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Abstract 

This paper explains the multi-way decomposition method PARAFAC and its use in chemometrics. PARAFAC is a gener- 
alization of PCA to higher order arrays, but some of the characteristics of the method are quite different from the ordinary 
two-way case. There is no rotation problem in PARAFAC, and e.g., pure spectra can be recovered from multi-way spectral 
data. One cannot as in PCA estimate components successively as this will give a model with poorer fit, than if the simultane- 
ous solution is estimated. Finally scaling and centering is not as straightforward in the multi-way case as in the two-way 
case. An important advantage of using multi-way methods instead of unfolding methods is that the estimated models are 
very simple in a mathematical sense, and therefore more robust and easier to interpret. All these aspects plus more are ex- 
plained in this tutorial and an implementation in Matlab code is available, that contains most of the features explained in the 
text. Three examples show how PARAFAC can be used for specific problems. The applications include subjects as: Analysis 
of variance by PARAFAC, a five-way application of PA&WAC, PAFUFAC with half the elements missing, PARAFAC 
constrained to positive solutions and PARAFAC for regression as in principal component regression. 
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1. Introduction 

PARAFAC is a multi-way method originating 
from psychometrics [ 1,2]. It is gaining more and more 
interest in chemometrics and associated areas for 
many reasons: Simply increased awareness of the 
method and its possibilities, the increased complexity 
of the data dealt with in science and industry, and in- 
creased computational power [3,4]. 

Multi-way data are characterized by several S&S of 
variables that are measured in a crossed fashion. 
Chemical examples could be fluorescence emission 
spectra measured at several excitation wavelengths 
for several samples, fluorescence lifetime measured at 
several excitation and emission wavelengths or any 
kind of spectrum measured chromatographically for 
several samples. Determining such variables will give 
rise to three-way data; i.e., the data can be arranged 
in a cube instead of a matrix as in standard multi- 
variate data sets. In psychometrics a typical data set 
could be a set of variables measured on several per- 
sons/subjects on several occasions. Similar configu- 
rations can be imagined in for example sensometrics. 

In practice many other types of data might be multi- 
way: two-way data determined for several chemical 
treatments, pH’s, times, locations, etc. An important 
way of generating multi-way data is of course im- 
ages in all its bearings. 

PARAFAC is one of several decomposition meth- 
ods for multi-way data. The two main competitors are 
the Tucker3 method [5], and simply unfolding of the 
multi-way array to a matrix and then performing 
standard two-way methods as PCA. The Tucker3 
method should rightfully be called three-mode prin- 
cipal component analysis (or N-mode principal com- 
ponent analysis), but here the term Tucker3 or just 
Tucker will be used instead. PARAFAC, Tucker and 
two-way PCA are all multi- or bi-linear decomposi- 
tion methods, which decompose the array into sets of 
scores and loadings, that hopefully describe the data 
in a more condensed form than the original data ar- 
ray. There are advantages and disadvantages with all 
the methods, and often several methods must be tried 
to find the most appropriate. 

Without going into details of two-way PCA and 
Tucker it is important to have a feeling for the hier- 
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archy among these methods. Kiers [6] shows that 
PARAFAC can be considered a constrained version 
of Tucker3, and Tucker3 a constrained version of 
two-way PCA. Any data set that can be modeled ad- 
equately with PARAFAC can thus also be modeled 
by Tucker3 or two-way PCA, but PARAFAC uses 
fewer degrees of freedom. A two-way PCA model 
always fits data better than a Tucker3 model, which 
again will fit better than a PARAFAC model, all ex- 
cept for extreme cases where the models may fit 
equally well. If a PARAFAC model is adequate, 
Tucker3 and two-way PCA models will tend to use 
the excess degrees of freedom to model noise or 
model the systematic variation in a redundant way 
(see the last application). Therefore one will gener- 
ally prefer to use the simplest possible model. This 
principle of using the simplest possible model is old, 
in fact dating back as long as to the fourteenth cen- 
tury (Occam’s razor), and is now also known as the 
law or principle of parsimony [7]. In the sense that it 
uses most degrees of freedom the PCA model can be 
considered the most complex and flexible model, 
while PARAFAC is the most simple and restricted 
model. 

Conceptually some may find two-way PCA more 
simple than the multi-linear methods, but in a multi- 
way context this is not so. Because the array has to 
be unfolded to a matrix before two-way analysis, the 
variables in the unfolded modes get mixed up, so that 
the effect of one variable is not associated with one 
but many elements of a loading vector. Consider an 
even more complex model than two-way PCA, e.g. a 
model that does not assume any structure at all but 
models each data element individually. This model 
would equal the data and obviously use all degrees of 
freedom, giving a perfect fit. Thus, the more struc- 
ture the poorer the fit is and the simpler the model is. 

It is apparent that the reason for using multi-way 
methods is not to obtain better fit, but rather more 
adequate, robust and interpretable models. This can to 
some extent be compared to the difference between 
using multiple linear regression (MLR) and partial 
least squares regression (PLS) for multivariate cali- 
bration. MLR is known to give the best fit to the de- 
pendent variable of the calibration data, but in most 
cases PLS has better predictive power. PLS can be 
seen as a constrained version of MLR, where the 
constraints helps the model focusing on the system- 

atic part of the data. In the same way multi-way 
methods are less sensitive to noise and further give 
loadings that can be directly related to the different 
modes of the multi-way array. That two-way PCA can 
give very complex models can be illustrated with an 
example. For an F-component PCA solution to an I 
X J X K array unfolded to an Z X JK matrix, the 

PCA model consists of F( I + JK > parameters (scores 
and loading elements). A corresponding Tucker 
model with equal number of components in each 
mode would consist of F(Z + .Z + K) + F 3, and 
PARAFAC F(Z + J + K) parameters. For a hypo- 
thetical example consider a 10 X 100 X 20 array 
modeled by a 5 component solution. A two-way PCA 
model of the 10 X 2000 unfolded array consists of 
10050 parameters, a Tucker model of 775 and a 
PARAFAC model of 650 parameters. Clearly, the 
PCA model will be more difficult to interpret than the 
multi-way models. 

In this paper a tutorial of how to use PARAFAC 
is given. The interest in PARAFAC and related 
methods is often hampered by practical considera- 
tions regarding how to implement the algorithm, how 
to do sound analysis etc. Many excellent papers on 
PARAFAC are not published in readily available pa- 
pers. The essence of some of these papers is pre- 
sented. A very annoying characteristic of PARAFAC 
is the long time required to calculate the models. The 
algorithms used are most often based on alternating 
least squares (ALS) initialized by either random val- 
ues or values calculated by a direct trilinear decom- 
position based on the generalized eigenvalue prob- 
lem. Here the ALS algorithm of PARAFAC is modi- 
fied in simple manners, which brings about a de- 
crease in the number of iterations and time required 
to calculate the models of up to 20 times. 

In the following, the discussion will be limited to 
three-way data for simplicity, but most results are 
valid for data and models of any (higher) order. Three 
applications will show some typical applications of 
PARAFAC and also include higher order models. 

2. Nomenclature 

In the following, scalars are indicated by lower- 
case italics, vectors by bold lower-case characters, 
bold capitals are used for two-way matrices, and un- 



minimize the sum of squares of the residuals, eijk in 
the model 

This equation is shown graphically in Fig. 1 for two 
components (F = 2). 

The model can also be written 

derlined bold capitals for three-way arrays. The let- 
ters I, .Z, K, L and M are reserved for indicating the 
dimension of different modes. The ijkth element of X 
is called xijk. The terms mode, way and order a& 
used more or less interchangeably though a distinc- 
tion is sometimes made between the geometrical di- 
mension of the hypercube - the number of ways - 
and the number of independent ways - which is the 
order/mode [3,6]. An ordinary two-way covariance 
matrix is only a one-mode array, because the vari- F 

ables are identical in the two ways. Likewise there X= xaf8bf@cf - 
will not be distinguished between the terms factor and 

f= 1 

component. When three-way arrays are unfolded to 
matrices the following notation will be used: If X is 
an ZXJXKarrayandisunfoldedtoan ZXJKma- 
trix the order of .Z and K indicates which indices are 3.1. Uniqueness 
running fastest. In this case the indices of .Z are run- 
ning fastest, meaning that the first .Z rows of X con- 
tain all variables for k = 1 and for j = 1 to j = J. 

where af, bf and cf are the fth columns of the load- 
ing matrices A, B and C respectively [9]. 

