Sep 2011 11755/18797



Signal Separation from Monaural 
Recordings
 The problem:p
 Multiple sources are producing sound 

simultaneously
 The combined signals are recorded over a single 

microphone
 The goal is to selectively separate out the signal 

for a target source in the mixture
 Or at least to enhance the signals from a selected Or at least to enhance the signals from a selected 

source
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Problem Specification
 The mixed signal contains 

components from multiple 
sources

 Each source has its own “bases”
 In each frame

+ =a b

 Each source draws from its own 
collection of bases to compose a 
spectrum
 Bases are selected with a frame 5158399681444811645598 114722436947224991327274453 1147201737111371387520453 91127246947720351510127411501502 5158399681444811645598 114722436947224991327274453 1147201737111371387520453 91127246947720351510127411501502 Bases are selected with a frame 

specific mixture weight
 The overall spectrum is a mixture 

of the spectra of individual 
sources

399 369 7 69 83996 22436947 201737 2469477

sources
 I.e. a histogram combining draws 

from both sources

 Underlying model: Spectra are 

11755/18797

histograms over frequencies
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Ball-and-urn model for a mixed signal
Th ll !!The caller!!

5
15

83996
81
444

81164
5 5 98 1

147
22436947

224
99

1327
2 74453 1

147
2017 37

111
37

138
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127
2469477

203
515

10127
411501502 5

15
83996

81
444

81164
5 5 98 1

147
22436947

224
99

1327
2 74453 1

147
2017 37

111
37

138
7 520453 91

127
2469477

203
515

10127
411501502

 Each sound source is represented by its own picker and urns
 Urns represent the distinctive spectral structures for that source
 Assumed to be known beforehand (learned from some separate training data)

 The caller selects a picker at random
 The picker selects an urn randomly and draws a ball
 The caller calls out the frequency on the ball

11755/18797

 A spectrum is a histogram of frequencies called out
 The total number of draws of any frequency includes contributions from both sources
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Separating the sources
 Goal: Estimate number of draws from each source

 The probability distribution for the mixed signal is a linear 
combination of the distribution of the individual sourcescombination of the distribution of the individual sources

 The individual distributions are mixture multinomials
 And the urns are known
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Separating the sources
 Goal: Estimate number of draws from each source

 The probability distribution for the mixed signal is a linear 
combination of the distribution of the individual sourcescombination of the distribution of the individual sources

 The individual distributions are mixture multinomials
 And the urns are known

  fPPPfPPPfP )|()|()()|()|()()(
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G l E ti t b f d f h
Separating the sources
 Goal: Estimate number of draws from each source

 The probability distribution for the mixed signal is a linear 
combination of the distribution of the individual sources
Th i di id l di t ib ti i t lti i l The individual distributions are mixture multinomials

 And the urns are known
 Estimate remaining terms using EM
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Algorithm
 For each frame:

 Initialize Pt(s)t( )
 The fraction of balls obtained from source s
 Alternately, the fraction of energy in that frame from source s
Initialize P (z|s) Initialize Pt(z|s)
 The mixture weights of the urns in frame t for source s

 Reestimate the above two iteratively

 Note: P(f|z s) is not frame dependent Note:  P(f|z,s) is not frame dependent
 It is also not re-estimated
 Since it is assumed to have been learned from separately 
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obtained unmixed training data for the source
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Iterative algorithm
 Iterative process:

 Compute a posteriori probability of the combination of 
speaker s and the zth urn for each speaker for each fspeaker s and the zth urn for each speaker for each f
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
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 Compute the a priori weight of speaker s
( , | ) ( )t tP s z f S f

' 's z

C t i t i ht f th f k
' '

( )
( ', ' | ) ( )

t t
z f

t
t t

s z f

P s
P s z f S f






 Compute mixture weight of zth urn for speaker s 
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What is Pt(s,z|f)
 Compute how each ball (frequency) is split between the urns of 

the various sources
 The ball is first split between the sources The ball is first split between the sources
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
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t
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 The fraction of the ball attributed to any source s is split between 
its urns:
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 The portion attributed to any urn of any source is a product of the 
two
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Reestimation
 The reestimate of source weights is simply 

the proportion of all balls that was attributed 
to the sources

( , | ) ( )t tP s z f S f

' '

( , | ) ( )
( )

( ', ' | ) ( )

t t
z f

t
t t

s z f

f f
P s

P s z f S f





 The reestimate of mixture weights is the 
ti f ll b ll tt ib t d t hproportion of all balls attributed to each urn
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Separating the Sources

 For each frame:
 Given
 St(f) – The spectrum at frequency f of the mixed 

i lsignal
 Estimate
 St,i(f) – The spectrum of the separated signal for 

the i-th source at frequency f
A i l i t i i ti t A simple maximum a posteriori estimator
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If we have only have bases for one source?

 Only the bases for one of the two sources is 
igiven

 Or, more generally, for N-1 of N sources
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If we have only have bases for one source?

 Only the bases for one of the two sources is given
 Or more generally for N 1 of N sources Or, more generally, for N-1 of N sources
 The unknown bases for the remaining source must also be 

estimated!
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Partial information: bases for one source 
unknown
 P(f|z s) must be initialized for the additional P(f|z,s) must be initialized for the additional 

source
Estimation procedure now estimates bases Estimation procedure now estimates bases 
along with mixture weights and source 
probabilitiesprobabilities
 From the mixed signal itself

 The final separation is done as before The final separation is done as before
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Iterative algorithm
 Iterative process:

 Compute a posteriori probability of the combination of 
speaker s and the zth urn for the speaker for each fspeaker s and the zth urn for the speaker for each f
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 Compute the a priori weight of speaker s and mixture 
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 Compute unknown bases
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Partial information: bases for one source 
unknown
 P(f|z s) must be initialized for the additional P(f|z,s) must be initialized for the additional 

source
Estimation procedure now estimates bases Estimation procedure now estimates bases 
along with mixture weights and source 
probabilitiesprobabilities
 From the mixed signal itself

 The final separation is done as before The final separation is done as before
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Separating Mixed Signals: Examples

 “Raise my rent” by David 
Gilmour  Norah Jones singing “Sunrise”Gilmour

 Background music “bases” 
learnt from 5-seconds of 

 Norah Jones singing Sunrise

 A more difficult problem:
 Original audio clipped!

music-only segments within 
the song  Background music bases 

learnt from 5 seconds of 
music-only segments
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 Lead guitar “bases” bases 
learnt from the rest of the song

music only segments
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Where it works

 When the spectral structures of the two 
d di ti tsound sources are distinct

 Don’t look much like one another
E V l d i E.g. Vocals and music

 E.g. Lead guitar and music

 Not as effective when the sources are similar
 Voice on voice Voice on voice
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Separate overlapping speech

 Bases for both speakers learnt from 5 second 
recordings of individual speakers

 Shows improvement of about 5dB in Speaker-to-
Speaker ratio for both speakers
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Speaker ratio for both speakers
 Improvements are worse for same-gender mixtures
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How about non-speech data
19x19 images = 361 dimensional vectors

 We can use the same model to represent other data
 Images: 

 Every face in a collection is a histogram
 Each histogram is composed from a mixture of a fixed number of 

multinomials
 All faces are composed from the same multinomials but the manner in which the All faces are composed from the same multinomials, but the manner in which the 

multinomials are selected differs from face to face
 Each component multinomial is also an image

 And can be learned from a collection of faces
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 Component multinomials are observed to be parts of faces
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