The Radon Transform

Carsten Hgilund

Aalborg University, VGIS, 07gr721

November 12, 2007

Contents

1 Introduction

2 Theor

‘

‘3 Implementation

1

Bibliograph

Chapter 1

| ntroduction

This is a report about the Radon transform for the course énfagcessing held by Thomas Moeslund
at Aalborg University in the autumn of 2007.

The Radon transform is named after the Austrian matheraatitmhann Karl August Radon (December
16, 1887 — May 25, 1956&[4]. The main application of the Rattansform is CAT scans, Figure 1.1,
where the inverse Radon transform is applied.

The Radon transform can also be used for line detection,hwhilt be the focus of this report.
Chapter 2 on the next page explains the theory, mostly usatgrps.
Chapter 3 on pagd 9 details the implementation using pistiiee MATLAB source code is also listed.

Chapter 4 on pagde 16 lists the results obtained with the imgigation detailed in this report using two
different input images and compares this with the resulhioled using the Radon transform found in
MATLAB.

Figure 1.1: A CAT scannerﬁl].

Chapter 2

Theory

This section is based OE H 3].

Applying the Radon transform on an imagéx,y) for a given set of angles can be thought of as com-
puting the projection of the image along the given anglese fsulting projection is the sum of the
intensities of the pixels in each direction, i.e. a line gned. The result is a new imad&p,0). This is
depicted in Figure 2.1 on the facing page.

This can be written mathematically by defining
p = XcosH +ysind (2.1)

after which the Radon transform can be written as

R(p,8) [Z [Z £(x,y)8(p — xCos — ysin®)dx dy 2.2)

whered(-) is the Dirac delta function.

There are two distinct Radon transforms. The source caerdith a single point (not shown) or it can
be a array of sources (as shown in Figure 2.1 on the next pade) method discussed in this report
uses an array of sources. The theory is explained in Figutesrthe facing page to 2.7 on pagde 8.

The Radon transform is a mapping from the Cartesian rectangoordinategx,y) to a distance and
an angelp, 6), also known as polar coordinates.

An example of the transform of an image for a specific angleihiergin Figure 2.4 on padge 6 and
Figure 2.6 on pade 7. The transform for a set of angels canjtietdd in an image, as in Figure 2.7 on
page 8.

Figure 2.1: The source and sensor contrapment is rotated about ther adrites
object. For each angkthe density of the matter the rays from the source passes
through is accumulated at the sensor. This is repeated farea get of angels,
usually from6 € [0;180). The angel 180 is not included since the result would be
identical to the angel 0.

Figure 2.2: For each angl® and each distange the intensity of the matter a ray
perpendicular to thp axis crosses are summed ug=ap, 0).

Figure 2.3: As an example, the line in this image willéat= 19° be distributed over
a larger interval.

Cumulative intensity
N N w w B
o 3] o 3] o
Il Il Il Il

=
(&3]
T
L

10 b

0
-150 -100 -50 0 50 100 150

Figure 2.4: The result of a Radon transform wigh= 19° which there is no definite
peak.

Figure 2.5: When8 = 64° the line will be distributed over a very small interval.

0=64°

N
o

w
(&)
T
L

w
o
T
L

N
ol
T
L

20 h

151 h

Cumulative intensity

0
-150 -100 -50 0 50 100 150

Figure 2.6: The result of a Radon transform with= 64°, perpendicular to the
line in the image. This results in a peak, which makes it fubsgd read the line
parameters.

R(p.6)

-100 135
-80
130
-60
-40 125

-20

20

40

60

80

100

20 40 60 80 100 120 140 160 180
0 (degrees)

Figure 2.7: The complete Radon transform of the image. The white spdids t
distance from the center and the angel at which the sum ofsittes in the image
peaks. Itis thus the slope of the line along with the position

Chapter 3

| mplementation

The method with an array of sources is chosen, since this iie straight forward. Also, there are two
general ways to implement the chosen Radon transform. kither be a function o andp for which

all matching pixels are calculated, or it could be implenaeas a function of the image pixels. The
latter is the easiest but is, however, the Hough transform.

It is implemented in MATLAB. The source is shown in Listingln page 13. The function takes a
grayscale image as input and displays the Radon transfodesazsibed herein.

10

Figure 3.1: The pixel coordinates in an image is usually only positiviee Tirst step
is therefore to center the image which can be accomplishedlbyacting half the
width from eachx coordinate and likewise half the height from egatoordinate.

Figure 3.2: The equation of the summation line is givenyas ax+b. As can
be seen by using trigonometry, the inclinatiorais- —%((g)) and the intersection

with they axis isb = #9). This fits with Eq.[(2.1) on pade 4. These parameters
are determined for each combinationGéndp. The maximunyp is set equal to
the length of the diagonal of the image. Theoordinates are, like andy, also

centered.