An obvious advantage of the PARAFAC model is 
the uniqueness of the solution. In bilinear methods 
there is a well-known problem of rotational freedom. 
The loadings in a spectral bilinear decomposition re- 
flect the pure spectra of the analytes measured, but it 
is not possible without external information to actu- 
ally find the pure spectra because of the rotation 
problem. This fact has prompted a lot of different 
methods for obtaining more interpretable models than 
PCA and models alike [lo-121, or for rotating the 
PCA solution to more appropriate solutions. Most of 
these methods, however, are more or less arbitrary or 
have ill-defined properties. This is not the case in 
PARAFAC. If the data is indeed trilinear, the true 
underlying spectra (or whatever constitute the vari- 
ables) will be found if the right number of compo- 
nents is used and the signal-to-noise ratio is appro- 
priate [13-B]. This important fact is what originally 
initiated R. A. Harshman to develop the method based 
on an idea from 1944 [16]. It is a very strong feature, 
which gives the PARAFAC model an unsurpassed 
advantage. 

3. The model 

PARAFAC is a decomposition method, which 
conceptually can be compared to bilinear PCA, or 
rather it is one generalization of bilinear PCA, while 
the Tucker3 decomposition is another generalization 
of PCA to higher orders [8,9]. The model was inde- 
pendently proposed by Harshman [l] and by Carroll 
and Chang [2] who named the model CANDECOMP 
(canonical decomposition). A decomposition of the 
data is made into triads or trilinear components, but 
instead of one score vector and one loading vector as 
in bilinear PCA, each component consists of one 
score vector and two loading vectors. It is common 
three-way practice not to distinguish between scores 
and loadings as these are treated equally numerically. 

A PARAFAC model of a three-way array is given 
by three loading matrices, A, B, and C with elements 
aif, bjf, and ckf. The trilinear model is found to 
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(1) 

Leurgans et al. [ 171 among others have shown, that 

Fig. 1. A graphical representation of a two-component PARAFAC model of the data army X. - 
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unique solutions can be expected if the loading vec- 
tors are linear independent in two of the modes, and 
furthermore in the third mode the less restrictive 
condition is that no two loading vectors are linearly 
dependent. A good example of this is given in the 
second application below. Kruskal [ 15,181 gives even 
less restrictive conditions for when unique solutions 
can be expected. He uses the k-rank of the loading 
matrices, which is a term introduced by Harshman 
and Lundy [ 191. If any combination of k’ columns of 
A has full column-rank, and this does not hold for k’ 
+ 1, then the k-rank of A is k’. The k-rank is thus 
related, but not equal, to the rank of the matrix, as the 
k-rank can never exceed the rank. Kruskal proves that 
if 

k1+k2+k3>2F+2, 
then the PARAFAC solution is unique. k’ is the k- 
rank of A, k* is the k-rank of B, k3 is the k-rank of 
C and F is the number of PARAPAC components 
sought. 

The mathematical meaning of uniqueness is that 
the estimated PARAFAC model cannot be rotated 
without a loss of fit, as opposed to two-way analysis 
where one may rotate scores and loadings without 
changing the fit of the model. A unique solution 
therefore means, that no restrictions are necessary to 
identify estimate the model apart from trivial varia- 
tions of scale and column order. For appropriate 
noise, i.e. random and not to severe, it also holds that 
the true underlying trilinear model will be the model 
with the best fit. Therefore the true and estimated 
models must coincide when the right number of 
components is chosen. 

3.2, Rank of multi-way arrays 

An issue that is quite astonishing at first is the rank 
of multi-way arrays. Little is known in detail but 
Kruskal [ 15,18], ten Berge et al. [20] and ten Berge 
[21] have worked on this issue. A 2 X 2 matrix has 
the maximal rank two. In other words: Any 2 X 2 
matrix can be expressed as a sum of two rank one 
matrices, two principal components for example. A 
rank-one matrix can be written as the outer product 
of two vectors (a score and a loading vector). Such a 
component is called a dyad. A triad is the trilinear 
equivalent to a dyad, namely a trilinear (PARAFAC) 
component, which is given by the tensor product of 

three vectors [9]. The rank of a three-way array is 
equal to the minimal number of triads necessary to 
describe the array. For a 2 X 2 X 2 array it turns out, 
that the maximal rank is three! This means that there 
exist 2 X 2 X 2 arrays that cannot be described using 
only two components. An example can be seen in 
[20]. For a 3 X 3 X 3 array the maximal rank is five 
(see for example [ 181). These results may seem 
strange, but are due to the special structure of the 
multilinear model compared to the bilinear. Further- 
more Kruskal has shown that if for example 2 X 2 X 2 
arrays are generated randomly from any reasonable 
distribution, the volumes or probabilities of the array 
being of rank two or three are both positive. This as 
opposed to two-way matrices where only the full-rank 
case has positive volume. The practical implication of 
this is yet to be seen, but the rank of an array might 
have importance when one wants to create a multi- 
way array in a parsimonious way, yet still with suffi- 
cient dimensions to describe the phenomena under 
investigation. It is already known, that unique de- 
compositions can be obtained even for arrays where 
the rank exceeds any of the dimensions of the differ- 
ent modes. It has been reported that a ten factor model 
was uniquely determined from an 8 X 8 X 8 array 
[ 1,14,19]. This shows that parsimonious arrays might 
contain sufficient information for quite complex 
problems, specifically that the three-way decomposi- 
tion is capable of withdrawing more information from 
data than two-way PCA. Unfortunately there are not 
explicit rules for determining the maximal rank of 
arrays in general, except for the two-way case, and 
some simple three-way arrays. 

4. Implementation 

4.1. Alternating least squares 

The solution to the PARAFAC model can be found 
by alternating least squares (ALS) by successively 
assuming the loadings in two modes known and then 
estimating the unknown set of parameters of the last 
mode. This is also how the model was initially pro- 
posed to be estimated. Consider a 2 X 2 X 2 array 
sliced into two 2 X 2 matrices as shown in Fig. 2. 

Consider then a one-component PARAFAC model 
of this array. This model can also be written in terms 
of two bilinear models as shown in Fig. 3. 
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Fig. 2. A 2X 2X2 three-way array X can be represented by two - 
matrices Xl and X2. 

This way of representing the three-way model as 
two two-way models can be further modified by sim- 
ply unfolding the array, i.e., concatenate the two ma- 
trices Xl and X2 and correspondingly modify the 
loading vectors (Fig. 4). All three versions are equiv- 
alent and merely different graphical formulations of 
the same model. 

If an estimate of b and c is given, it is now easily 
seen that a can be determined by the least-squares 
solution to the model a(b @I c) = X, where (b 8 c) 
is interpreted as the row vector obtained as the prop- 
erly arranged tensor product of the vectors b and c 
and X is the unfolded array of size I X JK as shown 
in Fig. 4. If the vector (b @ c) is called z or Z in 
case of more than one component, the model defin- 
ing A is 

X=AZ 

The conditional least squares estimate of A is 

A=XZ’(ZZ’)-’ 

The general PARAFAC ALS algorithm can be writ- 
ten 

(0) Decide on the number of components, F 
(1) Initialize B and C 

Fig. 3. A trilinear decomposition expressed as either a model of the 
three-way array or two models of two two-way arrays. 

b’cl b’c2 

Fig. 4. The principle of unfolding applied to a three-way array (and 
tbe corresponding one-component PARAFAC model). 

(2) Estimate A from 5, B and C by least squares 
regression 

(3) Estimate B likewise 
(4) Estimate C likewise 
(5) Continue from 2 until convergence (little 

change in fit or loadings). 
A is an Z X F matrix containing in its fth column 

the fth loading vector. B and C are defined likewise. 
In step 2 X is unfolded to an Z X JK matrix and 

the fth row ii the F X JK matrix Z is defined as 

zf= (bf@CJ. 

The estimate of A is then determined as shown above. 
For estimating e.g., B, X is unfolded to an J X ZK 
matrix and Z becomes i F X ZK matrix calculated 
from A and C. B is then found as XZ’(ZZ’)-‘. For 
three-way PARAFAC computationally efficient for- 
mulations can be seen in e.g. [22]. The ALS algo- 
rithm will, in each iteration, improve (or not worsen) 
the fit of the model. If the algorithm converges to the 
global minimum, which is most often the case for 
well-behaved problems, the least-squares solution to 
the model is found. 

ALS is an attractive method because it ensures an 
improvement of the solution in every iteration, but a 
major drawback of ALS, is the time required to esti- 
mate the models, especially when the number of 
variables is high. Several hundred or thousands of it- 
erations are sometimes necessaty before convergence 
is achieved. With a data array of size 50 X 50 X 50 a 
model might very well take hours to calculate on a 
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moderate PC (depending on implementation and 
convergence criterion of course). This is problematic 
when recalculation of the model is necessary, which 
is often the case e.g. during outlier detection. To 
make PAPAFAC a workable method it is therefore of 
utmost importance to develop faster algorithms. Us- 
ing more computer power could of course solve the 
problem but there is an annoying tendency of the data 
sets always to be a little larger, than what is optimal 
for the current computer power. In the implementa- 
tion used here two acceleration methods have been 
built in (for others see e.g. [1,22,23]). 

4.1. I. Compressing 
Like in bilinear PCA one most often seeks a low- 

dimensional representation of a high-dimensional ar- 
ray in PARAFAC. This implies, that the data array is 
redundant, i.e., there is collinearity between the vari- 
ables. Consider a 5 X 6 X 500 array, where the third 
500dimensional mode might be spectral. Using ALS 
on such an array is computationally costly. From the 
theory of PCA it is known, that the variations in the 
spectra can be well represented by a low-dimen- 
sional score matrix, that contains the main systematic 
part of the variations. If the data array is unfolded 
keeping the high-dimensional mode intact, one ob- 
tains a 30 X 500 dimensional matrix. By two-way 
PCA we can describe most of the variation in this 
matrix by a score matrix, of say, dimension 30 X 5. 
Folding back the matrix to a three-way array, the ar- 
ray now has the dimensions 5 X 6 X 5. Calculating 
the PARAFAC model on this low-dimensional array 
takes only a fraction of the time required to calculate 
the PARAFAC model of the high-dimensional array. 
The estimated model is only describing the score ma- 
trix and not the original array, but it is only in the 
compressed mode, that the estimated loadings differ. 
We can convert the calculated loadings in that mode 
into the original variable space by multiplying the 
loadings from the PARAFAC model - which are 
loadings in a score space - with the loadings from 
the PCA. The PARAFAC model achieved hopefully 
equals a PARAFAC model calculated from the origi- 
nal array. To ensure this, ALS is applied to the origi- 
nal array using the calculated loadings and scores as 
starting values. If the model is good only few extra 
iterations will be necessary in the high-dimensional 
space. If several modes are high-dimensional the 

compressed array can of course be compressed fur- 
ther in another mode. 

The compression of modes has been implemented 
so that compression is done whenever the number of 
variables in one mode exceeds the number of factors 
sought with ten. If one mode consists of 20 variables 
and a 5 factor model is estimated this mode is thus 
compressed as the dimension of the mode (20) ex- 
ceeds 5 + 10. The number of principal components to 
compute is set to the number of factors in the 
PARAFAC model plus two. These settings work for 
many types of problems often encountered in our re- 
search group, although sometimes other settings may 
be optimal, because the optimal settings depend on 
the type of data investigated (primarily the signal- 
to-noise ratio). When implementing PCA, one has to 
pay attention to the time demand of the PCA algo- 
rithm. Working on cross-product matrices instead of 
the raw data can speed up the algorithm substan- 
tially, if one mode of the unfolded array is very large 
compared to the other mode. 

When a nonnegativity constraint is used (see later) 
compressing by PCA is not appropriate. Instead one 
can use a subset of the original variables to estimate 
an initial model. This submodel can be found on a 
smoothed version of the original data to ensure that 
important aspects are not missing. 

4.1.2. Extrapolating 
Another method for speeding up the ALS algo- 

rithm is to use the ‘temporal’ information in the iter- 
ations. The simple idea is to perform a predefined 
number of cycles of ALS-iterations and then these 
estimates of the loadings are used to predict new es- 
timates elementwise. There are two good reasons for 
using the temporal information in the iterations of the 
PARAFAC-ALS algorithm. (i) It is only in the first 
few iterations that major changes occur in the esti- 
mates of the elements of the loadings. The main frac- 
tion of iterations are used for minor modifications of 
these factors. (ii) The changes in each element of the 
factors is most often systematic and quite linear over 
short ranges of iterations. 

To make it profitable to extrapolate it is neces- 
sary, that the time required to extrapolate is less, than 
the time required to perform a corresponding number 
of iterations. This to some extent limits the applica- 
bility of the method, because very ingenious extrapo- 
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lations with quadratic fit and adaptive parameters tend 
to be so slow, that there is no gain in computing time. 
Several implementations have been tried ending up 
with an algorithm by Claus A. Andersson, which 
works fast in our Matlab code. At the ith iteration the 
estimated factor loadings A, B and C are saved as Al, 
Bl and Cl. After the (i + 1)th iteration a linear re- 
gression is performed for each element to predict the 
value of that element a certain number of iterations 
ahead. As only two values of each element are used 
in the regression, the prediction can simply be writ- 
ten 

Anew = Al + (A - Al)d, 

where d is the number of iterations to predict ahead. 
Making d dependent on the number of iterations have 
proved useful, and specifically letting 

d = it1i3 

where it is the number of iterations. When applying 
the extrapolation, it is important not to extrapolate 
during the first, say five, iterations, because the vari- 
ations in the elements are very unstable in the begin- 
ning. If some modes are constrained, extrapolation 
has to wait longer for the iterations to be stable. Fur- 
thermore if the extrapolations fail to improve the fit 
persistently (more than four times) the number d is 
lowered from it’lR to itlln+‘. 

4.1.3. Initialization 
Good starting values for the ALS algorithm could 

potentially speed up the algorithm and ensure, that the 
global minimum is found. Several possible kinds of 
initializations have been proposed. Harshman and 
Lundy [19] advocate for using random starting val- 
ues and starting the algorithm from several different 
starting points. If the same solution is (essentially) 
reached several times there is little chance that a lo- 
cal minimum is reached due to an unfortunate initial 
guess. In [24-271 it is proposed to use starting values 
based on generalized eigenvalue decompositions. 
These eigenvalue decompositions are all comparable 
to the generalized rank annihilation methods, where 
two samples are used to estimate the loadings in the 
second and third mode. With respect to speed, how- 
ever, there is often no advantage of using these ini- 
tialization methods. Rather, the advantage is if the 

ALS algorithm tends to get stuck in local minima, a 
good initialization might help overcoming this prob- 
lem. Our experience is that local minima is seldom a 
problem if the data are trilinear, but others have re- 
ported differently [28,29]. Another practical problem 
with these methods is how to extend them to higher 
orders. This problem has not yet been addressed. 

4.2. Stopping criterion 

The importance of using a suitable stopping crite- 
rion has been mentioned by several authors. It some- 
times occurs, that even small changes in the fit can 
be associated with huge differences in the estimated 
loadings, because the response surface of the least 
squares error function is very flat [l]. This is espe- 
cially true if some underlying phenomena are highly 
correlated. As a safeguard against this, one can run 
the algorithm twice. If the algorithm has truly con- 
verged, the two solutions will essentially be identi- 
cal. If the algorithm has not converged it is unlikely, 
that the estimated solutions are identical if a random 
initialization has been used. A common criterion to 
use, is to stop the iterations when the relatiue change 
in fit between two iterations is below a certain value 
(e.g., 10p6). In some cases a low change in the rela- 
tive changes of the loadings is used [30]. The differ- 
ence between these two approaches is not clear. 