11

Figure 3.3: In order to reduce the number of calculations necessary thénmum
and minimum of eithek or y are determined.

90<06<135

135<6<180 0<6<45

Figure 3.4: Whetherx ory is used as the variable and how the minimum and maxi-
mum of said variable is calculated depends on in which of thie &reas depicted

0 is in since using e.g« as the variably when the summation line has an absolute
inclination of more than 1 will cause some pixels to be sképpdleither6 =0

nor ® = 180 is included since the line perpendicular to this wouldehiafinite
inclination.

0<6<45; X = y—b

a
Ymn = max(—n,am+b)
Ymax = min(n,—am+b)

45<0<90: y = ax+b

n—b
Ymin = max(—m,T)
. —-n—-b
Ymex = min(m ———)
90<08<135: y = ax+b
—-n—-b
Ymin = max(fm,)
= min(m n—b)
Ymax = T
135< 6 < 180: X = y;b
Ymn = max(—n,—am+b)
Ymax = Min(n,am+b)
Pmax — 2M
0=180: p = Xx+ Liz 1
y = [_m’ m]

Figure 3.5: The formulas used to calculate the coordinates and the ramiand
maximum of the variable depending on the an@levherem is half the width
of the image anadh is half the height of the image is the inclination,b is the
intersection with they axis, andpmax is the size of the diagonal of the image, i.e.
Pmax = [1/(2m)2+ (2n)2]. In e.g. the first equation thecoordinate depends on
the choselty coordinate in order to make sure all pixels along this lin@kgn into
account when calculating the transform, as noted in FiguteoB the preceding
page.

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

13

Listing 3.1: Implementation

function [res] = myradon(f)
[NM] = size(f);

% Center of the image

m = round(M/2) ;

n = round(N/2);

% The total number of rho’s is the number of pixels on the diagonal ,
% this is the largest straight line on the image when rotating
rhomax = ceil (sqrt(M"2 + N°2));

rc = round(rhomax/2);

mt = max(theta);

% Preallocate the matrix used to store the result
% add 1 to be sure, could also be subtracted when checking bounds

since

res = castgeros(rhomax+1,mt),’'double’);
tic
for t = 1:45 % below 45 degrees, use y as variable
costheta =cos(txpi/180);
sintheta =sin(txpi/180);
a = —costheta/sintheta% y = ax + b
for r = l:rhomax
rho = r — rc;
b = rho/sintheta;%y = ax + b
ymax = min(round(—asm+b) ,n—1);
ymin = max(round (axm+b),—n);
for y = ymin:ymax
x = (y-b)/a;
xfloor = floor (x); % The integer part of x
xup = x — xfloor; % The decimals of x
xlow = 1 — xup; % What it says
x = xfloor;
X = max(x,—m);
X = min(x,m-2);
res(rhomax— r + 1 ,mt-t) = res(rhomax— r + 1 ,mtt) + xlows«f(y+n+1,x+m,
+1);
res(rhomax— r + 1,mt-t) = res(rhomax— r + 1 ,mt-t) + xupxf(y+n+1,x+m+2)
end
end
end
for t = 46:90

costheta =cos(txpi/180);
sintheta =sin(txpi/180);
a = —costheta/sintheta% y = ax + b

for r = 1:rhomax

a7

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

14

end
for

end
for

rho = r — rc;
b = rho/sintheta;% y = ax + b
xmax = min(round((—n-b)/a) ,m-1)
xmin = max(round ((n-b)/a),—m);
for x = xmin:xmax

y = axx+b;

yfloor = floor (y);

yup =y — yfloor;

ylow = 1 — yup;

y = yfloor;

y = max(y,—n);

y = min(y,n-2);

res(rhomax— r + 1,mtt) =
+1);

res(rhomax— r + 1 ,mtt) =
end
end

t = 91:135
costheta =cos(t«pi/180);
sintheta =sin(txpi/180);

res(rhomax— r + 1,mtt) + ylowsxf(y+n+1,x+m,

res(rhomax— r + 1 ,mtt) + yupxf(y+n+2 ,x+m+1)

a = —costheta/sintheta% y = ax + b

for r = 1:rhomax
rho = r — rc;
b = rho/sintheta;% y = ax + b
xmax = min(round ((n-b)/a) ,m-1);
xmin = max(round((—n-b)/a),—m);
for x = xmin:xmax
y = axx+b;
yfloor = floor (y);
yup =y — yfloor;
ylow = 1 — yup;
y = yfloor;
y = max(y,—n);
y = min(y,n-2);
res(rhomax— r + 1,mtt) =
+1);
res(rhomax— r + 1 ,mtt) =

end
end

res(rhomax— r + 1 ,mt-t) + ylowxf(y+n+1,x+m,

res(rhomax— r + 1 ,mt-t) + yupxf(y+n+2 x+m+1)

t = 136:179% above 135 degrees, use y as variable

costheta =cos(t«pi/180);
sintheta =sin(txpi/180);

a = —costheta/sintheta% y = ax + b

for r = 1:rhomax
rho = r — rc;