4.3. Constraining the solution 

Constraining the PARAFAC solution can some- 
times be helpful in terms of interpretability or stabil- 
ity of the solution. The fit of a constrained model will 
always be lower than the fit of an unconstrained 
model, but if the constrained model is more inter- 
pretable and realistic this may justify the decrease in 
fit. In psychometrics orthogonalizing has been de- 
scribed as a means of overcoming problems with un- 
stable solutions [22]. For the first mode, an orthogo- 
nal least squares solution to the PARAFAC model can 
be estimated as 

A = XZ’(ZX’XZ’) -OS 

X being I X JK and Z being F X JK as defined be- 
fore 123,311. This estimation method also normalizes 
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the loadings. Unless all modes are to be orthogonal- 
ized, this is not a problem, but merely a matter of 
scaling. Models estimated under orthogonality con- 
straints will differ from models estimated without this 
constraint. The models however, will still be mathe- 
matically unique, only the models will be least 
squares models under the orthogonality constraint. 
Orthogonalization is not often used in chemometrics, 
because it hinders the straightforward interpretation 
of the loadings, but for more explorative purposes it 
can be useful. It also enables more straightforward 
interpretation of e.g., data arising from experimen- 
tally designed data, as the sum-of-squares described 
by the model can be partitioned into contributions 
from individual components. 

Another and more often used constraint is to re- 
quire nonnegative loadings in e.g., a spectral data set. 
While orthogonalizing is based on a purely mathe- 
matical basis, a nonnegativity constraint is often cho- 
sen on the basis of specific knowledge of the data; for 
instance that absorbance measurements should be 
positive if proper blanking is used. To find the least 
squares loading vector given a nonnegativity con- 
straint is somewhat complicated. A general method 
has been described by Lawson and Hanson [32]. This 
method is implemented in Matlab as NNLS. An 
equivalent but faster algorithm is available from the 
author on request. 

For certain types of data it can be fruitful to apply 
constraints on the interrelationship between the load- 
ing vectors. For closed systems one might for exam- 
ple want to restrict the sum of the F - 1 first loading 
vectors to equal the Fth loading vector in one mode 
to ensure, that the solution follows the known behav- 
ior of the underlying phenomena. This can be ac- 
complished using equality constraints in the least 
squares solutions [32-361. 

It is possible to fix certain loadings to predefined 
values (usually zero or one) by adjusting for these el- 
ements during the regression steps in the ALS algo- 
rithm. For other knowledge based types of con- 
straints see [37,38]. 

4.4. Missing values 

Missing values in PARAFAC are easily handled 
by iteratively estimating the missing values. This es- 

timate is given for free when iterating in the ALS al- 
gorithm. The estimate of the ijkth element of X is - 

F 

iijk = c aifbjfckf. 
f= 1 

The missing elements are consistently replaced with 
the estimates of the elements, and the ALS is contin- 
ued until no changes occur in the estimates of these 
missing elements and the overall convergence crite- 
rion is fulfilled. It is also possible to handle missing 
values by weighted regression setting the weights of 
missing values to zero. 

5. Preprocessing 

Preprocessing of three-way arrays is more compli- 
cated than in the two-way case, though understand- 
able in light of the multilinear variation presumed to 
be an acceptable model of the data. 

Centering the first mode can be done by unfolding 
the calibration array to an I X JK matrix, and then 
center this matrix as in ordinary PCA: 

x;;;;l”k”’ = 
- 

Xijk - xjk 

where 

- c:= lxijk 

Xjk = 

I 

This is often referred to as single-centering. The cen- 
tering shown above is called centering across the first 
mode, which is the terminology suggested in [39]. 
The centering can of course be applied to any of the 
modes, depending on the problem. If centering is to 
be performed across more than one mode, one has to 
do this by first centering one mode, and then center 
the outcome of this centering. If two centerings are 
performed in this way, it is often referred to as dou- 
ble-centering. Triple-centering means centering 
across all three modes one at a time. In [39-411 the 
effect of both scaling and centering on the trilinear 
behavior of the data is described. It turns out that 
centering one mode at a time, is the only appropriate 
way of centering, with respect to the assumptions of 
the PARAFAC model. Centering one mode at a time 
essentially removes any constant levels in that partic- 
ular mode. Centering for example matrices instead of 
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Fig. 5. Three-way unfolded array, with rows constituting one intact mode. Centering must be done across the columns of this matrix, while 
scaling has to be done on the rows. 

columns will destroy the multilinear behavior of the 
data, because more constant levels are introduced 
than eliminated. The same holds for other kinds of 
centering. One may, for instance, know that the true 
model consists of a set of PARAFAC terms and one 
overall level, which might incline one to estimate a 
PARAFAC model on the original data subtracted the 
grand level. However, even though the mathematical 
structure might theoretically be true, the subtraction 
of the grand level introduces some artifacts in the 
data, not easily described by the PARAFAC model. 
The model obtained as the grand level plus the 
PARAFAC model is not the global least squares esti- 
mate given the required structure. The grand level and 
the PARAFAC model would have to be estimated si- 
multaneously to obtain the global least squares model. 
Instead the subtraction of the grand level shifts the 
data, so that an extra spurious component will be 
necessary to describe the variation [40]. Scaling in 
multi-way analysis also has to be done, taking the tri- 
linear model into account. One should not, as with 
centering, scale column-wise, but rather whole ‘slabs’ 
of the array should be scaled. If variable j of the sec- 
ond mode is to be scaled (compared to the rest of the 
variables in the second mode), it is necessary to scale 
all columns where variable j occurs. This means that 
one has to scale whole matrices instead of columns. 
For a four-way array, one would have to scale three- 
way arrays. Mathematically scaling can be described 

where si can be defined as 

The scaling shown above is referred to as scaling 
within the first mode. When scaling within several 
modes is desired, the situation is a bit complicated 
because scaling one mode affects the scale of the 
other modes. If scaling to norm one is desired within 
several modes, this has to be done iteratively, until 
convergence [39]. Another complicating issue, is the 
interdependence of centering and scaling. In general 
scaling within one mode disturbs prior centering 
across the same mode, but not across other modes. 
Centering across one mode disturbs scaling within all 
modes [41]. Hence only centering across arbitrary 
modes or scaling within one mode is straightforward, 
and not all combinations of iterative scaling and cen- 
tering will converge. These rules may sound compli- 
cated, but in practice it need not influence the out- 
come much if the iterative approach is not used. 
Scaling to a sum-of-squares of one is arbitrary any- 
way and it may be just as defensible to just scale 
within the modes of interest once, thereby having at 
least mostly equalized any huge differences in scale. 
Centering can then be performed after scaling and 
thereby it is assured that the modes to be centered are 
indeed centered. In the Matlab code available from 
the Internet (see materials and methods) an M-file is 
given to perform the iterative scaling and centering 
procedures. 

A common rule of thumb is to center across the 
mode of interest, but of course the purpose of center- 
ing is to remove constant levels, hence knowledge of 
the data might guide the proper preprocessing. The 
appropriate centering and scaling procedures can 
most easily be summarized in a figure where the ar- 
ray is shown unfolded to a matrix (Fig. 5). Centering 
must be done across the columns of this matrix, while 
scaling should be done on the rows of this matrix. 
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6. Assessing the solution 

6.1. Postprocessing 

As in two-way PCA different scalings of the solu- 
tion can be used. Scaling one loading vector by a 
constant does not change the model, if another load- 
ing vector of the same component is scaled accord- 
ingly by the inverse of the same constant. The load- 
ing vectors of the second and third mode can be nor- 
malized to length one. The scores or loadings of the 
first mode will then show the sum-of-squares, SS, of 
each component as 

i-1 j-1 k=l i=f j-1 k=l 

in the same way as in bilinear PCA. Due to the 
nonorthogonality of PARAFAC solutions in general, 
one cannot simply add the sum-of-squares for all 
components to get the total sum-of-squares. To judge 
a component’s influence one should compare the 
sum-of-squares of the original data with the sum-of- 
squares of the data subtracted the specific compo- 
nent. 

It is also common practice to scale the loading 
vectors, so the maximal loading is one to enhance vi- 
sual interpretability. Other scalings can be applied 
guided by the problem. As there are no predefined 
order of the components the order of the components 
might not be the same in two estimates of the same 
data set, even though the models are identical. This 
is just a matter of permutations. One can of course 
build in a sorting in the algorithm, so that compo- 
nents are sorted e.g., in order of their descriptiveness 
of the data as in two-way PCA. 

6.2. Leverages and residuals 

Leverages and residuals can be used for influence 
and residual analysis. As the loading vectors are not 
orthogonal the leverages have to be calculated as 

u = diag(A(A’A)-‘A’), 

A being replaced with the proper loading matrix (A, 
B or C), and diag meaning the diagonal of the ma- 
trix. The leverage for the ith sample or variable, vi. 

is the ith element of u and has a value between zero 
and one [42]. A high value indicates an influential 
sample or variable, while a low value indicates the 
opposite. Samples or variables with high leverages 
and low in case of a variable mode must be investi- 
gated to verify if they are inappropriate for the model 
(outliers) or are indeed influential and acceptable. If 
a new sample is fit to an existing model, the leverage 
can be calculated using the new scores for that sam- 
ple as in ordinary regression analysis. The leverage is 
then no longer restricted to be below one. As lever- 
ages are actually developed for regression analysis, 
the term squared Mahalanobis distance might be more 
appropriate for a decomposition method as 
PARAFAC, but as leverages are also widely used in 
two-way PCA, the term leverage is preferred here. 

Residuals are easily calculated by subtracting the 
model from the data. These residuals can be used for 
calculating variance-like estimates [43] or they can be 
plotted in various ways to detect trends and system- 
atic variation. 

6.3. Number of components 

It is difficult to decide the best rank of a 
PARAFAC model. This area is not very well founded 
yet, and research is absolutely called for. It is not in 
general profitable to use cross-validation as in bilin- 
ear PCA. In PCA one deflates the X matrix after cal- 
culation of each component, and therefore eventually 
the components describe noise instead of systematic 
variation. This is seen as an increase in the residuals 
of modeling independent samples. This is the basis of 
using cross-validation or jackknifing. Sometimes the 
increase in the residual variance is not very pro- 
nounced which makes it difficult to correctly esti- 
mate the proper rank of the model. This situation can 
be even worse in PARAFAC. In PARAFAC, one 
does not deflate the array, because the trilinear model 
calculated simultaneously for all components can be 
shown to fit the array better, than if the components 
were calculated successively as is possible in PCA 
[28]. As a consequence, extracting too many compo- 
nents does not only mean that noise is being increas- 
ingly modeled, but also that the true factors are being 
modeled by more (correlated) components. In gen- 
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eral, one will therefore not see as steep an increase in 
a cross-validation procedure as in the bilinear mod- 
els. 

There are three main ways of determining the cor- 
rect number of components: (1) Split-half experi- 
ments, (2) judging residuals and, (3) compare with 
external knowledge of the data being modeled. If the 
PARAFAC model is to be used for e.g., calibration 
one can of course do cross-validation on the predic- 
tions of the dependent variable to find the optimal 
model. 

Ad. (1). Harshman and Lundy [19] advocate for 
using split-half experiments. The idea is to divide the 
data into two halves and then make a PARAFAC 
model on both halves. Due to the uniqueness of the 
PARAFAC model, one will obtain the same result 
- same loadings in the nonsplitted modes - on both 
data sets, if the correct number of components is 
chosen. To judge if two models are equal one must 
remember the intrinsic indeterminacy in PARAFAC: 
The order and scale of a model may change if not 
fixed algorithmically. If a wrong number of compo- 
nents is chosen in the split-half experiment, there is a 
good chance, that the two models will not be equal, 
due to the differences in the different samples. When 
doing a split-half experiment one has to decide which 
mode to split. In general one should split the data in 
a mode with a sufficient number of independent 
variables/samples. If one has a highdimensional 
spectral mode, an obvious idea would be to use this 
spectral mode for splitting, but the collinearity of the 
variables in this mode would impede sound results. 
Any number of components would yield the same re- 
sult if the spectra behave additively. 

Ad. (2). As in bilinear models, one can judge a 
model on the fit. If systematic variation is left in the 
residuals, it is an indication that more components can 
be extracted. If a plot of the residual sum of squares 
versus the number of components sharply flattens out 
for a certain number of components, this is an indica- 
tion of the true number of components. If the resid- 
ual variance is larger than the known experimental 
error, it is indicative of more systematic variation in 
the data. To calculate variance-like estimators [44] 
give the following degrees of freedom for a trilinear 
PARAFAC model 

dof(F) =Z.ZK-F(Z+J+K-2), 

and 

dof(F) =ZJKL-F(Z+.Z+K+L-3) 

for a quadrilinear PARAFAC model. I, J, K and L 
are the dimensions of the first, second, third and 
fourth mode respectively and F is the number of 
components in the model. These degrees of freedom 
might be used for explorative purposes, but they are 
not to be taken as statistically exact numbers of de- 
grees of freedom. Such are currently not available. 

Ad. (3). With experience one gets a feeling for 
which results are good and which results are bad. This 
can be very important for making good models. The 
use of experience and intuition can also be more sys- 
tematically used. Often one knows certain things 
about the underlying phenomena in the data. Spectra 
of certain analytes might be known, the shape of 
chromatographic profiles might be known or the 
nonnegativity of certain phenomena might be known. 
These kinds of hard facts can be very informative 
when comparing different models. In [38,44] some 
examples on how to use residuals and external 
knowledge to choose the appropriate number of 
components are shown. 

6.4. Degenerate solutions 

Degenerate solutions are sometimes encountered. 
Degenerate solutions are solutions hard to handle for 
the PARAFAC model. The estimated models are of- 
ten unstable and unreliable. A typical sign of a de- 
generate solution, is that loading vectors of the same 
mode have high correlations. Most often a degener- 
ate solution is characterized by two PARAFAC com- 
ponents showing equally shaped loading vectors in all 
modes with two or none of the pairs of loading vec- 
tors of each mode positively correlated and one or 
three negatively correlated. An indication of degen- 
erate solutions can thus be obtained by monitoring the 
correlation between all pairs of loading vectors. In 
practice the triple cosine, TC, of all combinations of 
components is used. TC is defined as 

TC,, = cos(a,, aj)cos(bi, bj)cos(ci, cj) 

a:aj b;bj c:cj 
= 

lla~llllajll llb,llllbill llcilllleilj 
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i and j indicating the ith and jth component. 
Mitchell and Burdick [29,45] refer to TC as the un- 
corrected correlation coefficient (UCC). The TC 
value can be shown to correspond to the cosine of the 
angle between two vectors, xi and xj, where xi is 
the vector obtained by properly unfolding the tensor 
product of all loading vectors with index i (like the 
b and c vector in Fig. 4 only a should also be in- 
cluded). 

A TC value close to - 1 indicates a degenerate 
solution. A TC value lower than - 0.85 is an indica- 
tion of a troublesome model according to [46], but this 
can just be taken as a rule of thumb. Furthermore, for 
degenerate solutions the TC value will typically con- 
tinue to worsen for more iterations. If the numeri- 
cally high TC value is just caused by a poor initial- 
ization, the TC value will decrease again numeri- 
cally. If several new estimations of the same model 
are consistent and not degenerate, the degenerate so- 
lution can be discarded as an accidental local mini- 
mum. If decreasing the convergence criterion does 
not eliminate degeneracy the cause is most often one 
of three [41,47]. (i) Too many components are ex- 
tracted. This will be easily recognizable, by the fact 
that models with fewer components yield nondegen- 
erate solutions. Often extracting too many compo- 
nents will give high positive TC values just as well 
as negative, which is not the case for real degenerate 
solutions. Split-half experiments will also help to dis- 
tinguish this situation from more serious problems. 
(ii) Poor preprocessing has been applied, which can 
be characterized by degenerate solutions even for a 
low number of components, and when other informa- 
tion indicates that further systematic information is 
present. (iii) The last situation of degeneracy occurs 
when the model is simply inappropriate, for exam- 
ple, when the data are not trilinear as the model. In 
[48] some of these situations are referred to as two- 
factor degeneracies. When two factors are interre- 
lated a Tucker3 model is appropriate and estimating 
PARAFAC models with too few factors can yield 
degenerate models that can be shown not to con- 
verge to a minimum, while estimating models with a 
higher number of components is difficult due to the 
correlations between the components. An indication 
of this situation might be, that the estimated two-way 
rank of the unfolded array is different depending on 
which mode is unfolded. A PARAFAC model may 

still be appropriate but if the differences are large, this 
indicates that some latent variables do not vary across 
some of the ways, or perhaps vary interdependently. 
In such a case the Tucker (or restricted versions) or 
unfold bilinear models might be better [48-501. 