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

15

b = rho/sintheta;% y = ax + b
ymax = min(round(axm+b) ,n—-1);
ymin = max(round(—axm+b),—n);
for y = ymin:ymax
X = (y-b)/a;
xfloor = floor (x);
xup = x — xfloor;
xlow = 1 — xup;
x = xfloor;
X = max(x,—m);
X min(x,m-2);
res(rhomax— r + 1 ,mt-t) = res(rhomax— r + 1 ,mtt) + xlowsf(y+n+1,x+m,
+1);
res(rhomax— r + 1 ,mt-t) = res(rhomax— r + 1 ,mtt) + xup«f(y+n+1l,x+tm+2)

end
end
end
for t = 180 % the sum—line is vertical
rhooffset =round((rhomax — M)/2);
for x = 1:M % cannot use r as x in both res and f since they are not the same -
size
r = x+trhooffset;
r = rhomax— r + 1;
for y = 1:N
res(r,t) = res(r,t) + f(y,x);
end
end
end
toc
rhoaxis = (l:rhomax+1) rc;
figure
imagesc(1:180,rhoaxis ,res);
colormap (hot), colorbar

As can be seen, linear interpolation is used as given infgs3i2, wherglow gives the amount that falls
into they bin andyup gives the amount that falls into tlyer 1 bin.

Listing 3.2: Linear Interpolation

yfloor = floor (y);
yup =y — yfloor;
ylow = 1 — yup;

y = yfloor;

This concludes the implementation. The results obtainél this implementation is given in the next
chapter.

Chapter 4

Results

The results obtained with the algorithm as described hdferslifrom the built-in MATLAB Radon
function. Using Figuré 4]1 as the input image Figure 4.2 anftiting page shows the result of the
algorithm as described in this report and Figure 4.3 on thé page depicts the result from the built-in
MATLAB Radon transform.

— 250

1200

150

100

50

Figure 4.1: The input image. Notice the two lines faintly visible.

17

R(p,0) x 10

20 40 60 80 100 120 140 160 180
6 (degrees)

Figure 4.2: The result obtained with the implementation given hereite Two
small, bright spots are the lines visible in the input image.

R(p.6) x 10*

125

20

40

60

80

100

20 40 60 80 100 120 140 160 180
0 (degrees)

Figure 4.3: The result obtained using the built-in MATLAB Radon trarsfio The
two lines are also visible here, but competes with the géaecaimulation of pixel
intensities ab = 45° and6 = 13%°.

18

This does not, however, imply that this implementation isless. It has some advantages. Compared
to Figure 4.8 on the preceding page the image in Figure 4.h@ptevious page can more easily be
thresholded leaving only the pixels of importance.

The results are not always this different as can be seen wsieg &igure 4.4 as input which gives
Figure 4.5 and Figurie 4.6 on the next page, respectively.

4250
20
40 1200
60
80 1150
100
120 100
140 —‘//_
50

160
180

200

50 100 150 200

Figure 4.4: Another image used as input.

19

R(pve) X :]_O4
13.5
-100
13
-50 125
a 0

50

100

20 40 60 80 100 120 140 160 180
6 (degrees)

Figure 4.5: Result obtained with the implementation from this repottteTat line

is the largest, bright spot and the thin line is the smalglirspot. The curves not
meeting to form a bright spot is the wavy line.

R(p.6)

x 10*
14
-100 13%
13
-50
12.5
a 0

50

100

20 40 60 80 100 120 140 160 180
6 (degrees)

Figure 4.6: Result obtained with the implementation from MATLAB. Thésriearly

identical to Figuré 4.5. The difference is presumably duesiag a different inter-
polation.

Bibliography

[1] Muffet. CAT scanner for simulation. http:/flickr.coptiotos/calliope/357130113/.
[2] The MathWorks. Radon Transform . http://www.mathwocksn/access/helpdesk3/help/toolbox/images/transfo9.html.
[3] Peter Toft. The Radon Transform . http://eivind.imno.dik/staff/ptoft/Radon/Radon.html.

[4] Wikipedia. Johann Radon. http://en.wikipedia.orddhlohannRadon.

http://flickr.com/photos/calliope/357130113/
http://www.mathworks.com/access/helpdesk_r13/help/toolbox/images/transfo9.html
http://eivind.imm.dtu.dk/staff/ptoft/Radon/Radon.html
http://en.wikipedia.org/wiki/Johann_Radon

	1 Introduction
	2 Theory
	3 Implementation
	4 Results
	Bibliography