Mitchell and Burdick [29,45] investigate degener- 
acy and find it profitable to do several runs of a few 
iterations, and only use those runs that are not sub- 
ject to degeneracy. Another way of circumventing 
degenerate solutions is by applying orthogonality 
constraints on the model. 

If the variation in one mode is not exactly obey- 
ing the linearity of the PARAFAC model, it is possi- 
ble to eliminate this mode by using it for calculating 
covariance or cross-product matrices. Fitting the 
model to these derived data, is called indirect fitting 
and has been used for longitudinal data [8,51]. Con- 
sider a three-way data array where the third mode 
could be chromatographic. Perhaps the chromato- 
graphic profiles of the same analytes change a little 
from sample to sample due to analytical properties. 
The data array is therefore almost trilinear, but the 
differences from sample to sample in the third mode 
makes it hard to make a sound PARAFAC model. 
The I X J X K array can be seen as J matrices of size 
I X K. For each j (1 to J) one can calculate an I X I 
covasiance matrix as XIX,, where Xj is the Z X K 
submatrix of X on the jth level of the second mode. 
The thus obt&ed data array has the size Z X Z X J 
and consists of covariance matrices. The original third 
mode has vanished and fitting the PARAFAC model 
to this array will give the following model (compare 
Eq. (1)). 

F 

Xijk = c ‘ifajfb% 
f= 1 

disregarding the noise. The a’s and b’s in this model 
correspond exactly to the a’s and b’s in the model 
obtained from the raw data array (Eq. (1)) if the 
loading vectors in the third mode are orthonormal. 
This, however, is not very likely and a solution to this 
problem has been suggested by Harshman. He has 
developed a model called PARAFAC2 [51]. In this 
model the loading vectors of the third mode can be 
oblique - nonorthogonal. The PARAFAC:! model 
has not yet been used very extensively maybe be- 
cause the implementations so far have been compli- 
cated and slow [52]. 
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7. Types of data suitable for PARAFAC analysis 

There are three different types of data, that are 
more or less commonly analyzed by PARAFAC: 
PCA-like data, analysis of variance - ANOVA - 
data and multidimensional scaling data. In chemo- 
metrics the most well-known application of 
PARAFAC is for PCA-like data, spectral data for ex- 
ample. The use of PARAFAC for these kind of data 
should be rather simple following the same strategy 
as for decomposing bilinear data. 

The use of PARAFAC for analysis of variance is 
rare [53]. However, the use of PCA and related 
methods for ANOVA has been known for several 
years (see [54,55] and references in these). The ad- 
vantage of using PARAFAC for ANOVA is in the 
way interaction terms are modeled. In a standard 
ANOVA an interaction between three factors (A, B 
and C> would be estimated as Eijk, while in a trilin- 
ear model, this effect would be estimated as ai bjck 
or as a sum of such expressions if more PARAFAC 
components are estimated. The interaction is not only 
estimated as a whole, but is modeled as a multiplica- 
tive effect of the three different factors. If the multi- 
plicative model is appropriate, the applied restriction 
(a, bjck instead of merely Eijk) will give a more in- 
terpretable model. 

Carroll and Chang [2] who developed PARAFAC 
(CANDECOMP) simultaneously with Harshman de- 
veloped it for its application to multidimensional 
scaling. In psychometrics it has gained widespread 
use for this purpose, but this will not be touched upon 
specifically here. 

8. Application I: Analysis of variance 

8.1. Data 

This data set is obtained for exploring the influ- 
ence and properties of enzymatic browning of veg- 
etables. The primary contributor to enzymatic brown- 
ing is PPO, polyphenol oxidase [56]. The relation- 
ship between PPO activity (expressed as oxygen 
consumption) and experimental conditions is investi- 
gated. For five 0, levels, three CO, levels, three pH 
values, three different temperatures and three sub- 
strate types - all varied independently - the activ- 

Table 1 
Experimental design 

PPO activity 

factor levels 

0, (o/o) 0, 5, 10, 20, 80 
co, (%I 0, 10, 20 
PH 3.0, 4.5, 6.0 
Temp (“C) 5,20, 30 
Substrate CG, EPI, MIX 
Replicates I, II 

ity of PPO was determined in replicate. Building a 
calibration model to predict the activity from the ex- 
perimental conditions would give important informa- 
tion on how the PPO activity - and therefore the 
color formation - is influenced by the different fac- 
tors. The different levels of the factors are shown in 
Table 1. The number of samples in the replicated full 
factorial design is 5 X 3 X 3 X 3 X 3 X 2 = 810. For 
details on the experimental conditions and a more 
in-depth discussion on the technological aspects see 
[57,58]. 

In [58] the results obtained with PARAFAC are 
compared with ANOVA, locally weighted regression 
and nonlinear methods based on PLS and feedfor- 
ward neural networks, but here the focus is on 
PARAFAC and partially ANOVA. 

CG EPI MIX 

Fig. 6. A graphical representation of the five-way array of activi- 
ties. 
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Fig. 7. Activities of one replicate set versus the other (a). Predictions of the activities of one replicate set from a model of the other replicate 
set (b). 

In the PARAFAC model, the data is interpreted as 
a multi-way array of activities, specifically a five-way 
array. In a sense, the whole array is seen as one sam- 
ple namely PPO activity, which is measured at dif- 
ferent conditions. The five different modes (ways) 
are: 0, (dimension five), CO, (dimension three), pH 
(dimension three), temperature (dimension three), and 
substrate type (dimension three). The ijklmth ele- 
ment of the five-way array contains the activity at the 
ith 0, level, the jth CO, level, the kth level of tem- 
perature, the Eth level of substrate type, for the mth 
pH. The five-way array is depicted in Fig. 6. Each 
element in the array is the average of the two repli- 
cates. 

8.2. Results and discussion 

Preprocessing of ANOVA data is somewhat diffi- 
cult and no general guidelines can be given. One must 
either try different scalings and centerings or use ex- 
ternal knowledge for guidance. In this case, the only 
preprocessing thought to be of potential importance 
was scaling the oxygen mode. From the residuals of 
the two sets of replicates, some heteroscedasticty was 
observed in the oxygen mode. However, scaling the 
data according to this did not improve the predic- 
tions of one replicate set predicted from the other, 
simply because the elements with high residuals were 
downweighted and henceforth modeled with even 
higher error. Other kinds of meancentering and scal- 
ing were tried, but without improving the solution 
[581. 

To decide on the number of components, a five- 
way PARAFAC model was made using the first of 
the two replicate sets instead of just using the mean 
of these. The model from this analysis given by the 
loadings A, B, C, D and E was compared to the other 
replicate set. The number of components was chosen 
to minimize the sum squared prediction error calcu- 
lated as 

SS = 5 aijbjfckfd,fe,f - xijklm ’ 
f= 1 1 1 

Xijklm being the ijkZmth element of the replicate set 
not used for estimating the model. One component 
gave the lowest prediction error, which furthermore 
was in the neighborhood of the intrinsic error of the 
reference value (standard deviation between repli- 
cates 11.9 and standard deviation between the model 
and the test set 13.4 corresponding to 94% variance 
explained). The predictions are shown in Fig. 7, 
where one clearly sees, that the model is very good 
and comparable to the intrinsic error of the data. 

The activity can hence be modeled by a very sim- 
ple one-component model. The loading vectors of this 
model are shown in Fig. 8. To predict the activity at 
a certain setting of the different factors, one simply 
read the ordinate-values of the five different factors 
and multiply these. If a low activity is sought it is very 
easy to see how this can be obtained, i.e. by keeping 
the temperature, oxygen and pH levels as low as pos- 
sible. 

A one-component solution was also found from a 
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Fig. 8. Loading vectors from a one-component PARAFAC model of enzymatic data. 

test set procedure where half the elements of the 
five-way array were eliminated. The elements were 
eliminated according to a fractional factorial design. 
For the remaining data, a PARAFAC model was built 
with an algorithm that handles missing data. With the 
model the activity of the left-out samples was pre- 
dicted for both a one- and a two-component 
PARAFAC model. The root mean square error of 
prediction, RMSEP, for a one-component model was 
12.6, while for two components an RMSEP of 5 1.9 
was found. 

From the PARAFAC loadings it is possible to 
predict the effect at any level of the factors investi- 
gated. To validate this, a PARAFAC model was made 
leaving out all samples with 20% oxygen. A curvefit 
of the oxygen loading vector makes it possible to find 
the oxygen effect of any level between 0 and 80%. 
For 20% the loading was estimated from a quadratic 
curvefit of the loading vector. From this value and the 
loadings of the remaining modes the 27 (1 X 3 X 3 
x 3) left-out samples were predicted with an RM- 
SEP of 13.1. This shows that a completely general 
model is obtained showing the effect of each factors 
as simply a loading vector. 

The data constitute a full factorial design, and 
analysis of variance is thus an obvious tool for inves- 
tigating the influence of different factors. However, 
the problem is highly nonlinear and the results from 

ANOVA are hard to interpret. A standard ANOVA 
performed in SAS pointed to the following model. 

Activity = A + B + C + D + E + AB + AC 

+AD+AE+BC+BC+BE+CD 

+CE+DE+ABC+ABD+ABE 

+ ACE + ADC + ABDC + ABCE 

+ ADE + ABDE + DCE + ADCE, 

A, B, C, D and E being the main effect of 0,, CO,, 
temperature, substrate and pH, and e.g. ACD the in- 
teraction between 0,, temperature and substrate. 
PARAFAC on the other hand suggested that the 
five-way multiplicative interaction term is sufficient 
to model the variations 

Activity = ABCDE, 

or rather 

Activity = ai bj ck d, e, . 

It is interesting, that one of the few interactions not 
significant in the ANOVA model is the five-way in- 
teraction term! Even though more sophisticated 
ANOVA methods can be used, this example illus- 
trates, that choosing the right mathematical method 
can greatly influence the outcome, both with respect 
to prediction and interpretability. When using half the 
samples to estimate a model and predict the left-out 
samples an RMSEP of 35.3 and 12.6 was achieved for 
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the ANOVA and the PARAFAC model respectively. 
The reason for the better results with PARAFAC is 
simply that the underlying multiplicative model is 
more appropriate for the enzymatic data, than is the 
mathematical model underlying ANOVA. It is to be 
expected that the main variation in the activity is 
caused by something, that could be approximately 
multiplicative. If pH is three little activity is ob- 
served no matter the oxygen level, but if pH is 6, the 
activity of PPO is extremely dependent on oxygen. 

8.3. Further modification of the model 

Mathematically the one-component PARAFAC 
model could also be obtained by ANOVA by a loga- 
rithmic transformation of the data, but PARAFAC 
offers an even more general model and is further- 
more unique which is not the case for the ANOVA 
model. In an effort to make a better model a con- 
strained modification of PARAFAC was used where 
some loadings were forced to ones, thereby permit- 
ting modeling of lower-order interactions and main 
effects. The best model was found to consist of one 
main additive effect, one four-way and one five-way 
interaction. This model, specifically 

Xijk=ail +ai2bj2Ck2d/2+ai3bj3Ck3d13e~3 

estimated from one of the replicate sets gave a model, 
that predicted the other replicate set with an RMSEP 
of 12.3. This as compared to the intrinsic error be- 
tween the two replicates, 11.9, and the error obtained 
predicting with the one-component five-way interac- 
tion model, 13.4. However, the model only explained 
one percent more of the variance than the one-com- 
ponent model, and hence the increased complexity 
was judged not to be beneficial enough to justify the 
model. The model was estimated by a three-compo- 
nent PARAFAC where the loadings of the first com- 
ponent were all fixed at the value one except in the 
first mode. In the second component the loadings of 
the fifth mode were forced to ones. Further investiga- 
tion is now in progress trying to develop a general 
multiplicative ANOVA model using PARAFAC as 
sketched here. Problems with defining degrees of 
freedom and the numerical obstacles in estimating the 
constrained PARAFAC models are the most obvious 
problems to be dealt with. It is noteworthy that this 
approach can also be used for estimating constant 

baselines or other lower-order effects in a spectral 
decomposition. 

9. Application II: Unique decomposition of sparse 
fluorescence data 

9.1. Data 

This problem is an illustrative example of the 
unique decomposition obtained by PARAFAC using 
a nonnegativity constraint. The data set is part of an 
investigation conducted by Claus A. Andersson at our 
laboratory. Two samples containing different 
amounts of tyrosine, tryptophane and phenylalanine 
were measured by fluorescence (excitation 250-300 
nm, emission 250-450 nm, 1 nm intervals). The ar- 
ray to be decomposed is hence 2 X 5 1 X 201. The 
samples were measured on a PE LSSOB spectro- 
fluorometer with excitation slitwidth of 2.5 nm, an 
emission slitwidth of 10 nm and a scanspeed of 1500 
rim/s.. Originally five samples were used, which 
could be decomposed by unconstrained PARAFAC 
without problems. However, to show how to incor- 
porate external knowledge in the decomposition only 
two of the samples are used here. 

The theoretical multilinearity of fluorescence has 
been described in [17,28,59]. In Fig. 9 one of the two 
samples is shown. Notice the Rayleigh scatter in the 
left part, which is not multilinear in its nature [60]. 
Rayleigh scatter should be avoided in a multilinear 
decomposition if possible, and there are three ways of 
doing that: (i) Only measure the emission above the 
excitation, if this wavelength area contains sufficient 

3000 

450 

240 250 

Fig. 9. A plot of the fluorescence of a sample containing Tyr, Trp 
and Phe. Notice the Rayleigh scatter in the left comer. 
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Fig. 10. Estimated and true emission spectra: (a) Unconstrained PARAFAC, (b) NNLS PARAFAC, (c) PARAFAC with missing elements 
and (d) missing elements and NNLS. In (d) the true spectra are also shown. 

information; (ii) Use curvefitting in some form to es- 
timate the emission in the neighborhood of the exci- 
tation wavelengths; (iii) Measure a blank and sub- 
tract this measurement from the sample measure- 
ment. This, however, can be problematic if the 
Rayleigh scatter is mainly caused by particles in the 
sample. In this experiment nothing was done to elim- 
inate the Rayleigh scatter initially. 

9.2. Results and discussion 

A three-component PARAFAC solution should 
give the correct solution if the trilinear model is ap- 
propriate. The emission loadings of a three compo- 
nent PARAFAC solution is shown in Fig. 10a. The 
spectrum corresponding to tryptophane has large 
negative areas. It was concluded that the decomposi- 
tion was difficult due to the low variability (two 
samples) and knowing that the fluorescence spectra 
and concentrations should be positive, it was natural 
to constrain the PARAFAC loadings to positive val- 
ues. In Fig. lob the estimated emission loadings are 
shown using nonnegativity constraints. The spectra 

are quite similar to the pure spectra of the analytes, 
but for tryptophane there is a small hump below 300 
mn caused by the non-multilinear Rayleigh scatter. 
To avoid this it was tried to set all variables influ- 
enced by Rayleigh scatter to missing values and then 
estimate the corresponding PARAFAC model. The 
result can be seen in Fig. 10~. Apparently this alone 
is not sufficient to ensure a good curve resolution for 
the tryptophane spectrum. Combining the missing el- 
ements approach with the nonnegativity constraint 
helps the model focuses on the right aspects of the 
data and the estimated loadings in Fig. 10d are shown 
together with the pure spectra. As seen the estimated 
loadings are now quite similar to the pure spectra. The 
estimated excitation spectra are shown in Fig. 11. 

The model precisely estimates the three pure spec- 
tra, even though there are only two independent sam- 
ples, and the excitation spectra of tyrosine and tryp- 
tophane are very alike (correlation 0.93). According 
to the rule mentioned in the paragraph on unique- 
ness, it is theoretically possible to estimate these three 
different spectra correctly if only the concentrations 
vary independently pairwise and no spectra are lin- 
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Wavelength 

Fig. 11. Estimated excitation spectra using missing elements and 
nonnegativity constraints. The thick lines are the pure spectra of 
Trp, Tyr and Phe. 

early dependent on any of the others. However, due 
to Rayleigh scatter, noise and spectral alikeness un- 
constrained PARAFAC was not sufficient in this case 
for resolving the spectra. 

The four different models differ mainly in the area 
of the Rayleigh scatter, but for all models the fit to 
the non-Rayleigh part of the data is almost identical. 
The unconstrained PARAFAC explains 99.957% of 
the variation, the nonnegativity constrained model 
explains 99.958% of the variation, the missing ele- 
ments model explains 99.974%, and the combined 
missing and nonnegativity model explains 99.973%. 
The little difference in explained variance clearly 
supports that the preconceived assumptions of non- 
negativity and inappropriateness of the Rayleigh- 
scatter are valid. Otherwise the altered models would 
have had significantly poorer fit than the uncon- 
strained model. It was also tried to resolve the spec- 
tra by using generalized rank annihilation as de- 
scribed in [26], but the result was similar to, though 
worse than, the result using PARAFAC with missing 
values. 

The loadings of the sample mode are estimates of 

Table 2 
Predictions of concentrations in the second sample 

True concentration Predicted concentration 

8.8 x lo-’ 7.8 x 1o-7 
4.4x 1o-6 3.5 x 10-6 
3.0x 10-4 2.3x 1O-4 

the concentrations of the analytes if the right number 
of components has been chosen. Due to the scaling 
indeterminacy in PARAFAC we cannot estimate the 
concentration of any of the analytes without knowing 
the concentration in one sample. Suppose the con- 
centrations of the analytes in the first sample are 
known, we can then scale the PARAFAC solution and 
compare the concentration estimates of the second 
sample with the true concentrations. The result is 
shown in Table 2. 

Though the errors are large relatively, they are in 
the right neighborhood. 

10. Application III: Prediction of amino-N in sugar 
samples from fluorescence 

10.1. Data 

As for bilinear PCA, the outcome of a PARAFAC 
model can be used as input to other models, most of- 
ten for regression. In this example the emission spec- 
tra of 98 sugar samples dissolved in phosphate 
buffered water were measured at four excitation 
wavelengths (excitation 230, 240, 290, and 340 nm, 
emission 375-560 nm, 0.5 nm intervals). The 
amino-N content was also determined by a standard 
wet-chemical procedure as described in [61]. Follow- 
ing more or less the strategy of PCR a PARAFAC 
model is sought whose scores can predict the amino- 
N content of the sugar samples from the fluores- 
cence. The scores constitute the independent vari- 
ables and are related to the amino-N content by mul- 
tiple linear regression. 

10.2. Results and discussion 

Three different PARAFAC calibration models 
were made: One using raw fluorescence data and an 
unconstrained PARAFAC model, one using raw data 
and nonnegativity constraints on the emission mode, 
and one using meancentered data and unconstrained 
PARAFAC. The models were made using test set 
validation with 49 samples in each set. A PARAFAC 
model was estimated and a regression model esti- 
mated from the scores of the PARAFAC model. The 
scores of the test set samples were calculated from the 
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Table 3 
Percentage of variance explained of the dependent variable (amino-N) of the test set. Each column correspond to a different model and each 
row to the number of latent variables/components used. Bold numbers indicate variance explained for candidate models, and the numbers 
in parentheses are the percentage of variance explained of the three-way array of independent variables in the test set (fluorescence spectra) 

PARAF AC PARAF AC PARAF AC Two-way PLS Three-way PLS Tucker PCR 

(raw) (meancentered) WNLS) 

1 LV 84.0 84.1 84.0 84.4 84.2 84.3 83.9 
2LV 85.4 85.4 85.5 86.6 86.1 84.8 85.7 
3LV 85.2 85.4 85.2 88.5 88.9 85.3 86.8 
4LV 87.1 85.1 86.8 91.6 91.4 88.0 87.2 
5LV 91.2 (99.8) 90.7 (99.9) 91.1(99.8) 91.9 (96.0) 92.3 (95.7) 87.7 (99.8) 88.0 (99.9) 

excitation and emission loadings from the PARAFAC 
model and from these the estimated amino-N content 
was determined from the regression model. For com- 
parison the results of using multi-way PLS (N-PLS, 
[62]), ordinary two-way PLS, Tucker3 regression, and 
two-way principal component regression (PCR) are 
also calculated. N-PLS is a multi-way calibration 
model. By N-PLS the array of independent variables 
is sequentially decomposed to a multi-linear model, 
in such a way that the scores have maximal covari- 
ante with the yet unexplained variation of the depen- 
dent variable. The Tucker regression was performed 
by decomposing the raw data with a Tucker3 model 
using the same number of components in each mode 
and using the loadings of the sample mode for re- 
gression. PCR was performed using the successively 
estimated score vectors from a PCA model for re- 
gression. The spectral data was meancentered prior to 
the PCA decomposition. 

The results from the calibration models are shown 
in Table 3. Several interesting aspects are illustrated 
here. All models obtain optimal or near-optimal pre- 
dictions around five components. PLS and N-PLS 
seem to perform slightly better than the other meth- 
ods and furthermore using fewer components. All 
pure decomposition methods (PARAFAC, Tucker3, 
PCA) describe approximately 99.8% of the spectral 
variation using five components. Even though the 
PCA and Tucker3 models are more complex and 
flexible than PARAFAC the flexibility apparently 
does not contribute to better modeling of the spectra. 
Combining this with the fact that the PARAFAC re- 
gression models outperform both Tucker3 and PCA, 
very well illustrates that when PARAFAC is ade- 
quate there is no advantage of using more complex 

models. The constraints imposed in PLS and N-PLS 
seem to be more adequate. Both give more predictive 
models for amino-N. Both models fit the spectral data 
poorer than the pure decomposition methods, which 
is expectable due to the constraints of the scores hav- 
ing maximal covariance with the dependent variable. 
N-PLS uses only a fraction of the number of parame- 
ters that PLS uses to model the spectral data, so in a 
mathematical sense, N-PLS obtains optimal predic- 
tions with the most simple model. Therefore one can 
argue, that the N-PLS model is the most appropriate 
model. However, the N-PLS model does not possess 
the uniqueness properties of PARAFAC. One might 
therefore also argue that the five-component nonneg- 
ativity constrained PARAFAC model is preferable, if 
the found loadings can be related to specific chemi- 
cal analytes; an issue that will not be further investi- 
gated here. 

Using PARAFAC for regression as shown here has 
the potential for simultaneously providing a model, 
that predicts the dependent variable, and precisely 
describes which phenomena in the independent vari- 
ables, that are crucial for describing the variations in 
the dependent variable. However the little experience 
obtained so far in our laboratory indicates that often, 
one is better of by focusing on either decomposition 
(PARAFAC) or calibration (N-PLS). Purely spectral 
data as here is the only type of data, where there 
seems to be little differences in the predictive ability. 

10.3. M’n’M 

All calculations were done on a 133 MHz Dell PC 
with 32 Mb RAM. The PARAFAC algorithm was 
made in the mathematical software Matlab for Win- 
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dows 4.2c.l (Mathworks). This implementation 
works with arrays up to ten ways. It also contains the 
possibility to constrain loadings to be orthogonal or 
nonnegative and handles missing data. The algorithm 
is available from the Internet at http:\\ 
newton.foodsci.kvl.dk \ foodtech.html. Also avail- 
able are M-files for PARAFAC and Tucker3 made by 
Claus A. Andersson, and N-PLS by R. Bro. Other 
programs for PARAFAC modeling are also avail- 
able. Richard A. Harshman, Dept. Psychology, So- 
cial Science Center, University Western Ontario, 
London, Ontario, Canada N6A 5C2 has a very gen- 
eral PARAFAC program for three-way analysis 
which runs in batch mode on PC’s Rob Ross, at 
http://www.biosci.ohio-state.edu/ N rtr/multilin/ 
muldoc.html offers fortran code for PARAFAC, and 
Pentti Paatero, Dept. Physics, University of Helsinki, 
BOX 9, FIN-00014 University, Helsinki, Finland, has 
made a program for two- and three-way PARAFAC 
which incorporates nonnegativity constraints and 
weighted regression. P.M. Kroonenburg’s latest ver- 
sion of his three-mode toolbox now contains the 
PARAFAC model. The program runs in DOS mode. 
Orders should be sent to P.M. Kroonenburg, Dept. 
Education, Leiden University, Wassenaarseweg 52, 
2333 AK Leiden, The Netherlands. 

11. Conclusion 

The PARAFAC model and its estimation has been 
described and its application for ANOVA, curve-res- 
olution and calibration has been exemplified. It is my 
hope that this tutorial might encourage others to in- 
vestigate multi-way methods. Multi-way methods 
have many advantages (and of course shortcomings) 
that have not yet been fully acknowledged. 
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